
Proceedings of the 2001 IEEE
International Conference on Robotics; 8. Automation

Seoul, Korea. May 21-26, 2001

A Vision System for Landing an Unmanned Aerial Vehicle

Courtney S. Sharp Orriid Shakernia S. Shankar Sastry

Department of Electrical Engineering & Computer Science
University of California Berkeley, Berkeley, CA 94720

{ cssharp, omids , sastry}@eecs . berkeley . edu

Abstract
W e present the design ami implementation of a

real-time computer vision syslem for a rotor-craft un-
manned aerial vehicle to land onto a known land-
ing target. This vision system consists of customized
software and off-the-shelf harc!ware which perform im-
age processing, segmentation, feature point extraction,
camera pan/tilt control, and mot ion estimation. W e
introduce the design of a landing target which signif-
icantly simplifies the computer vision tasks such as
corner detection and correspondence matching. Ous-
tomized algorithms are deveiloped to allow f o r real-
t ime computation at a frame rate of 3OHz. Such algo-
ri thms include certain linear and nonlinear optimiza-
t ion schemes f o r model-based camera pose estimation.
W e present results f r o m a n actual flight test which
show the vision-based state estimates are accurate to
within 5 c m in each axis of t.ranslation and 5 degrees
in each axis of rotation, making vision a viable sensor
to be placed in the control loop of a hierarchical flight
management system.

1 Introduction
Computer vision is gaining importance as a cheap,

passive and information-rich source complementing
the sensor suite for control of Unmanned Aerial Vehi-
cles (UAV). A vision system on board a UAV typically
augments a sensor suite that might include Global
Positioning System (GPS), Inertial Navigation Sen-
sors (INS), laser range finders, a digital compass and
sonar [2, 12, 141. The design of any real-time vision
system is a daunting task: It involves a systematic in-
tegration of hardware, low level image processing (such
as segmentation and feature extraction); multiple view
geometry (such as pose and structure estimation) and
synthesis of real-time controllers.

Because of its structured nature, the task of au-
tonomous landing is well-sui,;ed for vision-based state
estimation and control and has recently been an active
topic of research [5, 8, 9, 10, 11, 14, 151. In [7] a tech-

Figure 1: Showing the Berkeley UAV testbed: Yamaha
R-50 helicopter (top), mounted pan/tilt camera and
computer box (middle), and on-board navigation and
vision computers (bottom).

nique is presented for estimating the pose relative to
a known object given a scaled orthographic projection
model of a camera. In [15], t,he use of vanishing points
of parallel lines on a landmark is proposed for the pur-
pose of estimating the localtion and orientation of a
UAV relative to a landing pad. Since their technique
relies on vanishing points of parallel lines, their algo-
rithm is most sensitive to noise and gives the worst

0-7803-6475-910 1 /$I 0.000 200 I I EEE 1720

I

* Image
Acquisition

c

4 :
Histogram/
Threshold

Segmen-
tation

b

Figure 2: Vision system software flow-chart: image
processing followed by estimation and control.

Linear
State

Estimation

Nonlinear
State

Estimation

Camera
Comm. ti
Control

c

4

c

c
Frame

Transforms

Navigation
Computer -

Comm.

pose estimates when it matters the most: when the
UAV is directly over the pad.

In this paper, we introduce a design and implemen-
tation of a real-time vision system for a rotor-craft
UAV which cstiinates its pose and speed relative to a
known landing target at 30Hz. Our vision system uses
customzzed vision algorithins and off-the-shelf hard-
ware to perform in real-time: image processing, seg-
mentation, feRture point extraction, camera control,
as well as both linear and nonlinear optimization for
model-basecl pose estimation. Actual flight test re-
sults on our UAV testbed show our vision-based state
estimates are accurate to within 5cm in each axis of
translation and 5 degrees in each axis of rotation, mak-
ing it a viable sensor to be placed in the control loop
of a hierarchical flight management system [6, 121.

