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Abstract: This paper describes recent results on the design and simulation of a flight
control strategy for the Micromechanical Flying Insect (MFI), a 10-25mm (wingtip-
to-wingtip) device capable of sustained autonomous flight. Biologically inspired by
the real insect’s flight maneuver, position control is achieved via attitude control.
The wings motion is parameterized by a small set of parameters which are sufficient
to generate desired average torques to regulate its attitude. Position control is
achieved through attitude control based on the linearized dynamics under small angle
assumption near hovering. At the end of each wingbeat, the controller schedules the
desired wings motion parameters according to state feedback errors. With respect
to our previous work (Deng et al., 2001), we explicitly included the modeling
approximations into the design of the flight controller. These errors include the time-
varying nature of aerodynamic forces, the input saturation and linearization errors.
The proposed controller was simulated with the Virtual Insect Flight Simulator, and
the results show improved performance in both position and orientation stabilization.
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1. INTRODUCTION            

Fig. 1. MFI prototype next to a cent coin
Unmanned air vehicles (UAVs) have been a very
active area of research. Despite recent remarkable
achievements obtained with fixed and rotary air-
crafts (Shim et al., 2000), their use in many tasks
is still limited by their maneuverability and size.
However, the extraordinary flight capabilities of
insects have inspired the design of small UAVs
with flapping wings mimicking real flying insects.
Their unmatched maneuverability, low fabrication
cost and small size make them very attractive
for cost-critical missions in environments which
are unpenetrable for larger size UAVs. Moreover,
the latest advances in insect flight aerodynamics
and microtechnology seem to provide sufficient
tools to fabricate flying insect micro-robots. This
is the challenge that the Micromechanical Flying

1 This work was funded by ONR MURI N00014-98-1-0671,
ONR DURIP N00014-99-1-0720 and DARPA.

Insect project (MFI) being currently developed
at UC Berkeley, has taken (Fearing et al., 2000).
Figure 1 shows the prototype of the robotic fly.
The scope of the authors’ work in this project
is to model, design and eventually implement a
flight control unit for the MFI. We proposed a
flight control architecture (Schenato et al., 2001a)
aimed to achieve this goal, and we designed and
implemented a software testbed to simulate insect
flight (Schenato et al., 2001b). In this paper we
will present recent improvements in the design
of the hovering controller for a MFI originally
proposed in (Deng et al., 2001).

2. INSECT VS HELICOPTER HOVERING

Similar to aerial vehicles based on rotary wings,
such as helicopter, flying insects control their
flight by controlling their attitude and the magni-
tude of the vertical thrust (Schenato et al., 2001a).
Position and velocity control is achieved via atti-
tude control: tilting and banking the body can
modulate the forces acting on a plane parallel to
the ground. Pitching down, for example, would
result in a forward thrust, while rolling sideward
would result in a lateral acceleration. Altitude
control is achieved via mean lift modulation: in-
creasing the vertical force would result in an up-
ward acceleration and vice versa. However, there
are some peculiar differences that prevent from
applying directly the successful flight control tech-
niques developed for helicopter (Prouty, 1995).
The spinning of the rotor blade induces a reaction
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Fig. 2. Aerodynamic forces and torques in the
body frame generated during three wingbeats
. The piecewise constant traces correspond to
the mean torque within a wingbeat.

yaw torque on the helicopter body that would
make the latter rotate in the opposite sense if
not compensated. This problem is not present in
insect flight since the wings moves almost sym-
metrically on the opposite side, therefore inertial
forces cancel out. Another very important differ-
ence is the intrinsic time varying nature of the
aerodynamics in insect flight. As shown in Figure
2 the aerodynamic forces and torques generated
by the wings are highly time varying within a
wingbeat, and cannot be assumed to be constant
as in case of the helicopter. Therefore, time invari-
ant control schemes are likely to fail. One more
important difference is that the wings motion can
be changed at most on a wingbeat-to-wingbeat
base, because the wings need to follow a peri-
odic motion to generate sufficient lift to sustain
the insect weight. Therefore, a continuous control
modeling is not applicable. Finally, in insect flight
the two wings can have asymmetric kinematics.
This peculiar characteristic allows insect to gen-
erate large angular accelerations by modulating
the distribution of the aerodynamic forces within
a wingbeat, without strongly affecting the mean
lift generation. Optimal wings motion for torque
generation has recently been considered in (Sane
and Dickinson, 2001)

