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Abstract 
W e  present the design ami  implementation of a 

real-time computer vision syslem for a rotor-craft un-  
manned aerial vehicle to  land onto a known land- 
ing target. This  vision system consists of customized 
software and off-the-shelf harc!ware which perform im-  
age processing, segmentation, feature point extraction, 
camera pan/tilt control, and mot ion  estimation. W e  
introduce the design of a landing target which signif- 
icantly simplifies the computer vision tasks such as 
corner detection and correspondence matching. Ous- 
tomized algorithms are deveiloped to  allow f o r  real- 
t ime  computation at a frame rate of 3OHz. Such  algo- 
ri thms include certain linear and nonlinear optimiza- 
t ion schemes f o r  model-based camera pose estimation. 
W e  present results f r o m  a n  actual flight test which 
show the vision-based state estimates are accurate to  
within 5 c m  in each axis of t.ranslation and 5 degrees 
in each axis of rotation, making vision a viable sensor 
to  be placed in the control loop of a hierarchical flight 
management system. 

1 Introduction 
Computer vision is gaining importance as a cheap, 

passive and information-rich source complementing 
the sensor suite for control of Unmanned Aerial Vehi- 
cles (UAV). A vision system on board a UAV typically 
augments a sensor suite that might include Global 
Positioning System (GPS), Inertial Navigation Sen- 
sors (INS), laser range finders, a digital compass and 
sonar [2, 12, 141. The design of any real-time vision 
system is a daunting task: It involves a systematic in- 
tegration of hardware, low level image processing (such 
as segmentation and feature extraction); multiple view 
geometry (such as pose and structure estimation) and 
synthesis of real-time controllers. 

Because of its structured nature, the task of au- 
tonomous landing is well-sui,;ed for vision-based state 
estimation and control and has recently been an active 
topic of research [5, 8, 9, 10, 11, 14, 151. In [7] a tech- 

Figure 1: Showing the Berkeley UAV testbed: Yamaha 
R-50 helicopter (top), mounted pan/tilt camera and 
computer box (middle), and on-board navigation and 
vision computers (bottom). 

nique is presented for estimating the pose relative to 
a known object given a scaled orthographic projection 
model of a camera. In [15], t,he use of vanishing points 
of parallel lines on a landmark is proposed for the pur- 
pose of estimating the localtion and orientation of a 
UAV relative to a landing pad. Since their technique 
relies on vanishing points of parallel lines, their algo- 
rithm is most sensitive to noise and gives the worst 
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Figure 2: Vision system software flow-chart: image 
processing followed by estimation and control. 
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pose estimates when it matters the most: when the 
UAV is directly over the pad. 

In this paper, we introduce a design and implemen- 
tation of a real-time vision system for a rotor-craft 
UAV which cstiinates its pose and speed relative to a 
known landing target at  30Hz. Our vision system uses 
customzzed vision algorithins and off-the-shelf hard- 
ware to perform in real-time: image processing, seg- 
mentation, feRture point extraction, camera control, 
as well as both linear and nonlinear optimization for 
model-basecl pose estimation. Actual flight test re- 
sults on our UAV testbed show our vision-based state 
estimates are accurate to within 5cm in each axis of 
translation and 5 degrees in each axis of rotation, mak- 
ing it a viable sensor to be placed in the control loop 
of a hierarchical flight management system [6, 121. 

Paper Outline: Section 2 contains a detailed de- 
scription of each component of our vision system. Sec- 
tion 3 presents system integration details and exper- 
imental results from real flight experiments, and Sec- 
tion 4 gives concluding remarks and directions for fu- 
ture research. 

2 Vision System Software Design 
Our vision system software consists of two main 

stages of execution: image processing and state esti- 
mation, each with a sequence of subroutines. Figure 2 
shows a flow-chart of the algorithm. 

I 
(a) landing target design 
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Figure 3: Landing target design and image process- 
ing. The target design (a) is made for simple feature 
labeling (b), robust feature point extraction (c), and 
simplified image segmentation (d-g). 