Paper Outline: Section 2 contains a detailed de-
scription of each component of our vision system. Sec-
tion 3 presents system integration details and exper-
imental results from real flight experiments, and Sec-
tion 4 gives concluding remarks and directions for fu-
ture research.

2 Vision System Software Design
Our vision system software consists of two main

stages of execution: image processing and state esti-
mation, each with a sequence of subroutines. Figure 2
shows a flow-chart of the algorithm.

I
(a) landing target design

1
A '

.6 .5 .2

.7 .B
B

.IO. .9 :
: c : . ? 4
- 1 1 .I2
. . 14, -13 -18. . I 7 -22. -21

D : ' E : ' F : .. '15 . 116 , l9 . ..20 ,23 ,124

(b) feature point labels

(d) camera view

1.

(e) histogram

(f) thresholded image

(c) detected corners (9) foreground regions

Figure 3: Landing target design and image process-
ing. The target design (a) is made for simple feature
labeling (b), robust feature point extraction (c), and
simplified image segmentation (d-g).

2.1 Image processing

Our goal for image processing is to locate the land-
ing target then extract and label its feature points.
This process includes: (1) thresholding the grayscale
image to a binary one, (2) segmenting the landing tar-
get out of the background, (3) detecting the corners in
landing target, and finally (4) labeling those corners.
In order to simplify the image processing, the design
of the landing target must make it easy to identify and
segment from the image background, provide distinc-
tive feature points, simplify feature labeling, and allow
for algorithms that can execute in real-time using off-
the-shelf hardware.

Figure 3(a) shows our landing target design. The
connected white border enclosing the target simplifies
segmenting it from the background, given that landing
target lies on a dark background and that no other con-
nected white region completely encloses it. Figure 3(b)
shows the feature point labeling on the corners of the

1721

interior white squares of the landing target. We choose
corner detection over other forms of feature point ex-
traction because it is simple, robust, and provides a
high density of feature points per image pixel area. We
choose squares over other n-sided polygons because
they maximize the quality of the corners under per-
spective projection and pixel quantization. Moreover,
our particular organization of the squares in the tar-
get‘ allows for straight-forward feature point matching
invariant of Euclidean motion and perspective projec-
tion, as to be shown in the section “Feature Label-
ing.” Color tracking was also explored as a cue for
feature points, however we found color tracking to not
be robust because of the variability of outdoor lighting
conditions.

(1) Thresholding. The shresholding algorithm
must produce a binary image such that the black and
white regions of the landing target are preserved and
that the primary image backpound is connected and
black. We found the algorithm with the most accept-
able compromise between best-case quality and overall
robustness to be one of the simplest: threshold the im-
age based on a fixed percentage between the min and
max gray levels. Figure 3(d) to Figure 3(f) give results
of this thresholding scheme tested on a real image in-
put from the on-board camera.

(2) Segmentation. Given i t binary image as in Fig-
ure 3(f), our segmentation stage must separate t,he
landing target from the background and return t,he
interior squares. We segment the landing target via
two consecutive passes of a standard connected com-
ponents labeling algorithm [3] based on 4-conmectivity.
The first pass identifies the b:tckground as the largest
black component (see Figure 3(g)). The second pass
identifies the landing target iLs the single foreground
region with seven white components and one black
component.

(3) Corner Detection. The corner detection prob-
lem we face is highly structured: We need to detect
the corners of 4-sided polygons in a binary image. The
structured nature of the problasm allows us to avoid the
computational cost of a general purpose corner detec-
tor.

The fundamental invariant in our corner detector
is that convexity is preserved under Euclidean motion
and perspective projection. This implies that for a
line through the interior of a convex polygon, the set of
points in the polygon with maximal distance from each
side of the line contain at least two distinct corners of
the polygon.

