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Abstract. The algorithmic design of least restrictive controllers for hy-
brid systems that satisfy reachability specifications has received much
attention recently. Despite the importance of algorithmic approaches to
controller design for hybrid systems, results that guarantee termination
of the algorithms have been limited. In this paper, we extend recent
decidability results on controller synthesis for classes of linear hybrid
systems to semi-decision procedures for triangular hybrid systems which
can be used to model nonholonomic systems after a transformation. Our
results are then applied to verification of a conflict resolution maneuver
from air traffic control.

1 Introduction

Safety criticality in motivating applications [13| of hybrid systems has resulted in
much research on computing reachable sets for hybrid systems in order to ensure
that these systems avoid unsafe regions of the state space [2J3]4]. Furthermore,
much research has recently focused on controller synthesis of hybrid systems
where the safety property is ensured by design [II6[7/12].

The complexity of the motivating applications makes algorithmic approaches
to controller synthesis very desirable, whenever possible. However, termination
guarantees for algorithmic approaches to synthesis have been limited. In partic-
ular, the game theoretic framework for controller synthesis introduced in [6] was
only recently shown to result in decision procedures for various classes of linear
systems [9], and semi-decision procedures for classes of linear hybrid systems [10].

In this paper, we proceed along the same spirit of [9/T0] but we increase the
complexity of the continuous dynamics to capture triangular hybrid systems,
which are defined as hybrid control systems whose continuous dynamics in each
discrete state are nonlinear with a triangular structure. Triangular nonlinear
systems is a rich class of nonlinear systems that capture the so-called chained
systems, which can be used to model nonholonomic systems after a state trans-
formation. Nonholonomic systems have been very useful kinematic models of
aircraft, robots, space robots, etc [5]. In this paper, we consider the follow-
ing controller synthesis problem: Given a triangular hybrid system, compute the
mazximal control invariant set of initial conditions and least restrictive controller
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such that for all disturbances the state will avoid an unsafe set. In particular,
we present a semi-decision procedure which, if it terminates, exactly solves the
above problem.

The solution of the above problem depends critically on state of the art
techniques from controller synthesis of hybrid systems. In particular, we adopt
the general framework for controller synthesis of nonlinear hybrid systems [6],
while we follow in spirit the approach taken in [9]. In particular, we focus on
continuous games for triangular nonlinear systems. Application of the maximum
principle leads to bang-bang optimal controls and a triangular structure in the
co-state equations. Rather than solving the Hamilton-Jacobi partial differential
equations for reachability computations, we abstract the bang-bang nature of the
optimal control to a hybrid system. The piece-wise constant nature of the optimal
inputs and disturbances, and the triangular structure of the state and co-state
dynamics leads to polynomial flows for the states and co-states. This allows us to
use quantifier elimination in each discrete state of the abstracted game to perform
reachability computations. The above sequence of steps results in a semi-decision
procedure for controller synthesis for triangular hybrid systems. However, unlike
classes of linear systems where the number of switchings is uniformly finite [9],
no such guarantee exists for triangular systems, making very difficult any claims
for a decision procedure.

The structure of this paper is as follows: In Section [2 we review the synthesis
framework of [6]. In Section [B we present a semi-decision procedure for reach
set computation in triangular nonlinear systems, which is lifted in Section ]
to triangular hybrid systems. These results are then applied in Section [l to a
verification of a conflict resolution maneuver from air traffic control.

2 Controller Synthesis for Nonlinear Hybrid Systems

In this section we review the framework for computing the maximum controlled
invariant safe set for general nonlinear hybrid systems [6]/12].

Definition 1 (Hybrid system).
A hybrid system H is a collection (X,V,1, f, E, $), with:

— State and input variables: X and V are disjoint collections of state and
input variables. We assume that X = XpUX¢c and V = Vp UV, where X¢
and Vo contain continuous, and Xp and Vp discrete variables. We refer to
valuations x € X and v € V as the state and the input of the hybrid system.

— Initial states: I C X is a set of initial valuations of the state variables.