These similarities and differences lead us to con-
sider the following strategy to design a robust sta-
bilizing hovering controller. Firstly, we will model
the insect dynamics as a Discrete Time Linear
Time Invariant (DTLTI) system based on the
average forces and torques over a wingbeat, but
we will design the controller including the ap-
proximation errors due to the time varying nature
of the dynamics. Secondly, we parameterize the
wing kinematics with four parameters, such that
they can be mapped uniquely into the three mean
torques (roll, pitch, yaw) and mean lift. This ap-
proach allows to directly control the torques and
lift generation, thus simplifying the control design
for the attitude and altitude of the MFI. The
dynamics of the insect is then linearized about
the hovering equilibrium point and we propose
some approximations that decompose the original
MIMO system into four SISO subsystems. Finally,
the controller is based on robust state feedback
based on disturbance rejection.

3. INSECT FLIGHT DYNAMICS

Recent numerical simulation of unsteady insect
flight aerodynamics and experimental data based
on scaled insect wings (Dickinson et al., 1999),
have unveiled the unsteady state aerodynamic
mechanisms responsible of insect flight. From our
previous work (Schenato et al., 2001b), the aero-
dynamic module, that compute the lift and the
drag forces of each wing based on their kinematics,
is a combination of an analytical model, based on
quasi-steady state assumption, and an empirically
matched model based on Robofly data (?).
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Fig. 3. Aerodynamic forces decomposed into
lift(L) and drag(D) forces in stroke plane; (a)
side view; (b) top view; φ: stroke angle, ϕ:
rotation angle, α: angle of attack, u: wing
velocity.

Given lift, drag forces and stoke angle, it is possi-
ble to derive the total wrench, i.e the forces and
torques, in the body frame. As shown in (Murray
et al., 1994), the equations of motion for a rigid
body subject to an external wrench F b = [f b, τb]T
applied at the center of mass and specified with
respect to the body coordinate frame is given by
Newton-Euler equations, which can be written as

P̈ =
1
m
Rf b − [0 0 g]T

Θ̈ = (IW )−1[τb −W Θ̇ × IW Θ̇ − IẆ Θ̇] (1)

where the vector P = [x y x]T is the position of
the center of mass, Θ = [φ θ ψ]T are the Euler
angles used to parameterize the rotation matrix
R and the matrix W , I is the inertia matrix, and
g is the gravitational acceleration.

The body forces and torques are periodic, nonlin-
ear functions of the wing kinematics. i.e.

f b = f b(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t))

τb = τb(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t)) (2)

where i ∈ {l, r} represents the left and right wing,
respectively.

4. AVERAGING

The dynamics of the body attitude, according to
a Euler parameterization in roll pitch and yaw
angles, Θ = [η θ ψ]T , in the fixed frame can be
written as:

Θ̈(t) = uΘ(Θ, Θ̇, τb(t)) (3)



where the fictitious input vector uΘ ∈ R3 is
a nonlinear function of the body attitude, the
body angular position and the torque vector τb =
[τη τθ τψ]T calculated in the body frame. As al-
ready mentioned, aerodynamic forces and torques
acting on the insect body are quasi-periodic and
their effect on the dynamics of the insect can be
difficult to describe analytically (see Figure 2).

We propose to simplify the problem by separating
the mean component of the input uΘ and from
its oscillatory component. The mean torque com-
ponent will be regarded as control input, while
the oscillatory torque component as an external
disturbance. Assuming that the three component
of the control input uΘ are independent (see Sec-
tion 7), the system (3), can be rewritten in a
more general state space representation as three
independent SISO systems:

ẋi(t) =Axi(t) + bui(t) (4)

where x ∈ R2, ui(·) ∈ C0, and the index i ∈
{η, θ, ψ} represent the three angles. To simplify
the notation, we will drop the index i. Define the
the following inputs:

ūk
∆=

(k+1)T∫
kT

u(τ)dτ ; ũk(t)
∆= u(t) − ūk (5)

where kT ≤ t ≤ (k + 1)T , and T is the period
of a wingbeat. Note that

∫ (k+1)T

kT ũk(τ)dτ = 0.
Therefore we can rewrite system (4) as follows:

ẋ(t) = Ax(t) + būk + bũk(t) (6)
We can now consider only the sampled state
xk

∆= x(kT ) and calculate explicitly, as shown in
(Callier and Dosoer, 1991), the state evolution of
the discrete time system:

xk+1 = Adxk + bduk + dk (7)
where the time varying component of the control
input dk appears as an external disturbance.