To find two arbitrary corners of a 4-sided polygon,
we compute the perpendicular distance from each edge

point to the vertical line passing through the center
of gravity of the polygon. If there is more than one
point with maximal distance on a side of the line, we
choose the point which is far1 hest from the center of
gravity. We then find the third corner as the point of
maximum distance from the line connecting the first
two corners. Finally, we find the fourth corner as the
point of the polygon with maximum distance to the
triangle defined by the first three corners. Figure 3(c)
shows the output of our corner detection algorithm on
a sample image.

(4) Feature Labeling. Our feature labeling algo-
rithm is based on the following property. For some
plane P containing points 41, q 2 , q3 E R3, consider the
smallest magnitude angle 8 between vectors (q 2 - 41)
and (q 3 - q l) , where 8 > 0 is CCW when viewing
some surface side of ‘P. Given any image of points
41, q 2 , q S taken from the same side of P. if 8’ is the
corresponding angle in the image of those points, then
sign(#) = sign(8). This property guarantees that cor-
respondence matching based on clockwise ordering of
feature points will work for any given image of those
feature points.

Our feature labeling algoribhm consists of two steps:
first, each square is uniquely identified based on its
center of gravity, then the corners within each square
are identified as in Figure 3(b). We label the squares of
the target starting with the identification of square D.
For each square, we compute the vectors between its
center to the centers of the other squares. We identify
square D as the square with two pairs of collinear vec-
tors. We identify the remaining squares by ordering
them from square D. Finally. we order squares associ-

distance from it. To complete the feature labeling pro-
cess, we identify the corners of each square in a similar
rnanner .

ated with the collinear vectors from square D by their

2.2 Pose Estimation

(1) Geometry of Planar Features. Given the la-
beled feature points, estimating the UAV state is the
so-called model based camerit pose estimation problem
from computer vision. We apply both linear and non-
linear optimization algorithms toward this problem.
The linear optimization algorithm is globally robust
but sensitive to noise. The nonlinear optimization al-
gorithm requires adequate initialization but is more
robust to noise. Thus we solve the camera pose es-
timation problem by first solving the linear problem
and using those results to initialize the nonlinear algo-
rithm.

The equation relating a point in the landing pad

1722

coordinate fmme to the ima.ge of that point in the
camera-head frame is given by the equation

X i x i = A P g q i , (1)

where X i E R is an unknown scale, xi E lR3 is the ho-
mogeneous coordinates of the feature point in the im-
age plane, A E k3xJ is the camera calibration matrix,
P = [I 01 E is the projection matrix, g E SE(3)
is the homogeneous representation of the Euclidean
motion between the landing pad coordinate frame and
the camera-head frame, and qi E R4 is the homoge-
neous representation of the point in the world. Using
a calibrated pinhole model for the perspective projec-
tion of the camera, without loss of generality we set
A = 1 3 x : $. Then the scale term X i is given by

X, = eTPgqi, (2)

where e:(= [0 0 1IT E IR3. Equations (1) and (2)
together imply the following constraint

(xi,e: - I) [R plqi = 0. (3)

We have knowledge of each qi from the geometry
of the designed landing target. The corner detection
algorithm extracts each feature point xi in the image
frame. The feature labeling algorithm associates each
x, with its corresponding qi. From this data, we need
to recover the cainera pose Pg = [R p] where R E
SO(3) is the rotation and p E R3 is the translation
from the landing target to the camera head.

(2) Linear Optimization. Since all the feature
points lie on the the plane of the landing target, with-
out loss of generality we may chose the inertial co-
ordinate frame such that eTqi = 0 for all i. Taking
qi = [q21 qi2 qi3 11 , and [R PI = 7-2 7-3 P I , equa-
tion (3) implies

T

(4)

Since the above equation is linear in [rl r2 p] , we
can reorganize equation (4) into vector form for each
feature correspondence pair (x,, q2) and stack all the
equations to get

