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Optimal Control for a class of Stochastic Hybrid Systems 

Ling Shi, Alessandro Abate and Shankar Sastry 

Abslmcf-In this paper, an optimal control problem over 
a “hybrid Markov Chain” QMC) is studied. A MIC CM be 
thought of as a traditional MC with continuous time dynamics 
pertaining to each node; from a different perspective, it can 
be regarded as a class of hybrid system with random discrete 
switches induced by an embedded MC. As a consequence of 
this setting, the index to be maximized, which depends on 
the dynamics, is the expected value of a non deterministic 
cost function After obtaining a closed form for the objective 
function, we gradudly suggest how to device a computationally 
tractable algorithm to get to the optimal value. Furthermore, 
the complexity and rate of convergence of the algorithm is 
analyzed. Proofs and simulations of our results are provided; 
moreover, an applicative and motivating example is intro- 
duced. 

I. INTRODUCTION: MOTIVATIONS AND SETTING 

Hybrid systems have been studied extensively in the past 
decade [ 11. However, the field of stochastic hybrid systems 
(SHS) is rather young. There are multiple ways to introduce 
randomness into the traditional deterministic hybrid sys- 
tems’ framework [2]. A notable one is to insert randomness 
into the continuous dynamics, i.e. assume that the dynamics 
is governed by a stochastic differential equation rather than 
an ordinary differential equation [31. Another one is to 
make the discrete jumps random according to a Markov 
transition matrix while keeping the continuous dynamics 
detennipistic [4]; if the transition matrix is independent 
of the state of every domain, then it is like having an 
underlying MC, and this setting is similar to that of Markov- 
Jump Linear Sysrems. This paper investigates a special 
class of optimal control problems over a stochastic hybrid 
systems framework defined using this last approach. 

In real world applications, the discrete states may cor- 
respond to some good or bud modes and the continuous 
dynamics may either be forced or endeavor to jump between 
those states. A natural question to ask is how to make the 
continuous variable stay inside the good states as long as 
possible while leave the bad states as quick as possible, 
albeit paying a certain cost for this effort. Moreover, if we 
can apply some control with a certain cost to make the 
continuous state leave the bud states faster, what is the best 
control that we can exert to have the largest profit? 

The motivation for this work is twofold: first, the ac- 
knowledgment of the limits of the classical deterministic 
approach for optimal control on hybrid systems and the 
need to introduce some uncertainty [5 ] ,  [I]; then, work on 
classical MC with rewards [6] ,  [7]. Results in the domain of 
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optimal control for SHS are scarce due to the hardness of the 
problem: those that we are proposing are born from a rather 
simplified setting, and can be in some extent interpreted via 
the more classical MC framework [SI, [9]. Nevertheless, 
we are suggesting a new, in prospective extensible way to 
investigate these problems: in fact, we will highlight some 
results that could not be otherwise attained via the results 
for MC or through dynamic programming. We first give the 
mathematical model of the system and then analyze it. The 
basic problem setting is as follows. 

A hybrid system, i.e. a collection U = 
(Q, X, f ,  Init, D,  E, G, R), is given as follows: 

Q: { q l , q 2 ,  ...,qn} is a finite set of discrete states; 
X :  Continuous State with z E Rm; 
f : Q x X x U i Rm ; k = f(gi, 5, U) is the vector 
field related to node 4i and U is the set where the 
control inputs lie; 
Init = Q x X is the set of initial states; 
D : Q -+ P ( X ) :  a compact subset in R”, which 
includes the origin (the “domain”)’; 
E: a set of edges; 
G : E + P ( X ) :  the “guard”; after time T the 
continuous state starting from the origin jumps, unless 
the state has already hit the boundary of‘ the domain 
before this time; 
R : E + P ( X ) :  The reset map simply takes the con- 
tinuous state back to the origin of the ingoing domain. 
In our setting, the discrete jumps occur according to a 
Markov transition matrix IPij]; moreover, the embed- 
ded Markov Chain is supposed to be irreducible2 and 
positive recu~rent.~ 

Furthermore assume the following for this problem: 

Each node i has a reward coefficient pi associated with 
it and w.l.o.g., let p1 2 pz 2 . . . 2 pn > 0. 
T 1 T, where T = inf{t : ~ ( t )  E aD, ~ ( 0 )  = 0) for 2 
in each node and without any input. 
An input ui with some cost gi(ui) can be applied 
to s tEr  the state to, reach the boundary aD with 
time hi(ui); gi and hi are related to each-other by a 
monotonically decreasing function #, i.e. hi = #(si). 
Intuitively, this means that the higher cost we pay, the 
shorter time the state can reach the boundary. 

