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Abstract

We present a multiple view algorithm for vision based
landing of an unmanned aerial vehicle. Our algorithm
is based on our recent results in multiple view geom-
etry which exploit the rank deficiency of the so called
multiple view matriz. We show how the use of multiple
views significantly improves motion and structure es-
timation. We compare our algorithm to our previous
linear and non-linear two-view algorithms using an ac-
tual flight test. Our results show that the vision-based
state estimates are accurate to within 7cm in each axis
of translation and 4¢ in each axis of rotation.

1 Introduction

The problem of estimating the motion of an unmanned
aerial vehicle (UAV) relative to a landing target has
recently been an active topic of research [8, 9, 10, 11,
12, 19]. The problem can be considered as a special
case of the structure from motion problem in computer
vision, in which all the feature points lie on a plane.
This makes the problem a degenerate case since the
generic eight-point algorithm for two views [4] fails to
work. Therefore, a special algorithm which explicitly
uses the knowledge that all feature points are coplanar
has to be used. This specialized version of the eight-
point algorithm is based on the homography constraint,
and has received much attention in the computer vi-
sion literature [2, 3, 5, 15, 16, 17].

In [12], we presented two customized algorithms (linear
and nonlinear) for solving the problem. The linear al-
gorithm is a modified version of the homography-based
algorithm in which the feature points are known. The
nonlinear algorithm is based on a Newton-Raphson it-
eration which minimizes the re-projection error of the
feature points. The linear optimization algorithm is
globally robust but sensitive to noise. The nonlin-
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Figure 1: Berkeley UAV test-bed with on-board vision
system: Yamaha R-50 helicopter with pan/tilt camera and
computer box hovering above a landing platform.

ear optimization algorithm requires adequate initial-
ization but is less sensitive to noise. Thus, to solve
the motion estimation problem, we used the solution
of the linear algorithm to initialize the nonlinear algo-
rithm. Additionally, in [12] we introduced the design
and implementation of a real-time vision system that
estimates the motion of a rotor-craft UAV relative to a
known landing target. The vision system on board the
UAV (see Figure 1) uses customized vision algorithms
and off-the-shelf hardware to perform in real-time: im-
age processing, segmentation, feature point extraction,
camera control, as well as both linear and nonlinear
optimization algorithms for motion estimation.



In this paper, we extend the results of [12] with the
following contributions:

e Multiple view motion estimation: We have
developed and implemented an algorithm for es-
timating the motion of the UAV from multiple
views of a landing target. The algorithm is based
on the rank deficiency of the multiple view matrix
and provides much more robust motion estimates
than the previously used two-view algorithms.

e Vision based control: We have placed the vi-
sion sensor in the control loop of a hierarchi-
cal flight management system [14] and performed
vision-based landing in real-time.

Paper Outline: Section 2 introduces the multiple
view matrix for planar features and proposes a linear
multiple view algorithm for motion estimation. Sec-
tion 3 describes the real-time vision system for landing
the UAV. Section 4 presents flight test results which
show the performance of the vision-based motion esti-
mation algorithms, as well as the stability and robust-
ness of the vision-based controller. Section 5 concludes
the paper.

2 Motion Estimation

In this section, we extend the existing 2-view algo-
rithms to the case of multiple views. A new funda-
mental tool needed is the so-called rank condition pro-
posed in [6, 7] and we here show how to apply such a
condition to the planar case.

2.1 Multiple Views of Planar Features

An image x(t) = [z(t),y(t),z(t)]T € R® (in homo-
geneous coordinates) of a point p, with homogeneous
coordinates X = [X,Y, Z,1]7 € R* relative to a fixed
world coordinate frame, taken by a moving camera
satisfies the following relationship

AB)x(t) = A Pg(t)X, (1)

where A\(t) € R is the (unknown) depth of the point p
relative to the camera frame, A(t) € SL(3) is the cam-
era calibration matrix (at time t), P = [I,0] € R***
is the constant projection matrix and g(t) € SE(3) is
the coordinate transformation from the world frame to
the camera frame at time ¢.

We further assume that the feature point p lies on a
plane P in 3-D. This plane can be described by a vector

7 = [a,b,c,d] € R* such that the coordinates X of any
point on this plane satisfy

(2)

Although we assume such an constraint on the 3-D
coordinates X of p exists, we do not assume that we
know 7 in advance.