2.1 Image processing 

Our goal for image processing is to locate the land- 
ing target then extract and label its feature points. 
This process includes: (1) thresholding the grayscale 
image to a binary one, (2) segmenting the landing tar- 
get out of the background, ( 3 )  detecting the corners in 
landing target, and finally (4) labeling those corners. 
In order to simplify the image processing, the design 
of the landing target must make it easy to identify and 
segment from the image background, provide distinc- 
tive feature points, simplify feature labeling, and allow 
for algorithms that can execute in real-time using off- 
the-shelf hardware. 

Figure 3(a) shows our landing target design. The 
connected white border enclosing the target simplifies 
segmenting it from the background, given that landing 
target lies on a dark background and that no other con- 
nected white region completely encloses it. Figure 3(b) 
shows the feature point labeling on the corners of the 
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interior white squares of the landing target. We choose 
corner detection over other forms of feature point ex- 
traction because it is simple, robust, and provides a 
high density of feature points per image pixel area. We 
choose squares over other n-sided polygons because 
they maximize the quality of the corners under per- 
spective projection and pixel quantization. Moreover, 
our particular organization of the squares in the tar- 
get‘ allows for straight-forward feature point matching 
invariant of Euclidean motion and perspective projec- 
tion, as to be shown in the section “Feature Label- 
ing.” Color tracking was also explored as a cue for 
feature points, however we found color tracking to not 
be robust because of the variability of outdoor lighting 
conditions. 

(1) Thresholding. The shresholding algorithm 
must produce a binary image such that the black and 
white regions of the landing target are preserved and 
that the primary image backpound is connected and 
black. We found the algorithm with the most accept- 
able compromise between best-case quality and overall 
robustness to be one of the simplest: threshold the im- 
age based on a fixed percentage between the min and 
max gray levels. Figure 3(d) to Figure 3(f) give results 
of this thresholding scheme tested on a real image in- 
put from the on-board camera. 

(2) Segmentation. Given i t  binary image as in Fig- 
ure 3(f), our segmentation stage must separate t,he 
landing target from the background and return t,he 
interior squares. We segment the landing target via 
two consecutive passes of a standard connected com- 
ponents labeling algorithm [3] based on 4-conmectivity. 
The first pass identifies the b:tckground as the largest 
black component (see Figure 3(g)). The second pass 
identifies the landing target iLs the single foreground 
region with seven white components and one black 
component. 

(3) Corner Detection. The corner detection prob- 
lem we face is highly structured: We need to detect 
the corners of 4-sided polygons in a binary image. The 
structured nature of the problasm allows us to avoid the 
computational cost of a general purpose corner detec- 
tor. 

The fundamental invariant in our corner detector 
is that convexity is preserved under Euclidean motion 
and perspective projection. This implies that for a 
line through the interior of a convex polygon, the set of 
points in the polygon with maximal distance from each 
side of the line contain at least two distinct corners of 
the polygon. 

To find two arbitrary corners of a 4-sided polygon, 
we compute the perpendicular distance from each edge 

point to the vertical line passing through the center 
of gravity of the polygon. If there is more than one 
point with maximal distance on a side of the line, we 
choose the point which is far1 hest from the center of 
gravity. We then find the third corner as the point of 
maximum distance from the line connecting the first 
two corners. Finally, we find the fourth corner as the 
point of the polygon with maximum distance to the 
triangle defined by the first three corners. Figure 3(c) 
shows the output of our corner detection algorithm on 
a sample image. 

(4) Feature Labeling. Our feature labeling algo- 
rithm is based on the following property. For some 
plane P containing points 41, q 2 ,  q3 E R3, consider the 
smallest magnitude angle 8 between vectors ( q 2  - 41) 
and ( q 3  - q l ) ,  where 8 > 0 is CCW when viewing 
some surface side of ‘P. Given any image of points 
41, q 2 , q S  taken from the same side of P. if 8’ is the 
corresponding angle in the image of those points, then 
sign(#) = sign(8). This property guarantees that cor- 
respondence matching based on clockwise ordering of 
feature points will work for any given image of those 
feature points. 