I T and ga(ui) = o i8.i = 0, o 5 gi(ui), o < 

’Here P(X) is the power set (the set of all the subsets) of X. 
~ A I I  the pairs of smtes communicate. 
3The return time to each node is finite. 
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Fig. 1. A simple pictorial example for a Hybrid MC. 

- 
hi(ui) = T iff ui = 04. 
The hybrid execution time is N T ,  where N > 0 is 
predefined a natural number. 
Within each discrete node, only a finite discrete num- 
ber k of different controls are available. 
The Hybrid MC is non blocking, and exhibits no Zeno 
behavior. 

Notice that a key point in the above setting is the spatial 
versus temporal guards. The higher weight to the spatial 
guard is needed to force the continuous state jump to 
another discrete domain if we wish to pay certain cost. The 
objective is then to maximize a discounted global expected 
reward E(R)5 where R is given by: 

where we assume there are 1 transitions occurring during the 
time N T  (for instance, if there is no input for the whole 
process, 1 = N ,  otherwise, 1 is a random n u d e r  and 1 > 
N) and ki E {l, 2, ..., n)‘. This objective function is quite 
general and could be specialized to obtain simpler problems, 
as we do for the applicative example at the end of the paper. 

The outline of this paper is as follows. In Section 2, 
an alternative expression for the expected reward is given 
which is much easier to deal with. In Section 3, the optimal 
choice of the control laws is discussed and a fast convergent 
algorithm is proposed to solve the optimal control problem. 
An example (Section 4) is then introduced. Future work and 
conclusions are discussed at the end. 

‘A simple example can help to understand these last 3 points: the system 
dynamics are f = k + U; k = constant > D, TI > 0, s.t. if U = 0, then 
T = T. This is clearly a very simple relation for a dynamical system, 
which helps in the problem’s formulation. The authors are worldng on 
more general extensions (see the Conclusions). 

SThe + term io front of the expression is just the normalization factor. 
6As for each jump, the node can be arbitrq, so we only know that 

ci E {1,2 )..., n}. 

11. AN EXPLICIT DETERMINISTIC OPTIMIZATION 
PROBLEM 

In the above expression for the expected total rewards, 
the optimal control problem cannot be solved in general as 
1 is random. We present now the following theorem which 
shows an altemative way of expressing the expected reward 
in a deterministic sense. We assume from now on that 
N >> n, i.e. , the hybrid trajectory’s jumps are much more 
than the number of nodes available. This implies that 1 >> n 
as 1 2 N .  Because of the fact that the MC is irreducible 
and positive recurrent, the steady state distribution of the 
embedded Markov Chain exists and is unique. Let this 
steady state distribution of the MC be x, i.e. x = xP. Then 
approximately lril transitions occur while the continuous 
state is in node i. As the control is a function of the state 
only, and due to the time-invariant quality of the MC, the 
choice of a control will be unique for each domain and 
independent of the time the dynamics might get there. 

Theorem 1: With the assumption that 1 >> n, we have 

where xi is the steady state distributkn of the discrete 
node i in the steady state and ha(ui) = hi(ui)/T. 

P m o ~  As the continuous state dwells at node i for xil 
times and each time, it stays there for a period of hi(ui). 
Summing up the time it stays in all the nodes, then 

n 

where hi(ui) = xi(ui)/T, hence 

Hence the objective 
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111. SELECTION OF OPTIMAL CONTROL LAWS 

A. Motivation: a Complexity Analysis 

The formula that we introduced for the expected general 
reward requires to check all the possible combinations of 
nodes and controls in order to get a global optimal reward. 
In other words, the computational burden accrues to U ( k n )  
assuming there are n nodes and within each node, there 
are k possible control laws to choose. The idea is now to 
try to exploit the structure of the expected reward function 
and pose some constraints on the entities in our problem in 
order to attain an improvement. We shall analyze first the 
simplified two-nodes case, and then try to extend it to the 
most general multinode case. 

B. Discussion of the Two Nodes Case 

To simplify the problem, we assume in this section that 

hi(.) = aexp( -g i (u ) )  + 1 -a, (Y E (O, l ) ,V i  

Then the total expected reward is given by 

For simplicity, define E(R(u))  = .(U). It is clear that 
in this case, within node 1 no control should be applied 
as node 1 has a higher reward than node 2. Therefore the 
problem is whether to apply control in the second node. 

Theorem 2: In the two nodes case it is analytically 
possible to distinguish between the possibility that the 
optimal control for each node is zero or different from zero. 
Moreover , in this second case, it can almost always be 
computed through a bisection algorithm. 