In a realistic situation, we obtain “sampled” images
of x(t) at some time instances, say t1,%2,... ,tm € R.
For simplicity we denote \; = A(t;), x; = x(¢;), II; =
A(t;)Pg(t;). The matrix II; € R*** relates the i
image of the point p to its world coordinates X by

‘)\ixi:HiX i:l,...,m‘ (3)

In equations (2) and (3), except for the x;’s, everything
else is unknown and subject to recovery. In general,
solving A;’s, II;’s, m and X altogether from such equa-
tions is extremely difficult. A natural way to simplify
the task is to decouple the recovery of the matrices
IT;’s from the recovery of the \;’s and X. For that
purpose, let us rewrite the system of equations (3) and
the planar constraint (2) in a single matrix form

X1 T 0 )\1 H1
: | = X (4
0 Xom )\' II,,
0 0 m T
IXN=1X,

where we will call X € R*™ the depth scale vector, and
IT € R®™ X4 the projection matriz associated to the
multiple image matriz T € REMTU*™,

In order to eliminate the unknowns X and X, we notice
that the m + 4 columns of the matrix N = [II, Z] €
RE™HDX M+ are linearly dependent, since it is clear
from (4) that v = [XT,—XT]7 € R™** is in the null
space of N. We conclude that rank(N) < m + 3.

Without loss of generality, we may assume that the
first camera frame is chosen to be the reference frame.
That gives the projection matrices II;,¢ = 1,... ;m the
general form II; = [R;, T;] € R3>**, where the columns
of R; € R®**? are the first three columns of II; and
T; € R? is the fourth column of II;,i = 2,...,m.
Also, given m = [a,b,c,d], define 7' = [a,b,c] € R?
and 72 = d € R. Under this assumption matrix N



becomes
I 0 X1 0 0
R2 T2 0 X9 . .
: : : o0 (5)
R, T, 0 --- 0 xm
L 2 o --- .- 0

After a column manipulation (which eliminates x;
from the first row), it is easy to see that N has the
same rank as the matrix

I 0 0 o .- 0
R> Ts Rox X2 . R,
0 o | = | n|
Rm
Rm Tm Rmxl Xm 1
1 2 1 ™
| 7 T T X1 0 0 |

where N’ satisfies that rank(N') = rank(N) — 3 < m.
Left multiplying N’ by the following matrix*

[x¥ 0 0 0]
%2 0 0 0

0

D= c R —3)x(3m=2)
: X, 0
0 0 X. 0
| 0 0 0 1 |
yields
i ng2 ngle xgxz 0 0 1
X215 XoRox1 0 0 0
0 0
DN' =
: 0 0
xﬁTm xﬁRmxl 0 0 xﬁxm
L 2 Tx, 0 0 0 J

Since D is of full rank 3m — 2, we conclude that
rank(N') = rank(DN").

Hence the original matrix IV is rank deficient if and
only if the following sub-matrix of DN’
Xo Roxy X T
§3R3X1 §3T3
M = : : c R(3m72)><2 (6)
ﬁmRmxl ﬁme

7T1X1 7T2

is rank deficient. Hence we have the following [6]:

LFor a three dimensional vector u € R?, we use & € R3%3
to denote the skew symmetric matrix associated to u such that
for any vector v € R3, we have v = u x v.

Theorem 1 (Planar Rank Deficiency Condition)
For the two matrices N € RE™ XM+ 4ng pf e

RC™ 22 defined in equations (5) and (6) respec-

tively, we always have rank(N) = (m + 2) + rank(M).

That is rank(N) = m + 3 if and only if rank(M) = 1,

and rank(N) = m + 2 if and only if rank(M) = 0.

It is easy to see that the case rank(M) = 0 corresponds
to a degenerate configuration in which the camera cen-
ters lie on the plane P. So the only interesting case is
when rank(M) = 1. In this case, it is necessary that
the images satisfy the bilinear (epipolar) constraints

X?fiRixl =0 (7)
and trilinear constraints
Xi(Tix{ R] — Rx1T;)%; =0 (8)

for all i,7 = 2,...,m. In addition to those, we also
obtain extra constraints due to the planar condition

ﬁiTﬂrle - ﬁiRiX17T2 = 0, Vi = 2, e, (9)

If the plane P does not cross the camera center o,
i.e. w2 # 0, the constraints in (9) give the well-known
homography constraints for planar feature points:

~ 1 .
X (Ri — —2Ti7r1> x;=0, Vi=2,...,m (10)
™

between the 1% and the i*"* views. The matrix H =
(Ri — #Tml) in the equation is the well-known ho-
mography matrix between the two views.