F [;] = o ,
(5)

where F = [Fir.. .
feature points on the landing target, and

E n is the number of

0 911 -q11x22 0 q12 -q22x22 0 1 -x22 I ’ Fz= [q2.1 0 -q11xz1 q22 0 -q22x21 1 0 -x,1

where xi = [xil xi2 1IT E R3.
By a slight modification of a well known result on

the planar structure from motion problem (see, for
example Weng [13]), it can be shown that if there
are at least 4 features points such that no three are
collinear, then rank(F) = 8. However, due to noise
in corner detection, in practice F is always full rank.
Hence we compute the least squares estimate of the
null space of F by applying standard SVD techniques
to compute the singular vector [.IT FT E R9 cor-
responding to the smallest singular value of F. Given
the “positive-depth constraint” that the landing pad is
in front of the camera, if necessary we negate the sin-
gular vector result of the SVD computation to ensure
that 179 2 0.

Next, we solve for scale of the translation p E R3 by
computing the scale factor on the vector [i.T T“:
that gives and .I2 unit norm; namely, p = 217/(//i.lII +

Finally, we solve for the rotation matrix R from the
estimates and r;? in two steps. First we project the
matrix (Fl .I2 01 E IR3x3 onto the group of orthogonal
matrices O(3) by computing the SVD of [.I1 TI2 01 =
U C V T and setting R = U V T . To ensure that R is a
rotation matrix, we need det(R) = 1. Thus, if our SVD
computation yields det(UVT) = -1, we flip the sign
of the third column vector of R, which is equivalent
to setting R = U V T Q , where Q = diag(1, 1, -1) E

In practice, the linear algorithm described above is
quite noisy because it estimates 9 parameters for a sys-
tem of equations with 6 degrees of freedom. However,
the linear estimate is close enough to the true solu-
tion to serve as a good initialization for the nonlinear
optimization technique.

(3) Nonlinear Optimization. The nonlinear op-
timization algorithm minimizes the reprojection error
G = [GT. . . G:IT E

IlF211).

R 3 X 3 ,

where Gi E lR2 is given by

Gi = (xi.: - I) [R ~ l q i , (6)

where the last row is ignored from the right hand
side matrix. The rotation matrix is parameterized by
ZYX-Euler angles 01, 02, 03, where 0i E (-7r17r] and
R = eC3e3edz*zeC1e1. The estimation parameters for
the nonlinear optimization are /3 = [el 02 03 p l p2 p3IT.

We apply the the vector form of the Newton-
Raphson method to iteratively solve for P:

Pn+1 = Pn - kn(DpGlpJ+ G(q,y,Pn) (7)

where k , is an adaptive step size, DpG is the Jacobian
of G with respect to /3, and (DpG/p)t is the Moore-
Penrose pseudo-inverse of DpG/p.

1723

We symbolically calculate the Jacobian for the esti-
mation parameters and numerically evaluate its value
at runtime. PO is initialized b i the result of the linear
estimate or by a recent nonlinear estimate. if available.
We adaptively select kn to guarantee IIG(q, y,
monotonically decreases for successive n.

For any rotation matrix 12, there exist two con-
gruent Euler angle parameterizations such that 6 =
[& , & , @ 3 , ~ 1 , ~ 2 , ~ 3] and y == [n + & , T - e 2 , n +
&, p l , p z , p3] are equivalent parameterizations for
[R p]. When cos(&) # 0 it is direct to check by sym-
bolic computation that each iteration of (7) produces
equivalent results for both parameterizations; that is

DpGlb = (DpGI,) diag(1, -1,1,1,1,1). (8)

Thus, iterations of pn in (7) step through equivalent
rotations R, regardless of the particular Euler param-
eterization.

The nonlinear algorithm outperforms the linear al-
gorithm because it optimizes over only the necessary
6 parameters of the transformation. However, due to
the nonlinearities there are ma,ny local minima. Hence,
the algorithm is highly sensitive to initialization and
thus is only useful given a decent initialization from
the linear algorithm.