Our feature labeling algoribhm consists of two steps: 
first, each square is uniquely identified based on its 
center of gravity, then the corners within each square 
are identified as in Figure 3(b). We label the squares of 
the target starting with the identification of square D. 
For each square, we compute the vectors between its 
center to the centers of the other squares. We identify 
square D as the square with two pairs of collinear vec- 
tors. We identify the remaining squares by ordering 
them from square D. Finally. we order squares associ- 

distance from it. To complete the feature labeling pro- 
cess, we identify the corners of each square in a similar 
rnanner . 

ated with the collinear vectors from square D by their 

2.2 Pose Estimation 

(1) Geometry of Planar Features. Given the la- 
beled feature points, estimating the UAV state is the 
so-called model based camerit pose estimation problem 
from computer vision. We apply both linear and non- 
linear optimization algorithms toward this problem. 
The linear optimization algorithm is globally robust 
but sensitive to noise. The nonlinear optimization al- 
gorithm requires adequate initialization but is more 
robust to noise. Thus we solve the camera pose es- 
timation problem by first solving the linear problem 
and using those results to initialize the nonlinear algo- 
rithm. 

The equation relating a point in the landing pad 
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coordinate fmme to the ima.ge of that point in the 
camera-head frame is given by the equation 

X i x i  = A P g q i ,  (1) 

where X i  E R is an unknown scale, xi E lR3 is the ho- 
mogeneous coordinates of the feature point in the im- 
age plane, A E k3xJ is the camera calibration matrix, 
P = [I 01 E is the projection matrix, g E SE(3)  
is the homogeneous representation of the Euclidean 
motion between the landing pad coordinate frame and 
the camera-head frame, and qi E R4 is the homoge- 
neous representation of the point in the world. Using 
a calibrated pinhole model for the perspective projec- 
tion of the camera, without loss of generality we set 
A = 1 3 x : $ .  Then the scale term X i  is given by 

X, = eTPgqi,  (2) 

where e:( = [0 0 1IT E IR3. Equations (1) and (2) 
together imply the following constraint 

(xi,e: - I ) [ R  plqi = 0. (3) 

We have knowledge of each qi from the geometry 
of the designed landing target. The corner detection 
algorithm extracts each feature point xi in the image 
frame. The feature labeling algorithm associates each 
x, with its corresponding qi. From this data, we need 
to recover the cainera pose Pg = [R p] where R E 
SO(3) is the rotation and p E R3 is the translation 
from the landing target to the camera head. 

(2) Linear Optimization. Since all the feature 
points lie on the the plane of the landing target, with- 
out loss of generality we may chose the inertial co- 
ordinate frame such that eTqi = 0 for all i. Taking 
qi = [q21 qi2 qi3 11 , and [R PI = 7-2 7-3 P I ,  equa- 
tion (3) implies 

T 

(4) 

Since the above equation is linear in [rl r2 p ] ,  we 
can reorganize equation (4) into vector form for each 
feature correspondence pair (x,, q2)  and stack all the 
equations to get 

F [ ; ] = o ,  
( 5 )  

where F = [Fir.. . 
feature points on the landing target, and 

E n is the number of 

0 911 -q11x22 0 q12 -q22x22 0 1 -x22 I ’ Fz= [ q2.1 0 -q11xz1 q22 0 -q22x21 1 0 -x,1 

where xi = [xil xi2 1IT E R3. 
By a slight modification of a well known result on 

the planar structure from motion problem (see, for 
example Weng [13]), it can be shown that if there 
are at  least 4 features points such that no three are 
collinear, then rank(F) = 8. However, due to noise 
in corner detection, in practice F is always full rank. 
Hence we compute the least squares estimate of the 
null space of F by applying standard SVD techniques 
to compute the singular vector [.IT FT E R9 cor- 
responding to the smallest singular value of F. Given 
the “positive-depth constraint” that the landing pad is 
in front of the camera, if necessary we negate the sin- 
gular vector result of the SVD computation to ensure 
that 179 2 0. 