Pruof Let us start defining the folIowing quantities: 
CO 

and c3 = 1 + q'-. Then we shall prove that if 
bl = ea + ~ C I C Z / C ~  + 4 / 2  - Iog(c3/2cz) 2 0, then there 
is no control that should be applied to maximize the total 
expected reward. If 62 5 0 where bz = + c1 + CZ, there 
is only,one Iocal maximum of the E(R)  as a function of 
92 and the bisection method can be applied to find the 
maximum value'. Otherwise if bl < 0 < bZ, there are two 
local maximums of E(R)  and the optimal control is the one 
which maximizes E(R).  

= (@7r l (P2  - p1) + ria + 2an2 - 211.2n2)/(ax1), 

c1 = (.rr24/Tl, cz = (m(1 - 0) + m(1 - "2))/(""1) 

Recall that in the two nodes case, 

T P I  + m(ae-ga + 1 - ~ ) ( P z  - 92) 
.(U) = + .irz(ae-92 + 1 - a )  

We want to show that if 61 2 0, then there's no local 
maximum of .(U) at g 2  E (O,m), i.e. e = 0 has 

'This idea wi l l  reduce the complexity of rhe search for an optimum to 
a logatichmic factor. 

no solution when gZ E ( 0 , ~ ) .  A lengthy but simple 
calculation shows that 

Let $(gz) = CO + c1 exp(-gz) + c2 exp(g2). k t  us now 
compute the point g; where the derivative of $(gz) at g; 
is 1, i.e. parallel to the Line f(g2) = g2, 

+'(gz) = -cl exd-gz) + cz ex&) = 1 
* exp(gZ) = c3/2cZ 

i.e. g; = log(c3/2cz) and $(g;)  = CO i Z C ~ C ~ / C ~  + c3/2. 
Hence the tangent line to $(g2) at g; has the following 
expression f(g2) = g2 + 61 where 61 = q, + 2clc2/c3 + 
c3/2 - log(c3/2c2). The theorem follows immediately after 
we explore the geometric meaning of the above compu- 
tations. If 61 2 0, then we have that the tangent space 
having slope 1 is higher than the line f ( g 2 )  = g2, hence 
%d = 0 has no solution (Figure 2 bottom). It is easy to 
show that 4(0) = 6 2  > b l ,  hence if bz 5 0, there is only 
one solution (Figure 2 top) and in this case, there is only one 
local maximum of the function E(R)  and then we can use 
the bisection methods to efficiently compute the maximum 
value of E(R)  among all the k possible inputs. Otherwise, 
if b l  < 0 < b2, there are two solutions and hence there 
are two local maximum values and the best we can do is 
to check all the k possible inputs and choose the one that 
maximizes E(R).  This case is nevertheless rather rare, as it 
can also be visually understood from the figures. In general, 
as an heuristic, we can state chat the control can be found 
through the bisection algorithm. 

&la 

QED 

We discuss two simple examples to illustrate the theorem. 
Example I: Suppose we have two discrete nodes 1 and 

2. Using the previous notations, let p1 = 1 0 , ~ ~  = 1 be 
the associated rewards of the two nodes and PI, = 0.9, 
P I ,  = 0.1, PZI = 0.1, PZZ = 0.9 are the transition 
probabilities when discrete jumps occur. It is not hard to 
show that in this case n1 = 7r2 = 0.5. Within each node, 
we have 10 possible control laws (plus no control action) 
available which make gi to be one of the 10 possible values 
{1,1.5,2,2.5,3,3.5,4,4.5,5,5.5} and the corresponding 
hi takes value according to hi = 0.7exp(-gi) + 0.3. 
Intuitively, node 2 has a much lower reward than node 1 
and when there i s  a discrete jump, the probability to jump 
to node 1 is halved, therefore some control is needed. It 
can be shown that bl = -6.6473 < b2 = -6.1429 < 0 
hence according to the above theorem, we should apply the 
control (See Figure 3 top). 

Example 2: In this second example, we use the same 
setting as the exampIe above, but let pz  = 8. It turns out 
that in this case bz = 0.8571 > bl = 0.3527 > 0, hence 
the best control strategy is to apply no control which is 
intuitively true (See Figure 3 bottom). 
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Fig. 2. Geometric Meaniag of b in Example 3.1 and 3.2 

Extension: Since the definition of the setting we have 
assumed to have only a finite number of possible inputs 
within each domain. After this discussion it should be 
instead clear how the results we reached can be easily 
extended to the case where every domain has a limited 
but continuous, and as such infinite in cardinality, interval 
of controls. The proposed methods are able to single out 
the optimal control in a computationally feasible way. This 
is an improvement to the classica1 dynamic programming 
methods for MC with rewards, which hypothesize a limited 
number of possible choices per node. 