3 System Integration and Results
(1) Hardware. As part of the BErkeley AeRobot
(BEAR) project [l], our UAV testbed is a Yamaha R-
50 helicopter (see Figure 1) on which we have mounted:

0 Nauzgatzon Computer: Fentium 233MHz Ampro
LittleBoard running QNX real-time OS - respon-
sible for low level flight control [12]

0 Inertral Measurement Unzt: NovAtel MillenRT2
GPS system (2cm accuracy) and Boeing DQI-NP
INS/GPS integration system

0 Vzsaon computer: Pentium 233MHz Ampro Lit-
tleBoard running Linux - responsible for grabbing
images, vision algorithms and camera control
Camera: Sony EVI-D30 Pan/Tilt/Zoom camera

0 Framegrabber: Imagenat ion PXC200
0 Wzreless Ethernet: WavoLAN

The framegrabber captures iniages at 30Hz, which cur-
rently sets the upper-bound Ion the rate of our vision
estimates. The inter-relationship of this hardware as
it is mounted on the UAV is depticted in Figure 4.

(2) Camera Control. Roper control of the
pan/tilt camera can increase the range of motion of
the UAV while keeping the landing target in the field
of view of the camera-head. The PTZ camera we use

.___-_____- -

On-board IJAV
Vision System

__ ~. - ,

,--- 1 Vision Computer

7N-ystem

i

i - -7 __

Figure 4: Organization of hardware on the UAV

Figure 5: Geometry of pan/tilt with respect to opti-
cal center and image plane. f is the field of view in
radians, d is the width in pixels, p is the location in
pixels of the target projected onto the axis, and 0 is
the rotation required to center the target.

has an internal controller which can be commanded to
relative or absolute pan/tilt locations via a serial link.
By convention, positive pan moves the target left in
the image, and positive tilt moves the target down in
the image. For our camera, the axes of rotation for
pan and tilt coincide with its optical center. For a
particular axis in the image, as in Figure 5, the angle
between a point on the axis and the center of the axis
is given by

6' = h (p , d, f) = atan2 (p - - ;>; -cot (5)) 1 (9)

where f is the field of view of the axis in radians, d is
the width of the axis in pixels, and p is the location in
pixels of the target projected onto the axis.

1724

Now, let the desired location of the target be at
(z o , ~ ~) , the target be at (zl,yl), the image width and
height be 1, and l,, and the horizontal and vertical field
of view be f, and f y . Then, using equation (9), the
amount of pan and tilt necessary to move the target
to the desired location is given by ,

Q p a n

Qt i l t =

= h (51, L, f z) - h (ZO> L , f z)
(Y l , 1,) fy) - h (YO, &/, fy) 1

where QpalL and are relative to the current pan/tilt
state.

(3) Frame Transformations. As shown in Fig-
ure 6, the geometry of the coordinate frames and
Euclidean motions involved in the vision-based state
estimation problem are labeled as: (a) Landing tar-
get, (b) Landing pad, (c) Camera head, (d) Camera
base, (e) UAV, (f) Inertial frame. We use the notation
gba E S'E(3) to denote the Euclidean motion (transla-
tion and rotation) of coordinate frame b with respect
to frame a. The transformations gef and gfb are used
only to evtiluate the state estimates of the vision al-
gorithm and are not used by the vision algorithm di-
rectly.

A d c Y

b, Landing 1 Pad a, Landing Z
Target

Fy f. Inertial
I

Figure 6: Geometry of the coordinate frames and Eu-
clidean motions involved in the vision-based state es-
timation probleni.

(4) Software. LAPACK (Linear Algebra PACK-
age) and BLAS (Basic Linea.r Algebra Subpro-
grams) [4] are used in the vision algorithms for stan-
dard matrix operations. A multi-resolution approach
is used in our segmentation algorithm to reduce pro-
cessing time, effectively performing segmentation on a

160 x 120 image. Then the edges of the interior squares
of the landing target are calculated from the original
320 x 240 image. We have developed a ','ground sta-
tion" which communicates through wireless ethernet
to the onboard vision computer and displaying the cur-
rent state of the vision system through a Java-based
GUI (shown in Figure 7) .