— Continuous evolution: f: X X V — TX¢ is a vector field.

— Discrete transitions: E C X x V x X is a set of discrete transitions.

— Admissible inputs: ¢ : X — 2V gives the set of admissible inputs at a
given state x € X.

It is customary to use the notation (¢,x) = (x|x,,z|x.) € X. The meaning of
the variable x will be clear from the context.
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For any input v = (u,d) € V, define the set:
Inv(v) & {z € X |v € ¢(x) A (2,v,2) € E}.
For a state z € X and input v = (u, d), define:

{y e X | (z,v,y) € E} if v € ¢(x)
Next(z,v) £ { if v ¢ ola).

Inv(v) is the set of states from which continuous evolution is possible under
input v, while Next(z,v) is the set of states that can be reached from z under
input v through a discrete transition. For any set K C X and input v = (u, d)
the successor of K under v is given by Next(K,v) = |, cx Neat(x,v).

For any set K C X define the controllable predecessor of K, Pre,(K), and
the uncontrollable predecessor of K, Preq(K), by:

Pre,(K)2{z€X|uecUVde Dz ¢ Inv(v) A Next(K,v) C K} NK,
Preg(K) 2 {x € X |Vu € U 3d € D Next(K,v)NK®# 0} UK°.

where v = (u,d). Pre,(K) contains all states in K for which u can force a
transition back into K. Prey(K) contains all states outside K together with
those states for which it is possible to transition outside K regardless of the
action of u. Whereas Pre, and Prey capture information about regions of the
state space that can be reached through discrete transitions of the system, the
following operator [12] captures continuous reachability information.

Definition 2 (Reach-Avoid). Given a hybrid system H and disjoint sets K,
G C X, the operator Reach : 2% x 2% — 2% s defined as:

Reach(K,G) = {xo | Yu € U3d € D3t > 0: 2(t) € K AVs € [0,t] z(s) ¢ G},

were U, D denote the set of piecewise continuous functions from the IR to U, D
respectively, and () is the unique state trajectory starting from initial condition
x(0) = zo under the input (u,d).

The set Reach(K,G) contains the states from which for all controls there exists
a disturbance such that the state trajectory can be driven to K while avoiding
the escape set G. The following algorithm uses the Reach operator to compute
the maximal controlled invariant subset of F' (see [12]).

Algorithm 1 (Maximum Controlled Invariant Safe Set)
initialize

WO=F, Wl=0 i=0
while W* #£ Wil

Wil = Wi\ Reach(Preq(W?), Pre,(W?))

1=1—1
end while
W .= W?

end
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Algorithm [1] iteratively removes from the safe set F' all states for which
there is a disturbance which either through continuous evolution or discrete
transition can bring the system outside F' regardless of the control action. In
order to implement Algorithm [I], one needs to encode sets of states, perform
set intersection, union, test for emptiness, and ezactly compute Reach(-,-). If all
these conditions hold for a class of systems, then the problem is semi-decidable
for that class of systems. Even though there is no guarantee of termination, if the
algorithm terminates, then it exactly computes the unique maximal controlled
invariant set W*. If in addition, Algorithm [ is guaranteed to terminate after
a finite number of iterations for a class of systems, then we say the problem is
decidable for that class.

The main difficulty in the implementation of Algorithm [Mlis the computation
of the Reach operator. For general nonlinear hybrid systems, the computation
of Reach relies on the numerical solution of a pair of coupled Hamilton-Jacobi
partial differential equations [7i12]. In this paper, we show that for a certain
class of monlinear hybrid systems with triangular continuous dynamics each step
of Algorithm [0 is symbolically computable. This class is rich enough to capture
hybrid systems with chained nonlinear dynamics, which model nonholonomic
kinematics for aircraft, cars, and robots.

3 Computing Safe Sets for Triangular Nonlinear Systems

In this section, we address the problem of computing maximal controlled invari-
ant safe sets for a class of nonlinear control systems subject to disturbances. The
computation of maximal safe sets is a fundamental step in the least restrictive
controller synthesis problem [6]. In this section, we extend the methodology of
symbolic controller synthesis for classes linear systems described in [9] to a class
of nonlinear systems.