5. WINGS KINEMATICS
PARAMETRIZATION FOR TORQUE

DECOUPLING

The control scheme proposed in the previous
section, implicitly assumes that we can generate
the desired mean torques calculated with respect
to the body frame τb = [τ̄η τ̄θ τ̄ψ]T .

Given a wings motion, described by the the
stroke angles, [φr(t), φl(t)], and rotation angles,
[ϕr(t), ϕl(t)], it is possible to calculate the corre-
sponding mean torques τb, i.e. there is a function
g(·) : (L2[0, T ])4 → R3 that uniquely maps the
wings kinematics into the vector τb. The problem
we need to solve is to find an inverse map g−1(·)
between the desired mean torques and kinematics
for the wing pair. This task is clearly ill posed
since there exist many wings kinematics that can
generate the same mean torque.

An alternative approach is to parameterize the
wings kinematics with only three parameters Π =

[αr, αl, γ]T , thus reducing the space of possible
wings motions. This means that there is a function
f(·) : R3 → (L2[0, T ])4 that maps the kinematics
parameters to the wing trajectory during a wing-
beat of period T . We can now define the map
Ψ(·) ∆= g ◦ f(·) : R3 → R3 between the kinematic
parameters, Π, and the mean torque vector, τb.
If the map Ψ(·) is, at least locally, invertible,
i.e. Ψ−1(·) exists, we can indirectly compute the
desired wings kinematics through the control law
Uw

∆= f ◦ Ψ−1 : R3 → (L2[0, T ])4.

Inspired by a biomimetic approach, we first con-
struct the function f(·) such that the kinematics
parameters Π are strongly related with the wings
biokinematics parameters that are responsible of
flight in real insects. Then we find the map Ψ(·)
via simulations, and finally compute the inverse
map Ψ−1(·), or at least its approximation. The
inverse map allows to decouple the torques gener-
ation according to the following control law:

Uw : [τ̄η, τ̄θ, τ̄ψ] → [φr(t), φl(t), ϕr(t), ϕl(t)]

The parameterization is based on recent work
(Sane and Dickinson, 2001) that have evidenced
how the modulation of the mean angle of attack
and the phase of rotation between the two wings
can generate asymmetrical instantaneous forces
along a wingbeat, thus giving rise to positive or
negative mean torque and forces. Intuitively, the
mean angle of attack can modulate the magnitude
of the aerodynamic forces on the wing: lift is max-
imal at an angle of attack of 45◦ and decreases for
different angles. The advanced or delayed phase of
rotation respectively increases or decreases both
lift and drag at the stroke reversals.

Following these observations, we parameterize the
motion of the wings with only three parameters Π
as follows:

f :




φr(t) =
π

3
cos(2πft)

φl(t) =
π

3
cos(2πft)

ϕr(t) = Υr[sin(2πft) − 0.2αr sin2(2πft)]
ϕl(t) = Υl[sin(2πft) − 0.2αl sin2(2πft)]

(8)

Υr =
π

4
+
π

8
ramp(γ); Υl =

π

4
+
π

8
ramp(−γ)

where (αr , αl, γ) ∈ [−1, 1], t ∈ [0, T ], f is the
wingbeat frequency, T = f−1 is the wingbeat
period, ψ is the stroke angle, ϕ is the rotation
angle, and the function ramp(γ) = γ if γ ≥ 0
and 0 otherwise. The parameters αr and αl are
strongly related to wing flip timing: a positive
value corresponds to advancing the wing rotation
on the downstroke and delaying on the upstroke,
a negative value does the opposite, a null value
results in a symmetric wing rotation at both the
half-strokes. The parameter γ modifies the mean
angle of attack of the wings: a negative value
corresponds to a smaller mean angle of attack on
the right wing, a positive value to the opposite,
and a zero value to equal mean angle of attack.