Next, we solve for scale of the translation p E R3 by 
computing the scale factor on the vector [i.T T“: 
that gives and .I2 unit norm; namely, p = 217/( //i.lII + 

Finally, we solve for the rotation matrix R from the 
estimates and r;? in two steps. First we project the 
matrix (Fl .I2 01 E IR3x3 onto the group of orthogonal 
matrices O(3) by computing the SVD of [.I1 TI2 01 = 
U C V T  and setting R = U V T .  To ensure that R is a 
rotation matrix, we need det(R) = 1. Thus, if our SVD 
computation yields det(UVT) = -1, we flip the sign 
of the third column vector of R, which is equivalent 
to setting R = U V T Q ,  where Q = diag(1, 1, -1) E 

In practice, the linear algorithm described above is 
quite noisy because it estimates 9 parameters for a sys- 
tem of equations with 6 degrees of freedom. However, 
the linear estimate is close enough to the true solu- 
tion to serve as a good initialization for the nonlinear 
optimization technique. 

(3) Nonlinear Optimization. The nonlinear op- 
timization algorithm minimizes the reprojection error 
G = [GT.  . . G:IT E 

IlF211). 

R 3 X 3 ,  

where Gi E lR2 is given by 

Gi = (xi.: - I ) [ R  ~ l q i ,  (6) 

where the last row is ignored from the right hand 
side matrix. The rotation matrix is parameterized by 
ZYX-Euler angles 01, 02, 03,  where 0i E (-7r17r] and 
R = eC3e3edz*zeC1e1.  The estimation parameters for 
the nonlinear optimization are /3 = [el 02 03 p l  p2 p3IT. 

We apply the the vector form of the Newton- 
Raphson method to iteratively solve for P:  

Pn+1 = Pn - kn(DpGlpJ+ G(q,y,Pn) (7 )  

where k ,  is an adaptive step size, DpG is the Jacobian 
of G with respect to /3, and (DpG/p)t  is the Moore- 
Penrose pseudo-inverse of DpG/p. 
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We symbolically calculate the Jacobian for the esti- 
mation parameters and numerically evaluate its value 
at runtime. PO is initialized b i  the result of the linear 
estimate or by a recent nonlinear estimate. if available. 
We adaptively select kn to guarantee IIG(q, y, 
monotonically decreases for successive n. 

For any rotation matrix 12, there exist two con- 
gruent Euler angle parameterizations such that 6 = 
[ & , & , @ 3 , ~ 1 , ~ 2 , ~ 3 ]  and y == [n + & , T  - e 2 , n  + 
&, p l ,  p z ,  p3] are equivalent parameterizations for 
[R p]. When cos(&) # 0 it is direct to check by sym- 
bolic computation that each iteration of (7) produces 
equivalent results for both parameterizations; that is 

DpGlb = (DpGI,) diag(1, -1,1,1,1,1). ( 8 )  

Thus, iterations of pn in (7) step through equivalent 
rotations R, regardless of the particular Euler param- 
eterization. 

The nonlinear algorithm outperforms the linear al- 
gorithm because it optimizes over only the necessary 
6 parameters of the transformation. However, due to 
the nonlinearities there are ma,ny local minima. Hence, 
the algorithm is highly sensitive to initialization and 
thus is only useful given a decent initialization from 
the linear algorithm. 

3 System Integration and Results 
(1) Hardware. As part of the BErkeley AeRobot 
(BEAR) project [l], our UAV testbed is a Yamaha R- 
50 helicopter (see Figure 1) on which we have mounted: 

0 Nauzgatzon Computer: Fentium 233MHz Ampro 
LittleBoard running QNX real-time OS - respon- 
sible for low level flight control [12] 

0 Inertral Measurement Unzt: NovAtel MillenRT2 
GPS system (2cm accuracy) and Boeing DQI-NP 
INS/GPS integration system 

0 Vzsaon computer: Pentium 233MHz Ampro Lit- 
tleBoard running Linux - responsible for grabbing 
images, vision algorithms and camera control 
Camera: Sony EVI-D30 Pan/Tilt/Zoom camera 

0 Framegrabber: Imagenat ion PXC200 
0 Wzreless Ethernet: WavoLAN 

The framegrabber captures iniages at 30Hz, which cur- 
rently sets the upper-bound Ion the rate of our vision 
estimates. The inter-relationship of this hardware as 
it is mounted on the UAV is depticted in Figure 4. 