Figure 7: Ground station Java-based visualization
GUI showing position and rotation estimates, ex-
tracted feature points and labels, and the binary image
view from the camera.

(5) Flight Test Results. For the flight test, the
UAV hovered autonomously above a small, stationary
landing pad with the vision system running in real-
time. While the vision system did not affect control of
the UAV, state estimates from the navigation system
were synchronously gathered for later comparison.

Figure 8 shows the results from the flight test, com-
paring the output of the vision-based state estimation
algorithm with the INS/GPS measurements accurate
to 2cm. All plots show the state of the UAV with
respect to the landing pad. The vision estimates are
more noisy, but otherwise follow the INS/GPS mea-
surements. Also, errors in the internal and external
camera calibration parameters marginally affects some
of the estimates ~ the 2-position and z-rotation, in par-
ticular. While logging a fraction of the original images
in real-time, the Linux write caching system caused
noticeable, synchronized gaps in each data plot.

Figure 9 shows the root mean squared error of each
estimated state parameter. The position estimates are
within 5cm accuracy. The x- and y-position estimates
should perform better than the z-position estimate.
That is, the same amount of translation along the z-
or y-axis causes more detectable change in the image
than along the z-axis, the optical axis of the camera.
However, this is not apparent in our plots due to the
noted calibration error. The rotation estimates are all
within 5 degrees accuracy. As expected, the z-rotation

1725

Vision-Based State Estimate (red)
vs INS/GPS State (blue)

10 20 30 40 50 60

10 20 30 40 50 60

0.9 t
10 20 30 40 50 60

10 20 30 40 50 60

, I

-101 ’ ’
10 20 30 40 50 60

10 20 30 40 50 60
time (seconds)

Figure 8: Flight test results: the vision estimates are
more noisy but otherwise follow the INS/GPS state
of the UAV relative to the landing pad. A calibration
error is most notable in the estimates of 2-position and
z-rotation.

Vision-based State Estimate, RMS Error
Position (m) Rotation (deg)

0.02

n ”
X Y Z X Y Z

Figure 9: The RMS error of state estimates for each
axis of translation and rotation. Position error is
within 5cm. Rotation error is within 5 degrees.

“LOW Level Imape Processinp”
-Segmentation pass 2, edge

Threshold, segmentation pass 1
Image acquisition
Corner detection (high res)
Histogram estimation
Feature labeling <1%
Total 90%

“Other Processing”
Nonlinear optimization I 5%
Bit-encoding binary image for GUI
Linear optimization
Frame transformations
M i x .
Total

Table 1: Computational cost of each stage of process-
ing, measured from actual program execution. Image
processing is expensive, consumed by segmenting the
landing target from the image.

estimate significantly outperforms the other two. That
is, the same amount of rotation about the z-axis causes
more detectable change in the image than the other
axes. Overall, the vision-based state estimates are ac-
curate enough to be used in the closed-loop of a high-
level feedback controller for landing in a hierarchical
flight management system [6, 121.

Table 1 shows the computational cost of each stage
of processing in our system, measured from actual pro-
gram execution. In particular, we see that almost all
of our computational time is spent on image process-
ing. In turn, most of the image processing is spent on
the segmentation algorithms for extracting the land-
ing target. The conclusion is that any further effort
toward improving computatioiial efficiency should be
spent optimizing the image segmentation algorithms.

1726

4 Conclusion and Future Work
In this paper, we have presented the design and im-

plementation of a real-time vision system to land a
UAV onto a landing target. Some aspects of our sys-
tem perform particularly well. Our feature labeling is
computationally inexpensive and extremely robust to
noise. The camera control algorithm performed well
given the dynamic limits of the panltilt actuators of
our camera. Given a good threshold for a grayscale im-
age, our segmentation algorithm never failed to extract
the landiiig target. With adequate initialization, our
estimates from nonlinear optimization proved to be ro-
bust to noise. However, the thresholding and corner
detection algorithms have room for improvement.