By varying the three parameters [αr, αl, γ], it is
possible to generate sufficient torque to steer the
MFI body about the roll, pitch, and yaw axes.
Figure 4 and Figure 5 show the simulation results
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Fig. 4. Average roll torque, τη , map (left) as a function of
the parameter γ and different values for the other two
parameters (star points). The solid line corresponds
to the approximate function τη = cγ3. Mean lift, fz,
calculated at different frequencies (right).            

Fig. 5. Average pitch and yaw torque maps.

obtained from Virtual Insect Flight Simulator
(VIFS) with the morphology of a honey bee.

We obtained an empirical map from wing kine-
matics to the average torque over one wingbeat
Ψ : R3

u → R3
τ , via the Virtual Insect Flight Simu-

lator (VIFS) with the morphology of a honey bee.
Figure 4 and Figure 5 show the simulation results.
The empirical map can be written as follows:

Ψ :

{
τ̄ψ = a11αr + a12αl + δψ = τ̂ψ + δψ
τ̄θ = a21αr + a22αl + δθ = τ̂θ + δθ
τ̄η = cγ3 + δη = τ̂η + δη

(9)

where the coefficients a11, a12, a21, a22, c are con-
stant, and δη, δθ, δψ are bounded

Consequently, given the values for the mean
torques we want to generate in a wingbeat, the
values for the wing parameters αl, αr and γ can be
obtained from the inverse map, Ψ−1() : R3

τ → R3
u.

The function Ψ−1() does not necessarily exist or
can be hard to find in practice. It depends on
the chosen parameterization of the wings motion
and on the velocity of the insect body. For the
wing parameterization (8) the inverse map Ψ−1()
is approximated as follows:

Ψ̂−1 :




γ̂ = sat[c−
1
3 τ̂

1
3
η ]

α̂l = sat[b11 τ̂θ + b12 τ̂ψ]
α̂r = sat[b21 τ̂θ + b22 τ̂ψ]

(10)
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where the parameters, c, b11, b12, b21, b22 are con-
stant, and the saturation function sat(u) = u for
|u| ≤ 1 and sat(u) = u

|u| otherwise.

The saturation function takes into account kine-
matics limitations of the wings. As we expected,
the parameter γ influences the roll torque, but is
almost decoupled from the yaw and pitch torques.
The parameters αr, αl are coupled together, but
quite surprisingly, in a linear fashion, which is
very helpful from an implementation prospective.
In order to evaluate the approximation map in
a more realistic setting, we simulate the MFI
motion in VIFS by randomly choosing the value
of the parameters (γ, αl, αr) for a consecutively
40 wingbeats. In this setting, coupling factors
among the parameters and insect body velocities
are taken into account. Figure 6 shows the mean
yaw torque predicted by the approximate map
Ψ̂−1() and the mean torque per wingbeat actually
calculated from the simulation, corresponding to
the real map f(). It shows that the approximate
map matches the real value very well and is very
promising in the prospective of designing feedback
control.

6. LINEARIZED HOVERING DYNAMICS

Hovering flight mode is characterized by small
body velocity and angular deviations. Therefore,
we will linearize the insect dynamics insect de-
scribed by Equations (1), about the hovering state
[P,Θ, Ṗ , Θ̇] = [0, 0, 0, 0] :

The aerodynamic force vector, f b(t), and the
torque vector, τb(t), are quasi-periodic signals.
Following the argument argument presented in
Section 4, we arbitrarily decompose the signals
into their means and their zero-mean oscillatory
component within every wingbeat. Simulations
obtained with VIFS (see Figures 2) show that the
force and torque vectors can be written as:

fb(t) =

[
0
0

af2

]
+

[
dx(t)
dy(t)
dz(t)

]
; τb(t) =

[
τ̄η
τ̄θ
τ̄ψ

]
+

[
dη(t)
dθ(t)
dψ(t)

]
(11)



where a is a constant, f is the wingbeat fre-
quency, and the vectors dP = [dx, dy, dz ] and
dΘ = [dη, dθ, dψ ] are zero-mean signals. The mean
vector force corresponds, not surprisingly, to the
mean lift generated by the insect.