2.2 Multiple View Motion Estimation

The rank condition on M for coplanar points allows
us to utilize simultaneously all multilinear constraints
and homography among multiple images for recover-
ing 3-D motion and structure. Existing algorithms for
planar features usually exploit only the homography
which is only part of all the constraints among multi-
ple images and can only be used for pairwise views.

As described in [6], the problem of motion and struc-
ture reconstruction of a set of planar features from
multiple images can be solved with a slight modifica-
tion of the generic multiple view algorithm [7]. For
simplicity, we assume that the camera is perfectly cal-
ibrated, hence Il = (R, T) € SE(3) corresponds to the
actual Euclidean motion of the camera.

Suppose that m images x¢,... ,xi of n points p’, i =
1,...,n lying on a plane are given and we want to use
them to estimate the unknown projection matrix II



and the parameters of the plane 7. The rank condition
on the M matrix can be written as:

xé T, xé Ry x’1
X575 X5 R3x]
o : + : =0 (11)
i i i
Xy, T X RBmX]
w2 mixt

for proper ' € R,i =1,...n.

From (3) we have A\x’ = A{ R;x} +T}. Multiplying by
X! we obtain X}(R;x| + T;/A{) = 0. Therefore o =
1/A} can be interpreted as the inverse of the depth of
point p’ with respect to the first frame. The set of
equations in (11) is equivalent to finding vectors = €
]R4; R; = [7“11;7“12;7“13,7"21;7“22;7“23,7“31;7“32;7“33]T S R’
and T; =T; € R3, j =2,...,m, such that:

T
xi7 ol
2T 2
X o
1
QnT = ] ) 7l =0, (12)
X{LT a”
151 1, o1
a'Xi  XG x|
= 252 52, o2 =
S| oXF XFxxq 1
Pl d = J | =0 (13)
R; R;

In nT
axX?  XP s x|

where A x B is the Kronecker product of A and B.

Given the first two images of (at least) four points
in general configuration, 7 € R* T, € R® and
Ry € SO(3) can be estimated using the standard
four point planar algorithm for two views [1]. In gen-
eral, there are two physically possible solutions for
(7, Ry, Ts) from the four point algorithm, with 72 and
Ty recovered up to the same scale.? Given these two
solutions for (m, R, T»), we can solve for a from the
equations in the first and last rows of (11). These
equations are a'X5Ty = —Xb Rox} and a'nm? = —w'x},
whose least squares solution up to scale (the inverse of
the common scale of 72 and Ty) for each i is given by:

ai _ _(§§T2)T§§R2Xi +’/T2’/T1X2i‘ (14)

IR T2 + (w2)°

Since there are two possible values for (7, Rz, T») from
the four point planar algorithm, there are two possible
values for a. Given these two values for a, equations

2This scale can be easily fixed by choosing ||T2]| = 1 for
example.

(12) and (13) become linear, thus one can solve for
the rest of (R;,T;) and re-estimate . Therefore, in
principle there are two possible solutions for (7, R;, T;)
provided that rank(P;) = 11 and rank(Q) = 3. One
can show that this is indeed the case if at least 6 feature
points are in a general position in 3-D. However, since
here all points lie on the same plane, the maximum
rank of P; becomes 8 instead, while the rank of @ is
always 3 for points in a general configuration on the
plane. It is straightforward to verify that the solution

ST ST

[T;",R; 1" € R is in the four dimensional kernel of
P; which is spanned by the columns of the following
matrix:

w2 0 0 0
0 w° 0 0
. 0 0 7’ 0 Lo
Ki=1 o7 O3x1 Osx1 71— %ﬂ'lT eRT,
Oax1 w7 Oaxy 72— %WIT
Osx1 Ozx1 @ rg— 17‘52371_17‘
(15)

where [T{,Tg,T;]T = R—; and [le,TjQ,Tj3]T = 7—1;
The last column yields exactly the homography ma-
trix H; = (R; — 5T;7") € R**® between the j** and
the 1%t views. Therefore, given the two values for a,
one can find the homography H; from the vector in the
null-space of P; whose first three components are zero.
Given the two homographies H;’s, one can obtain two
solutions (mj, R;,T;) from the four point algorithm.
Since 7; = 7y, there are only two solutions for the
plane 7 and all relative motions (R;,T}),j = 2,... ,m,
rather than the 2™~! possible combinations. Further-
more, if m > 3, one can show that only one of these two
solutions satisfies 7} = 73,7 = 3,...,m. Therefore,
we conclude that there are two solutions for m = 2

and a unique solution for m > 3.