For a differential game @ = f(x,u,d) between inputs v € U C R"* and dis-
turbances d € D C IR™?, the solution to the controller synthesis problem requires
the computation of the set of initial states for which there exists a disturbance
that can eventually drive the system to some unsafe set regardless of the ac-
tions of the control. Therefore the controller synthesis problem for continuous
time system requires the computation of the continuous system version of the
Reach-Avoid set.

Definition 3 (Reach-Avoid). Given a differential game @ = f(z,u,d) and
disjoint sets K,G C R™, the operator Reach : 28" x 2R" — 9R" s defined as:

Reach(K,G) £ {xo |Yu €U Id €D It >0 : z(t) € K AVs € [0,t] x(s) ¢ G},

where U, D denote the set of piecewise continuous functions from the R to U, D
respectively, and x(-) is the unique state trajectory of & = f(x,u,d) starting from
ingtial condition x(0) = xo under the input (u,d).

The set Reach(K,G), which is graphically depicted in Figure[I], contains the
states from which for all controls there exists a disturbance such that the state
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Fig. 1. Showing a graphical depiction of Reach(K,G).

trajectory can be driven to K while avoiding the escape set G. It was shown
recently that the computation of Reach is decidable for certain classes of linear
systems [10]. Here we extend the result to a class of nonlinear systems. As a
motivating example, consider the following nonlinear system in so-called chain
form:

i9 = uy; ji=1,...,m
il = aduy j=1,...,mandi<j (1)
xfj:mfj_luj j=1,...,mandi<jand k=2,... ,n;.

Control systems of the class shown in equation (l) are quite important because
they can be used to model many types of nonholonomic and under-actuated
systems including unicycles, cars, multi-steering trucks with N-trailers, space
robots, etc. [8]. We now apply the symbolic controller synthesis methodology
described in [9I0] to this chain form system.

3.1 Computation of Optimal Control

For the chain form system (), suppose we wish to compute the set of initial
conditions W C IR™ for which there exists a control u(-), constrained to a com-
pact rectangular feasible control set U C IR™, that can steer the state to the
goal G C R"™ while avoiding states B C IR"™. This problem is closely related to
the problem of nonholonomic motion planning in the presence of obstacles
and is equivalent to computing W = Reach(G, B).

To solve the reachability problem, we first introduce the co-state p € IR™ and
construct the Hamiltonian:

H(m,p,u) :pr(x,u) = E] 1 <p] +Zz 1 (puxz +Zk 2ng ij 1)) Uj-
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The Hamiltonian satisfies the state and co-state differential equations & =

%;I , D= aH . From the Hamiltonian, we compute the co-state dynamics:
pZJ =0 j=1,... , mandi<}j
pffl:—pfjuj j=1,...,mandi<jand k=2,... ,n;
P :72‘?l=1p%ju‘j i=1,...,m

Notice that the chain structure of the system dynamics is inherited by the co-
state dynamics. Next, we initialize the co-state as the inward-pointing normal
on the boundary of G and apply the Pontryagin Maximum Principle to compute
the optimal control v* = arg max,cy H(z,p, u). Since the feasible control set is a
compact rectangle U = H?;l[gj,ﬁj] C R™, we may decompose the Maximum
Principle for each component of the input:

* k—
uj = aI‘gmaXuje[Qj,U (pj +Zz 1 (p’L]x’L +Zk 2pi€j Lij 1)) - (2)

3.2 Construction of Hybrid System

The Maximum Principle calls for bang-bang controls: the optimal controls will
always lie on the vertices on the feasible control set U. From equation (@), it is
direct to see that uj is either U; or Uj depending on the sign of the “switching
function” of the state and co-state which multiplies u;. Thus, as proposed in [9,
10] we can construct a hybrid system which has 2™ + 1 discrete states: One
discrete state for each vertex of the rectangle U, and one discrete state for stop-
ping the reachability computation on the obstacle set B (see [10]). The guards
and invariants for the constructed hybrid system are defined by the “switching
functions” in the optimal control shown in equation (2)).