(2) Camera Control. Roper  control of the 
pan/tilt camera can increase the range of motion of 
the UAV while keeping the landing target in the field 
of view of the camera-head. The PTZ camera we use 

.___-_____- - 

On-board IJAV 
Vision System 

__ ~. - , 

,--- 1 Vision Computer 

7N-ystem 

i 

i - -7 __ 

Figure 4: Organization of hardware on the UAV 

Figure 5: Geometry of pan/tilt with respect to opti- 
cal center and image plane. f is the field of view in 
radians, d is the width in pixels, p is the location in 
pixels of the target projected onto the axis, and 0 is 
the rotation required to center the target. 

has an internal controller which can be commanded to 
relative or absolute pan/tilt locations via a serial link. 
By convention, positive pan moves the target left in 
the image, and positive tilt moves the target down in 
the image. For our camera, the axes of rotation for 
pan and tilt coincide with its optical center. For a 
particular axis in the image, as in Figure 5, the angle 
between a point on the axis and the center of the axis 
is given by 

6' = h ( p ,  d,  f )  = atan2 ( p - - ;>; -cot ( 5 ) )  1 (9) 

where f is the field of view of the axis in radians, d is 
the width of the axis in pixels, and p is the location in 
pixels of the target projected onto the axis. 
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Now, let the desired location of the target be at 
( z o , ~ ~ ) ,  the target be at (zl,yl), the image width and 
height be 1, and l,, and the horizontal and vertical field 
of view be f, and f y .  Then, using equation (9), the 
amount of pan and tilt necessary to move the target 
to the desired location is given by , 

Q p a n  

Qt i l t  = 

= h (51, L, f z )  - h (ZO> L ,  f z )  
( Y l ,  1,) fy) - h (YO, &/, fy) 1 

where QpalL and are relative to the current pan/tilt 
state. 

(3) Frame Transformations. As shown in Fig- 
ure 6, the geometry of the coordinate frames and 
Euclidean motions involved in the vision-based state 
estimation problem are labeled as: (a) Landing tar- 
get, (b) Landing pad, (c) Camera head, (d) Camera 
base, (e) UAV, ( f )  Inertial frame. We use the notation 
gba E S'E(3) to denote the Euclidean motion (transla- 
tion and rotation) of coordinate frame b with respect 
to frame a. The transformations gef and gfb are used 
only to evtiluate the state estimates of the vision al- 
gorithm and are not used by the vision algorithm di- 
rectly. 

A d c  Y 

b, Landing 1 Pad a, Landing Z 
Target 

Fy f. Inertial 
I 

Figure 6: Geometry of the coordinate frames and Eu- 
clidean motions involved in the vision-based state es- 
timation probleni. 

(4) Software. LAPACK (Linear Algebra PACK- 
age) and BLAS (Basic Linea.r Algebra Subpro- 
grams) [4] are used in the vision algorithms for stan- 
dard matrix operations. A multi-resolution approach 
is used in our segmentation algorithm to reduce pro- 
cessing time, effectively performing segmentation on a 

160 x 120 image. Then the edges of the interior squares 
of the landing target are calculated from the original 
320 x 240 image. We have developed a ','ground sta- 
tion" which communicates through wireless ethernet 
to the onboard vision computer and displaying the cur- 
rent state of the vision system through a Java-based 
GUI (shown in Figure 7) .  

Figure 7: Ground station Java-based visualization 
GUI showing position and rotation estimates, ex- 
tracted feature points and labels, and the binary image 
view from the camera. 

(5) Flight Test Results. For the flight test, the 
UAV hovered autonomously above a small, stationary 
landing pad with the vision system running in real- 
time. While the vision system did not affect control of 
the UAV, state estimates from the navigation system 
were synchronously gathered for later comparison. 