Finally, recall that 7r]2 and T} are recovered up to the
same scale. However, in the multiple view case all
translation vectors and w2 should be recovered up to
one scale only. It is straightforward to see that the rel-
ative scale between T; and Ty is 75 /7. Therefore, we
have the following linear algorithm for multiple view
motion and structure estimation from planar feature
points:

Algorithm 1 (Multiple View Planar Algorithm)
Given m images Xi,... ,x. of pointsp', i =1,... ,n,
which lie in a plane in 3-D space, we can estimate the
motions (R;,Tj) € SE(3), j = 2,...,m, the plane 7w
and the inverse depth o as follows:

1. Initialization



(a) Set k=0 and find the two solutions for
(m, Ro,T5) using the four point algorithm ap-
plied to the first two views.

(b) Compute the two solutions for o, from (14).
Normalize so that o, = 1.

2. Find the two solutions for the homography matriz
Hj,j =2,...,m, from the vector in the kernel of
P; whose first three components are zero.

3. Find the two solutions for (ﬂ'j,Rj,Tj) from H;,
j=2,...,m, using the four point algorithm.

4. If m > 3, find the unique solution that satisfies
JQ- 3,5 =3,...,m

5. Let ™ =[m,1], T; = Tng/ﬂ']?,j =3,...,m
6. Solve for a from (11) using linear least squares:

; s (X TH) TR Ryxi + mmtx]
aly, = - =22 . (16)

= p)
Zj:Q ||ijj||2 + (%)

Normalize so that aiﬂ =1.

7. If ||ak — ars1|| > €, for a pre-specified € > 0, then
k=k+1 and goto 2. FElse stop.

The camera motion is then (R;,T;) € SE(3) for j =
2,...,m, the plane is 7, and the structure of the points
(with respect to the first camera frame) is given by the
converged depth scalar \i =1/a%,i=1,...,n

2.3 Multi-view Motion For Landing

In this section we describe how we apply Algorithm 1
to the landing problem. As described briefly in the
following section (and in detail in [12]), we have de-
signed a landing target to simplify the image process-
ing and feature extraction tasks. We set the first frame
in Algorithm 1 to be the coordinate frame that is one
focal length above the landing target along the op-
tical axis. Further, since we know the geometry of
the landing target, we use the first frame’s camera
position, the camera calibration matrix, and the per-
spective projection model to set the feature points for
the first frame. Next for each captured image, we set
x! i =1,...,n, to be the feature points extracted
from the current view, and x},_;, j = 1,...,m — 2,
to be the feature points extracted from the previous j
frames. This setup has two very nice properties: (1)
(Rm,Tw) € SE(3) is the Euclidean motion from the
landing target to the current camera frame, (2) knowl-
edge of the landing target geometry allows to uniquely
recovery T, € IR?, instead of up to an arbitrary scale.

3 Vision System Test-bed

This section briefly describes our real-time vision sys-
tem [12]. Further, we describe our UAV test-bed [14]
and the use of a computer vision based supervisory
controller in a hierarchical flight management system
for autonomous landing.

3.1 Vision System Software

Our vision system software consists of two main stages
of execution: feature extraction and motion estima-
tion. The function of the feature extraction is to ez-
tract and label, for each frame m, the images x},

i = 1,...,n, of points on a landing target. We
use corner features on a specially designed black and
white landing target to simplify the feature extraction
stage [12]. Figure 2 shows our designed landing target
and feature extraction in action.

Given the feature points x!,, we have developed and
implemented different methodologies for estimating
the UAV’s motion relative to the landing target: The
two-view linear and two-view nonlinear algorithms de-
scribed in [12], and the multi-view linear algorithm
described in Section 2.
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Figure 2: Vision monitoring station

3.2 Vision System Hardware
Our real-time vision system consists of the following
off-the-shelf hardware components [12]:

e Vision computer: PC104 Pentium 233MHz-based
PC running Linux. Responsible for grabbing im-
ages, vision algorithms and camera control.

e Camera: Sony EVI-D30 Pan/Tilt/Zoom camera.
Actively pan/tilt to keep the landing target cen-
tered int he field of view.



e Framegrabber: Imagenation PXC200. Captures
320 x 240 resolution images at 30Hz.

o Wireless Ethernet: ORINOCO Gold card for
monitoring vision system from ground.