3.3 Reach Set Computation

For each discrete state of the constructed hybrid system we need to solve a
reachability computation for a system of the form:

0 =u j=1,...,m

gczlj :x?u;‘ j=1,... mandi<j

xf] :xfa 1u; j=1,... mandi<jand k=2,...,n; 3)
P =0 j=1,...,mandi<}j.

pfj_lz—p%u; j=1,...,mandi<jand k=2,...,n;

Py :—E;":lp}ju;- i=1,...,m,

where ] is a constant rational number. It is easily shown that the problem of
computing the reachable set of this system is decidable. Indeed, due to the chain
form of the state and co-state dynamics, we may iteratively compute the flow
of the system by symbolic integration and substitution starting from z9 and
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proceeding down the chain. By symbolic integration the flow of this system is
computed to be:

29(t) —95(0)—|—ut i=1,...,m

K2

zli(t) = x3;(0) + 2 (0)ult + Fujuit?

—urt)!
pfj(t) = ;L':’gk( 1;,”75) pffl(O) j=1,...,mandi<jand k=1,...,n;

n;— ut .
P =p2(0)+ Y S (0) i =1, m,

We use the notation z(t) = ¢(zo,u, t) to denote the state x(¢) which is a result
of flowing for t seconds along the dynamics of the system with input u starting
at the initial condition x(0) = . Since the flow of this system is polynomial, it
admits quantifier elimination [11], and hence the computation of the set of points
which can reach a semi-algebraic set K, {zo € R" |t >0 : ¢(zo,uj,t) € K}
for each discrete state of the constructed hybrid system is decidable.

The only remaining condition of interest for the constructed hybrid system
is an upper bound on the number of switchings between the discrete states.
For the case of linear systems with dynamic matrices that are either nilpotent or
diagonalizable with real rational eigenvalues, a result of Pontryagin provides that
the number of switchings of the optimal control is no greater than the dimension
of the system. For these classes of systems, we are able to show decidability of
the least restrictive controller synthesis problem [9]. We can make no such claim
in the case of chain form systems of the type in equation (). In general there
is no upper bound on the number of switchings on the optimal control defined
in (2)). Hence we conclude that controller synthesis problem for the class of chain
form systems is semi-decidable.

3.4 Triangular Systems

Upon examination, we realize that there are essentially two features in the struc-
ture of chain form systems that allow the above methodology to work:

1. The vector field has linear terms in u.

— Thus the Hamiltonian has linear terms in w, and applying the Maximum
Principle, we see that the optimal input «* is piecewise constant on the
vertices of the feasible control set.

— This allows us to construct a hybrid system out of the switching logic of
the optimal control, where for each discrete state there is a constant u*.

2. The time derivative of each state is a polynomial in the input and the pre-
ceding states of the chain.

— For a constant u* the flow can be computed iteratively by symbolic
integration and substitution starting from the beginning of the chain.

— Since u* is constant and the vector field depends polynomially in states,
the flow of the system is polynomial in v*, ¢ and the state.
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— This structure is inherited by the co-state dynamics and hence the flow
of the co-state can also be symbolically integrated.

The observation above suggests that the methodology for symbolic reach-
ability computation will also work on the following larger class of triangular
nonlinear systems.

Definition 4 (Triangular nonlinear system).
A nonlinear system & = f(x,u) is called triangular if it can be written as:

o = a+ 370, bju;
1 = fi(zo) + 3711 915(20)u;

iy = fo(zo, 1) + Y052, goj (2o, 21)u;
n = fr(T0s o s Tne1) + 2000 Gnj(T0s - Tpo1)uy,

where a, b; € Q and fi, gij € Q[zo,... ,xi—1] fori=1,... ,nandj=1,... ,m.

Moreover, it is direct to see that the methodology is also applicable to the class of
triangular differential games between inputs v € R™* and disturbances d € R™¢.