Figure 8 shows the results from the flight test, com- 
paring the output of the vision-based state estimation 
algorithm with the INS/GPS measurements accurate 
to 2cm. All plots show the state of the UAV with 
respect to the landing pad. The vision estimates are 
more noisy, but otherwise follow the INS/GPS mea- 
surements. Also, errors in the internal and external 
camera calibration parameters marginally affects some 
of the estimates ~ the 2-position and z-rotation, in par- 
ticular. While logging a fraction of the original images 
in real-time, the Linux write caching system caused 
noticeable, synchronized gaps in each data plot. 

Figure 9 shows the root mean squared error of each 
estimated state parameter. The position estimates are 
within 5cm accuracy. The x- and y-position estimates 
should perform better than the z-position estimate. 
That is, the same amount of translation along the z- 
or y-axis causes more detectable change in the image 
than along the z-axis, the optical axis of the camera. 
However, this is not apparent in our plots due to the 
noted calibration error. The rotation estimates are all 
within 5 degrees accuracy. As expected, the z-rotation 
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Vision-Based State Estimate (red) 
vs INS/GPS State (blue) 
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Figure 8: Flight test results: the vision estimates are 
more noisy but otherwise follow the INS/GPS state 
of the UAV relative to the landing pad. A calibration 
error is most notable in the estimates of 2-position and 
z-rotation. 

Vision-based State Estimate, RMS Error 
Position (m) Rotation (deg) 

0.02 

n ” 
X Y Z  X Y Z  

Figure 9: The RMS error of state estimates for each 
axis of translation and rotation. Position error is 
within 5cm. Rotation error is within 5 degrees. 

“LOW Level Imape Processinp” 
-Segmentation pass 2, edge 

Threshold, segmentation pass 1 
Image acquisition 
Corner detection (high res) 
Histogram estimation 
Feature labeling <1% 
Total 90% 

“Other Processing” 
Nonlinear optimization I 5% 
Bit-encoding binary image for GUI 
Linear optimization 
Frame transformations 
M i x .  
Total 

Table 1: Computational cost of each stage of process- 
ing, measured from actual program execution. Image 
processing is expensive, consumed by segmenting the 
landing target from the image. 

estimate significantly outperforms the other two. That 
is, the same amount of rotation about the z-axis causes 
more detectable change in the image than the other 
axes. Overall, the vision-based state estimates are ac- 
curate enough to be used in the closed-loop of a high- 
level feedback controller for landing in a hierarchical 
flight management system [6, 121. 

Table 1 shows the computational cost of each stage 
of processing in our system, measured from actual pro- 
gram execution. In particular, we see that almost all 
of our computational time is spent on image process- 
ing. In turn, most of the image processing is spent on 
the segmentation algorithms for extracting the land- 
ing target. The conclusion is that  any further effort 
toward improving computatioiial efficiency should be 
spent optimizing the image segmentation algorithms. 
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4 Conclusion and Future Work 
In this paper, we have presented the design and im- 

plementation of a real-time vision system to land a 
UAV onto a landing target. Some aspects of our sys- 
tem perform particularly well. Our feature labeling is 
computationally inexpensive and extremely robust to 
noise. The camera control algorithm performed well 
given the dynamic limits of the panltilt actuators of 
our camera. Given a good threshold for a grayscale im- 
age, our segmentation algorithm never failed to extract 
the landiiig target. With adequate initialization, our 
estimates from nonlinear optimization proved to be ro- 
bust to noise. However, the thresholding and corner 
detection algorithms have room for improvement. 

Flight test; results show the vision based motion es- 
timates are accurate to within 5cm in each axis of 
translation and 5 degrees in each axis of rotation. The 
estinmtes are sufficiently accurate to allow our vision 
sensor to lie placed in the control loop of a hierarchical 
flight nianagemeiit system [6, la]. For future research, 
we will use our vision system to land an UAV onto a 
moving pla,tforni which simulates the motion of a ship 
deck, as shown in Figure 10. 

Figure 10: Programmable 6 DOF landing platform to 
simulate watercraft dynamics. To be used in future 
work. 
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