3.3 UAV Test-bed

Our custom-designed UAV test-bed is based on a
Yamaha R-50 industrial helicopter, on which we have
mounted the following [13, 14]:

e Navigation Computer: PC104 Pentium 233MHz-
based PC running QNX real-time OS. Respon-
sible for sensor management and hard real-time
flight control.

o Inertial Measurement Unit: NovAtel MillenRT2
GPS system (2cm accuracy) and Boeing DQI-NP
INS/GPS integration system.

The flight control system is capable of autonomous
hover, pirouette, and low-speed flight with fixed head-
ing. The interface to the flight control is a novel frame-
work called Vehicle Control Language (VCL) [13, 14],
which specifies a sequence of flight-modes and desired
coordinates. VCL provides an abstraction between
a high-level supervisory controller and the hard real-
time vehicle stabilization and control layer.

3.4 Vision in Control Loop

We designed a simple vision-based supervisory con-
troller which commands the UAV to hover above the
visually estimated location of the landing target. The
supervisory controller runs on the vision computer,
and sends control commands to the navigation com-
puter through the Vehicle Control Language over a se-
rial link. When the landing target is in camera view,
the supervisory controller sends the estimated (z,y)
position of the landing target as the desired set-point
for the UAV to hover. In flight experiments, this su-
pervisory control worked very well to keep the UAV
above the landing target even in very high winds.

4 Experimental Results

For the flight test, the UAV hovered autonomously
above a stationary landing pad with the vision system
running in real-time. The vision-based state estimates
were used by the supervisory controller to command
the UAV to hover above the landing target, making it
a truly closed-loop vision controlled flight experiment.
State estimates from the INS/GPS navigation system
were synchronously gathered for later comparison.

Multi-View State Estimate (red) vs INS/GPS State (blue)

10 12 14 16 18
time (seconds)

Figure 3: Comparing multi-view planar motion estima-
tion algorithm with inertial navigation system estimates in
a real flight test.

Figure 3 shows the results from a flight test, comparing
the output of the multiple view motion estimation al-
gorithm with the INS/GPS measurements of the UAV
navigation system (which are accurate to 2cm). Re-
call that at least 3 frames are necessary in the multiple
view algorithm to uniquely estimate the motion. We
observed that using more than 4 frames did not im-
prove the accuracy of the motion estimates, and only
increased computation time. Thus, we used m = 4 in
the multiple view algorithm for the experiments.

Comparison of Motion Estimation Algorithms
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Figure 4: Comparison of mean squared errors of motion
estimation algorithms during a real flight test. The ‘linear
2-view’ and ‘nonlinear’ algorithms are described in [12].
The ‘multi-view’ algorithm is described in Section 2.



Figure 4 shows a comparison of the the root mean
squared error of the estimated state for three different
vision-based state estimation algorithms: The “lin-
ear 2-view” and “nonlinear” algorithms which were
presented in [12], and the “multi-view” algorithm de-
scribed in Section 2. The multi-view algorithm slightly
outperforms the nonlinear algorithm. Further, the
multi-view algorithm is globally robust, while the non-
linear algorithm has many local minima and is sensi-
tive to initialization. The performance and robustness
of the multi-view algorithm make it the clear winner
among the algorithms.

5 Conclusion and Future Work

In this paper, we presented a novel multiple view mo-
tion estimation algorithm for autonomous landing of
an Unmanned Aerial Vehicle. The algorithm is based
on very recent results in multiple view geometry which
exploit the rank deficiency condition of the multiple
view matriz. We compared this algorithm with previ-
ous linear and non-linear two-view algorithms using an
actual flight test of our real-time vision system. Flight
test results show that the use of multiple images sig-
nificantly improves the robustness and the accuracy of
vision-based motion estimates, which are are accurate
to within 7cm in each axis of translation and 4° in
each axis of rotation. In future work, we will use this
motion-estimation algorithm and design vision-based
controller to land a UAV onto the moving landing deck
shown in Figure 1.
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