Definition 5 (Triangular differential game).
A differential game & = f(x,u,d) is called triangular if it can be written as:

y — . M . nd .
Foj = aj + D5ty bk + DL, cjikd

. n
15 = fij(xor, -, @or) + X_pty g1jk(To1,s - . s ToL)uj +
n
>only hijkdr(zor, ..., ZoL)
Tij = fz‘j(9501,~-- y LOLs - - - 7I(i—1)1,~--~’0(i—1)L) +
Ny
D kit Gijk (TO1s o s TOLy -+ 5 T(—1)1s - - T(—1)L)Uj +
ng
Y ohey hije(@ots - oL, -+ =115 - - - T(i—1)L) Ak
for 5 = 1,...,L, and i = 1,...,n;, and where aj, b, cjp € Q and

fijs Gijk, hiji are polynomials with rational coefficients.

Theorem 1 (Semi-decidable reach for triangular differential games).
For a triangular differential game & = f(x,u,d), if the inputs and disturbances
are constrained to compact rectangles with rational coefficients, then for any
disjoint semi-algebraic sets K,G C R"™, the problem of computing Reach(K, Q)
1s semi-decidable.

Proof. We need to show that the methodology for symbolic reach set computa-
tion proposed in [9JT0] can be applied to triangular differential games and that
each step in the methodology is computable.
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1. Compute Optimal Control. Since the vector field can be written as & =
fi(x,u) + fo(z,d), the Hamiltonian H = pT f(x,u,d) is separable, which
implies that there exists a saddle solution (u*,d*) of optimal control and
disturbance:

* T * . T
u’ = argmax p fi(z,u), d = argminp fa(z,d). (4)

Moreover, since the Hamiltonian has linear terms in » and d, and the
sets of feasible controls and disturbances are compact rectangles U =
[T [U;,U;] € R™, D =T[,[D;,D;] € R™, we may decompose equa-
tion (@) to get:

* u

u; =arg max_ s;i(x,p) uj, df =arg max_ 5;1(3371,) d,  (5)
’Uz]’G[Q]-,U]‘] de[Qj,D]‘]

where s%(-) and s%(-) are “switching functions” which are polynomial in
the state and co-state (x,p). The Maximum Principle calls for bang-bang
optimal controls and disturbances: Depending on the signs of the switching
functions, the optimal controls and disturbances will always lie on a vertex
of the feasible control and disturbance set.

2. Construct Hybrid System. Construct a hybrid system with 2"+ discrete
states for each possible optimal control, 2™¢ discrete states for each possible
disturbance, and one discrete state for stopping the reachability computation
on the avoid set G (see [10]). The switching functions s%(-), sj—l(~) determine
the discrete transitions of the constructed hybrid system, and continuous
dynamics are the co-state dynamics p = —%—g appended to & = f(z,u*,d*)
where (u*,d*) are constant.

3. Calculate Reach Set. In each discrete state, the triangular structure of the
state dynamics and the fact that the optimal control and disturbance (u*, d*)
are constant allows the flow of the state dynamics to can be computed by
symbolic integration. Moreover, it is direct to check that the co-state dy-
namics inherit the triangular structure of the state dynamics and that the
flow of the co-state dynamics can also be integrated symbolically. Since the
flow in each discrete state of the constructed hybrid system is polynomial,
we may perform quantifier elimination to compute the reachable set for each
discrete state of the hybrid system.

We have constructed a hybrid system for which the problem of computing the
reach set of each discrete state is decidable. By initializing the hybrid system with
the usable part of the unsafe set K (see [9]), we have a semi-decision procedure
for computing Reach(K,G). However, since in general there is no bound on the
number of times the switching functions change sign, there is no bound on the
number of discrete transitions the hybrid system takes, and hence we cannot
guarantee that the reach set computation will terminate. O
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4 Controller Synthesis for Triangular Hybrid Systems

The results of the previous section naturally inspire the following definition.

Definition 6 (Triangular hybrid system).