C. Discussion of the Multi-nodes Case 

If we have more t!xin 2 discrete nodes, it becomes much 
harder to select the best control for each node among the 
k possible inputs. The reason lies in the fact that when we 
compute the partial derivatives of &(U) with respect to gi, 
the result involves other gj's; therefore if we want to find 
the best gi, we have to know the other gj ' s  first, which 
are unavailable. This global correlation makes things rather 
hard. We shall now introduce an algorithm which converges 
in general in a few rounds of iterations. 

Algorithm I :  Take the provisory optimum a"(0) = 
[ u I ( O ) , U ~ ( O ) ,  . . . , un(0)] ,  and randomly select each com- 
ponent. 

Fig. 3. &(U) versus g(u) for p z  = I and pz = 8 respectively 

While(convergence criterion is not satisfied) { 
For i = 1 : n { 
1. vary only u*(i) and choose the control U* of node i 
which maximizes E(R); 

End(for) } 
End(whi1e) 

2. u*(i) = ui; } 

This algorithm reduces the time complexity to U(n) 
rather than U(kn) .  This is because each cycle consists of n 
steps and each step in the worse case checks the k possible 
inputs available. Normally a few cycles are needed for 
the total expected value to converge. We have performed 
some simulations in the MATLAB environment for the 
multinodes case. The outcomes demonstrate the efficiency 
of the algorithm. We have used six nodes as the example of 
the multinodes case and each node has ten possible control 
inputs available including applying no controls. 

As can be seen i n  the tables, p and ?F are respectively 
the reward coefficients and steady state distribution of the 
nodes. The global optimum U* is obtained via calculating all 
the possible combinations of the different inputs of the six 
nodes; the total CPU time for this brute-force calculation is 
around 64 seconds. For the proposed algorithmic solution, 
u*(O) is the provisory optimal control law that we set 
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=-(a) 
“l(1) 
u ’ ( 2 )  
u’ (3 )  

initially with random choices. After one cycle, consisting of 
4 steps, U* has been updated to u’(1) and this is repeated 
for 3 cycles , i.e. until u’(3) is obtained. To make the 
notation clearer, we define the different possible controls 
with increasing numbers, from 1 to 10, i.e. we index 
the set {0,0.5,1,. ,4,4.5}, similarly as in the previous 
examples. In this case the CPU time used to complete the 
5 cycles is around 0.025 second which is about 2500 times 
faster, 

a) Observations on the Rate of Convergence: Proving 
that the rate of convergence is polynomial in time is in 
general a difficult task[lO]. Nevertheless, if we let e ( k )  = 
E(R)* - E(R)k where E(R)* stands for the true optimal 
total expected reward and E(R)I, stands for the calculated 
total expected reward at the kth cycle, and if there exists 
p E R such that 0 < p < 1 and < P V k ,  then we 
are sure that the rate of convergence is linear in time. This 
is simply because the error goes to zero exponentially fast. 
However, in our case it is also possible, although very rare, 
that the algorithm may cause the total expected reward to 
converge to a value which is not the true optimal value, but 
rather to a local maximum: this is an unavoidable drawback 
of “coordinate ascent” algorithms like this one. Despite all 
these drawbacks, this algorithm i s  much more efficient than 
checking all the possible combinations of the control laws. 
As n grows large, this becomes an unbeatable advantage 
compared to the exponential time complexity. 

b) Comparison with other results in Literature: It can 
be demonstrated that similar results can be attained through 
some theorems from MC with rewards, or in general from 
dynamic programming [8][ 1 13. We claim two improvements 
about our results: first, a computationally easier way to 
achieve them, as shown in the proposed Algorithm, as well 
as in the 2-nodes heuristic and the starting point choice. 
Moreover, as already discussed in the previous section, we 
claim that these results are still valid if we have an input 
that can continuously vary within an interval; this case 
cannot be covered by the more classic results that can be 
found in Literature. Also, just as a hint to future work, 
the mentioned extension to the finite-time case promises to 

1 5 4 2 5 3 
1 I 6 7 8 8 
1 5 6 7 a 8 
1 5 6 7 8 8 

bring an improvement, for this special case, to the known 
dynamic programming approach. 

Iv. APPLICATION: PRODUCTIVITY ALLOCATION IN 
HIGH-TECH MARKETS 

A. Key Concepts for Productivity Allocation 

In this paragraph, we shall apply the previously developed 
concepts to define a productivity strategy for a company. 