Substituting the Equations (11) into (1), we get:

ẍ=m−1[af2 θ − ψ dy(t) + θ dz(t)] + o(||Θ||2)
ÿ =m−1[−af2 η + ψ dx(t) − η dz(t)] + o(||Θ||2)
z̈ =m−1[af2 − θ dx(t) + η dy(t)] − g + o(||Θ||2)
η̈ = I−1

η [τ̄η + dη(t) − θ dψ(t)] + o(||Θ||2) + o(||Θ̇||2)
θ̈= I−1

θ [τ̄θ + dθ(t) + η dψ(t)] + o(||Θ||2) + o(||Θ̇||2)
ψ̈ = I−1

ψ [τ̄ψ + dψ(t) − η dθ(t)] + o(||Θ||2) + o(||Θ̇||2)
where the rotation matrix R and the matrix W
have been linearized about the hovering orienta-
tion Θ = 0 (Murray et al., 1994). We want to
linearize this system about the hovering condi-
tion [P, Ṗ ,Θ, Θ̇] = [0, 0, 0, 0]. This requires that
m−1af2−g = 0. We define the hovering frequency
f0

∆=
√

mg
a , and we linearize the dynamics of the

insects about f0, such that:

m−1af2 = g +
g

f0
(f − f0) + o(||f − f0||2)(12)

We define the control input vector u = [uη uθ uψ uz]T
as follows :

Ξ :




f = f0 (1 + ρsat(uz))
τ̂ψ = uψ
τ̂θ = uθ
τ̂η = uη

(13)

where the range of the wingbeat frequency f is
saturated to take into account kinematic limi-
tation of the wings. The factor ρ relates to the
maximum variation of the frequency.

By close inspection of these equations, it is evident
that there is only a weak coupling between the
dynamics among some variables. Moreover, the
limited frequency control input, |uz| ≤ 1 has
only limited effect on the dynamics of x and y.
This weak coupling can be modeled as external
disturbances. Since we are considering hovering
control, we assume that the attitude angles are
limited, i.e. ||Θ||∞ ≤ ε.

Substituting Equations (13) and (10) into Equa-
tions (12) we obtain the linearized dynamics of
the system S:




ẍ = g(1 + ρ δz)θ +m−1dz(t) − εm−1dy(t)
ÿ = −g(1 + ρ δz)η −m−1dz(t) + εm−1dx(t)
z̈ = ρg uz − εm−1dx(t) + εm−1dy(t)
η̈ = I−1

η uη + I−1
η δη + I−1

η dη(t) − εI−1
η dψ(t)

θ̈ = I−1
θ uθ + I−1

θ δθ + I−1
θ dθ(t) + εI−1

θ dψ(t)
ψ̈ = I−1

ψ uψ + I−1
ψ δψ + I−1

ψ dψ(t) − εI−1
ψ dθ(t)

(14)

where the disturbance δz ∈ [−1, 1] is unknown.

This simplified dynamics greatly reduces the com-
plexity of the controller. In fact, from Equations
(12) and (12), it is evident that there is coupling
only between the dynamics of x and the pitch θ,

and between the dynamics of y and the roll η.
The weak coupling with the other states has been
modeled as an external disturbance. If the flight
controller is guaranteed to stabilize the simplified
system S, then it will also stabilize the original
system (1). The system S can be written in state
space representation as follows:

S1 : ẋ1 = (A1 + ∆1) x1 + b1 uθ + E1 d(t)

S2 : ẋ2 = (A2 + ∆2) x2 + b2 uη + E2 d(t)

S3 : ẋ3 =A3 x3 + b3 uψ + E3 d(t)

S4 : ẋ4 =A4 x4 + b4 uz + E4 d(t)

where x1 = [x, θ, ẋ, θ̇], x2 = [y, η, ẏ, η̇], x3 = [ψ, ψ̇],
x4 = [z, ż], and d = [dx, dy, dz, dη, dθ, dψ]. The
explicit description of matrices {Ai, bi, ei} is not
given here because of space limitation.