A hybrid system H = (X,V,I, f, E,¢) is called a triangular hybrid system if
Vg € Xp the set of feasible inputs ¢(q,x)|v, = Uy x Dy, where U, and Dy
are compact rectangles with rational vertices, the reset relation E C X x 'V x X
is semi-algebraic, and for each discrete state q the vector field f(q,x,u,d) is
triangular with rational coefficients.

The results of the previous section provide that for each discrete state of the
hybrid system, the computation of Reach is semi-decidable. Hence if the discrete
transition Preg and Pre,, are computable (they are when the reset relation £ C
X x 'V x X is semi-algebraic), then each iteration of Algorithm [dlis computable,
and hence we conclude that the problem of computing the maximum controlled
invariant set is semi-decidable.

Theorem 2 (Semi-decidable controller synthesis for triangular hybrid
systems). For a triangular hybrid system H and a semi-algebraic safe set F,
the problem of computing the maximum controlled invariant set W* C F is
semi-decidable.

If the computation of maximal safe set W* terminates, we would like to
provide a least restrictive controller that renders W* invariant. Since the con-
tinuous dynamics of triangular hybrid systems are polynomial, the definition of
the least restrictive controller can be written as a quantified first order formula
in the theory of reals. Hence the least restrictive controller can be computed by
quantifier elimination and is given in the following proposition [10)].

Proposition 1 (Least restrictive controller). Given a triangular hybrid sys-
tem H and a semi-algebraic mazximal controlled invariant set

W = {x e R"| VJK:1 (/\ill hj (2) < O)}’

the least restrictive controller g(x) : X — 2Y that renders W* invariant is
computable and is given by:

{u € ¢(z)|v | Vd € ¢(2)|p : Nexzt(x, (u,d)) C W*} if x € (W*)°
{u € ¢(@)[v | V52i (A (i (@) = 0) = Vd € ¢(@)|p :
9@) =93 (LT p(5 (u,d)) < 0) A € Inv(u, d)]V
Vd € ¢(z)|p : Next(x, (u,d)) CW* Ax ¢ Inv(u,d)]}, if x € OW*
o(z)|u, if 2 € (W*)e.

Triangular hybrid systems is the first known class of nonlinear hybrid sys-
tems which has a semi-decidable controller synthesis problem. In the following
section we apply our methodology to a conflict resolution example from air traffic
control.
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5 Conflict Resolution Example

In this section we present an application of our methodology towards verification
of maneuvers for multi-agent hybrid systems. As an example application we
verify a conflict resolution maneuver for air traffic control similar to the one
described in [13]. Counsider the following conflict resolution maneuver for two
aircraft:

Cruise until aircraft are oy miles apart;

Change heading by A¢; fly until lateral displacement of d miles achieved;
Change to original heading; fly until aircraft are as miles apart;

Change heading by —Ag; fly until lateral displacement of —d miles achieved;
Change to original heading.

U Lo

z? -|-3,r2 < aq

LEFT
Dynamics

—t1 + vzcos(dz — )

vasin(ga — 1)

1

CRUISE
Dynamics
& = —vy + vgcos(dy — ¢)
¥ = vosin(¢z — )
t=10

¢"; =¢

3
4

t

Invariant

].n\'ari:ﬁlt
224+ > o

o= g
y’:y =4

& = =

P = ¢ 4 = ¢y — Ag
=10 t'=1t

RIGHT

STRAIGHT

Dynamics Dynamics
I o= —v1 + UZ{:OS(% — (.f)]) T vy 4 ?J2C05(¢2 'rb'l)
&:" = wpsin(gdy — ¢ 95in(gs — ¢1)

t=—1

Invariant
t>0

Invariant
z? +y? < ay

Fig. 2. Hybrid system model of aircraft conflict resolution maneuver.