Assume we are dealing with a highly dynamic market. 
A start-up is a company willing to penetrate the market 
with a new, ground-breaking and “disruptive” technology, 
coming mostly from the application of research efforts into 
new product concepts. Typically, the company is about to 
address a pristine market, which is therefore quite critical, 
unstable and uncertain. Therefore, after probing the value 
of its new product, it usually segments the market, offering 
different types of it, where the difference in price depends 
on heterogeneous qualities; this is done to possibly address 
different customer needs. Before entering the market, a lot 
of research i s  done to assess the customer’s demands. Usu- 
ally the company has a limited production capability, being 
small and trying to limit the costs of product development 
before getting any revenue. Say that the company is able 
to produce three products, pl,p2,p3. which cost c1,czic3 
and will be sold at price rlrr2,r3. The factory is able to 
manufacture and convey to the sellers exclusively one of 
the three goods at a time; moreover, it is possible to choose 
to deploy more workforce and speed up the manufacture 
machinery (let’s dub this non negative index U, and say 
that it is proportional to the exerted effort) to hasten the 
production cycle, but this comes at a cost: let us say that, 
being the default manufacture time T, it is possible to 

achieve a production time hi(w),d 5 hi(w) 2 T at a cost 
gr(w), Q 5 gi(w). The final information that the company 
can rely on is the demands of the products: analysts have 
surveyed that the customer orders will overcome the pro- 
duction capability and are assessed to be 01~02~03 (in other 
words, there will be no delay between the production of two 
consecutive orders). In other words, anytime the company is 
expected to receive an order of product pi with probability 
equal to oi/ oj and, once accepted it, it is committed 
to honor it (look at Figure 4 for reference). We want to 
maximize the revenues over a finite time horizon NT (we 
look ahead just for a finite time, or we have information 
on the market demand limited to that period of time which 
should then be refreshed), and choose a clever production 
policy that would maximize a returns-related objective. 
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Fig. 4. 
market structure. 

Simple pictorial representation of the Hybrid Model used for the 

B. The Hybrid System Model 
From the problem description, it should appear clear how 

the market can be modelled: we define a three-nodes hybrid 
Markov chain, where each node represents the company 
producing one of the three items; from any of the three 
nodes, the probabilities to jump to any other are given by 
oi . Every node has a reward given by the difference between 
the price of the product and the cost to produce it: being 
the cost dependent on how much effort w we put on it 
the reward turns out to be &(w) = ri - gi(w),  and the 
time spent is hi(w). The time horizon is simply NT, In 
this new setting the reward will not be proportional to the 
time, but clearly the optimal choice will heavily depend on 
the cumulative time spent inside the nodes. Furthermore, 
in this framework we see that the system starts already in 
steady state, i.e. the transition probabilities from a node are 
equivalent to the steady state probabilities of the chain itself, 
We will spend the next section to tailor the formulas to the 
new case. 

C. The New Problem 
Under this new setting, the previous theory is modified 

as follows: the objective is to maximize the total expected 
reward E ( R )  over a time horizon NT, where 

here, as before, 1 is the random number of jumps that 
occur during time NT. 

As previously worked out in the proof of Theorem 1, we 
have that IVT = NE:=’=, xihi(wi); plugging back into the 
expected reward, we express the problem as a maximization 
of the fotlowing index: 

As before, we have a situation where there is coupling 
between all the terms referring to the nodes of the graph, 
even if the formulas look quite simpler than before. 

The computation of the optimal policy can be done our 
proposed algorithm suggested in the previous section with 
fast convergence rate. 

V. CONCLUSIONS 
In this paper, a class of optimal control problems have 

been studied by extending the concept of hybrid Markov 
Chain. An analysis with respect to the underlying MC is 
given and one algorithm is proposed to choose the optimal 
control law. MATLAB simulations confirm the validity of 
the criterion, and an example its viability to model real life 
problems. We have underlined how our setting, even though 
still quite simplified in the continuous-time dynamics, can 
achieve novel results. Moreover, we think that possible 
extensions of it could help solve more general optimization 
problems for Stochastic Hybrid Systems. 

Future work will be focusing mostly on the follow- 
ing problems: as stated, introduction of more general, 
continuous-time dynamics and of more generic reset maps; 
finite-time analysis; definition of the node’s reward with 
respect to the system’s equilibria and search of a relation 
between the chosen policylcontrol and some stability behav- 
ior [ 121; investigation of  further applications, most likely in 
Biological Systems. 
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