Flight test; results show the vision based motion es-
timates are accurate to within 5cm in each axis of
translation and 5 degrees in each axis of rotation. The
estinmtes are sufficiently accurate to allow our vision
sensor to lie placed in the control loop of a hierarchical
flight nianagemeiit system [6, la]. For future research,
we will use our vision system to land an UAV onto a
moving pla,tforni which simulates the motion of a ship
deck, as shown in Figure 10.

Figure 10: Programmable 6 DOF landing platform to
simulate watercraft dynamics. To be used in future
work.

Acknowledgments
The authors woiild like to thank the BErkeley AeRobot

team, especially Hyunclinl Shim and Renk Vidal. This re-
search was supported by ONR grants N00014-00-1-0621
and N00014-97-1-0946 and ARO MURI grant DAAH04-
96- 1-0341.

References
[l] BErkeley AeH.obot (BEAR) Project homepage.

http://robotics.eecs.berkeley.edu/bear.
[2] M. Bosse, W.C. Karl, D. Castanon, and P. DeBitetto.

A vision augmciited navigation system. In IEEE Con-
ference on, Intelligent Transportation Systems, pages
1028-33, 1997.

[3] R. Gonzalez and R. Woods. Digital Image Processing.
Addison-Wesley, 1992.

[4] LAPACK, BLAS Homepages.
http://www.netlib.org/{lapack,blas}.

[5] I. Kaminer, A. M. Pascoal, W . Kang, and 0. Yaki-
menko. Integrated vision/inertial navigation system
design using nonlinear filtering. 7’0 Appear: IEEE
2’ransactions on Aerospace and Electronics.

[6] T.J. Koo, F. Hoffmann, H. Shim, B. Sinopoli, and S.
Sastry. Hybrid Control of Model Helicopter In Proc.
of IFAC Workshop on Motion Control, pages 285-290,
Grenoble, France October 1998.

[7] D. Oberkampf, D.F. DeMenthon, and L.S. Davis.
Iterative pose estimation using coplanar feature
points Computer Vision and Image Understanding
63(3):495-511, May 1996.

[SI A. Petruszka and A. Stentz. Stereo vision automatic
landing of VTOL UAVS. In Proceedings of Assoc.
Unmanned Vehicle Syst. In.t., pages 245-63, 1996.

[9] F.R. Schell and E.D. Dickmanns. Autonomous land-
ing of airplanes by dynamic machine vision. Machine
Vision and Applications, 7:127-134, 1994.

[lo] 0. Shakernia, Y . Ma, T.J. Koo, J. Hespanha, and
S. Sastry. Vision guided landing of an unmanned air
vehicle. In Proceedings of CDC, Phoenix, Arizona,
December 1999.

[ll] 0. Shakernia, Y. Ma, T.J. Koo, and S. Sastry. Land-
ing an unmanned air vehicle: Vision based motion es-
timation and nonlinear control. Asian J . of Control,
1(3):128-145, September 1999.

[12] D.H. Shim, H.J. Kim, and S. Sastry. Hierarchical con-
trol system synthesis for rotorcraft-based unnianned
aerial vehicles. In Proceedings of A I A A Conf. on Guid-
ance, Navigation and Control, Denver, 2000.

Motion and
Structure from Image Sequences. Springer-Verlag,
1993.

[14] S. Werner, S. Furst, D. Dickmanns, and E.D. Dick-
manns. A vision-based multi-sensor machine percep-
tion system for autonomous aircraft landing approach.
In Proc. of the SPIE - The International Society for
Optical Engineering, vol 2736, pages 54-63, Orlando,
FL, USA, 1996.

Using parallel line in-
formation for vision-based landmark location estima-
tion and an application to automatic helicopter land-
ing. Robotics and Computer-Integrated Manufactur-

[13] J. Weng, T.S. Huang, and N. Ahuja.

[15] Z.F. Yang and W.H. Tsai.

ing, 14(4):297-306, 1998.

1727

http://robotics.eecs.berkeley.edu/bear
http://www.netlib.org/{lapack,blas