7. CONTROL DESIGN

As described in Section 4, we assume we can
control the mean of the control inputs within a
wingbeat. Therefore we will design the controllers
based on the discretized system Sd:

Sd1 : xk+1
1 = (Ad1 + ∆d

1) x
k
1 + bd1 u

k
θ + Ed1 d

k

Sd2 : xk+1
2 = (Ad2 + ∆d

2) x
k
2 + bd2 u

k
η + Ed2 d

k

Sd3 : xk+1
3 =Ad3 x

k
3 + bd3 u

k
ψ + Ed3 d

k

Sd4 : xk+1
4 =Ad4 x

k
4 + bd4 u

k
z + Ed4 d

k

where xk = x(kT ), and the matrices for the
discrete time system Sd have been derived from
the continuous time system S as explained in
Section 4.

The overall dynamics can be modeled with 4 de-
coupled DTLTI SISO systems with external dis-
turbances, dynamic uncertainty, and input satu-
ration. There are several approaches to design sta-
bilizing feedback control law: PID, variable struc-
ture control (VSC), robust control. We decided to
implement a simple state feedback based on pole
placement:

u :



ukθ = −kθ0xk − kθ1ẋ

k − kθ2θ
k − kθ3 θ̇

k

ukη = −kη0yk − kη1 ẏ
k − kη2η

k − kη3 η̇
k

ukψ = −kψ0 ψk − kψ1 ψ̇
k

ukz = −kz0zk − kz1 ż
k

(15)

The poles are placed taking into account input
saturation, external disturbances and the uncer-
tain dynamics approximation. The overall control
scheme is obtained by cascading Equations (15),
(13), (10) and (8).

The proposed control method is simulated with
VIFS (Schenato et al., 2001b) for a continuous 200
wingbeats. Figure 7 shows the resulting position
and velocity trajectories, together with the cor-
responding parameters chosen at each wingbeat.
The linear and angular displacements are recov-
ered from [15 40 − 20] millimeters and [30o −
45o 60o] to its equilibrium point within 600



milliseconds in less than 90 wingbeats. It shows
that the controller succeeds in stabilizing hovering
and control both position and attitude. The MFI
shows a small chattering motion about the equi-
librium position. This unavoidable phenomenon is
mainly due to the periodic motion of the flapping
wing, and also due to the fact that nonlinearity
and coupling among dynamic variables have been
neglected.            

Fig. 7. MFI position and orientation trajectories.

8. SIMULATION RESULTS

The proposed control method is simulated with
VIFS (Schenato et al., 2001b) for a continuous
200 wingbeats and Figure 7 shows the resulting
position and orientation trajectories. The linear
and angular displacements are recovered from
[15 40 −20] millimeters and [30o −45o 60o] to its
equilibrium point within 600 milliseconds in less
than 90 wingbeats. It shows that the controller
succeeds in stabilizing hovering and controls both
position and attitude. Moreover, the MFI shows a
chattering motion about the equilibrium position.
This phenomenon is mainly due to the periodic
motion of the flapping wing, and also due to
the fact that nonlinearity and coupling among
dynamic variables have been neglected.

9. CONCLUSIONS

In this work, we have parameterized the wing
kinematics by a small set of parameters to decou-
ple the control of the average torques generated
by the wings. Based on the inverse map of the
parameter and mean torques, a controller was de-
signed to schedule the desired wings motion based
on the feedback error at the end of each wingbeat.
The model of the linearized dynamics under the
small angle assumption, takes into account of the
most important modeling errors and disturbances
that were neglected in our previous work (Deng et
al., 2001). This new controller design succeeds in
robustly regulating MFI’s attitude and position.
Moreover, it reduces the ad hoc tuning of the
gains, since parameter are optimized including
MFI realistic limitations.

In order to simplify the model, we did not take
into account external disturbances such as wind

gusts and rain. However, our goal is to design
a controller with a large basin of stability, such
that the MFI is able to recover the hovering
flight mode even from an upside-down position.
As a consequence, albeit wind gusts and rain
may degrade flight performance, they should not
compromise the overall behavior of the MFI. We
will address this issue in future work. Another
major assumption was the full access to the insect
states. In practice, perfect state information is
not available. However, the MFI will be equipped
with various sensors such as halteres (Wu et al.,
2002), flow sensors and light detectors, which are
currently under investigation. Therefore, future
work will also address sensor modeling and output
feedback.
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