The hybrid automaton modeling this maneuver has discrete states { CRUISE,
LEFT, STRAIGHT, RIGHT} and is depicted in Figure 21 The continuous dy-
namics in each discrete state is the relative flow of the aircraft given a fixed veloc-
ity and heading, (v; is the velocity and ¢; is the heading of aircraft ¢). The aircraft
are considered to be at a safe distance if they are at least 5 miles apart. In the
relative coordinate frame, the unsafe set is given by {(z,y) € R? | 22 4+ y> < 5}.
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Aircraft 1 is assumed to fly at a fixed velocity v; and heading ¢, while aircraft
2 can switch “modes” and rotate left or right a fixed angle of +A¢p. It is clear
that the hybrid automaton modeling the conflict resolution maneuver belongs
to the class of triangular hybrid systems described in the previous sections.

Using the quantifier elimination package of MATHEMATICA 4.0, we computed
the minimal unsafe sets for each discrete state of the automaton for the scenario
where two aircraft are approaching each other with velocities v; = 4, vy = 5,
with initial heading difference of ¢ — ¢1 = 5, and aircraft 2 allowed to change
directions at an angle of +A¢ such that sin(+A¢) = £2. Equations (@)-(&) show
the results of the computation.

v =402 =5A1=0
unsafeCruise = Resolve [Jt > 0 A (z — vit + Avat)® + (y + V1 — A2vat)® < 25]

(y<——/\ VAT - < g < VAT - )
(y=-22 A —VAT -2 <o < VAT - 2) v
(y— 20 A — \/W<x<\/47—?y)\/
(F
(~%

ﬁ\

<yY<BA—/B_Z <z < /2= y)
L <y < ZEA-V25 -2 <a < VA Ty)

V1 :4;1}2:5;)\:%
unsafelLeft = Resolve [Elt >0A (z —vit 4 Avet)® + (y + V1 — X20at)? < 25]

:(y<—\/%/\ 5\ﬁ y<x<54ﬂ—%>\/
_ 5 517 5V17
\Y

<Y<HA—y/25—1y2 <z < 25—y2)\/

( y
4

_ s 5VI7
(y—?/\— 25 —y? <x < Y —%)

17 V17

5 5V17
——2<y< 2=A—/25—y2 << —%)
V1 :4;’02:5;A:*%
unsafeRight = Resolve [Ht >0A (z—vit+ )\vzt) +(y+V1- )\21)2:‘,) < 25]

7 7
:(y<—7 SNBSS T g < BVEE y)v

(y:—7 1%/\—57‘/%—%<x<5‘/%—79)\/

(y:7 SN 25—y2<z<—wf—7y)v
(7 5 cy<iA—yB-yg<z< 25—y2)v
(-1 S <u<TEA-VB P <o < T D)

Since the relative heading and velocity of the two aircraft is same for the
CRUISE and STRAIGHT flight modes, then unsafeCruise=unsafeStraight.
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The result of the symbolic computation of the minimal unsafe sets is shown in
Figure[3l The set unsafeCruise\unsafeLeft contains the set of states which are
made safe by the aircraft turning left, and the set unsafeCruise \ unsafeRight
contains the set of states which are made safe by the aircraft turning right.
The set unsafeCruise \ (unsafeLeft UunsafeRight) contains the states which
are made safe by turning either left or right, and the set unsafeCruise N
unsafeleft NunsafeRight shown in Figure [B[(d) is the set of states which is
unsafe regardless of the action the aircraft takes.

015 20%

B T T \ 5\ 10 15 20" B LS TR T
5

(a) unsafeCruise (b) unsafeLeft

y y
20 20
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10 10

-20 -15 -10 K{\ 5 WYOX -20 -15  -10 K{\A 015 20%

.10 -10
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(c) unsafeRight (d) unsafeCruise A unsafeleft A unsafeRight

Fig. 3. Showing minimal unsafe sets for each discrete state of maneuver automaton.

6 Conclusion

In this paper, we have presented the first class of nonlinear hybrid systems with
a semi-decidable controller synthesis problem. This class of triangular hybrid
systems is rich enough to capture hybrid models that include kinematic models
of aircraft, robots, and cars. Our results were illustrated on a conflict resolution
example from air traffic control.
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