Proceedings of the 2001 IEEE O

International Conference on Robotics & Automation

Seoul, Korea * May 21-26, 2001

Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles

René Vidal Shahid Rashid Cory Sharp

Omid Shakernia

Jin Kim Shankar Sastry

Department of EECS, University of California Berkeley, Berkeley CA 94720

{rvidal ,rashid, cssharp,omids, jin, sastry}@eecs .berkeley.edu

Abstract

This paper presents the implementation of a hierarchi-
cal architecture for the coordination and control of a
heterogeneous team of autonomous agents. We con-
sider the problem of having a team of agents pursue
a second team of evaders while building a map of the
environment. The control architecture emphasizes the
autonomy of each agent yet allows for coordinated ef-
forts among them. We address the technical challenges
and implementation issues of multi-agent operation.
Finally we present experimental results of a pursuit-
evasion game scenario between unmanned ground and
aerial vehicles.

1 Introduction

The BErkeley AeRobot (BEAR) project [3] is a re-
search effort at the University of California, Berkeley
that encompasses the disciplines of control, hybrid sys-
tems theory, computer vision, sensor fusion, commu-
nication, game theory and multi-agent coordination.

This paper highlights the efforts of the BEAR
project in multi-agent research from an implementa-
tion perspective. We consider a group of agents acting
as pursuers attempting to capture a group of evaders
within a bounded but unknown environment (see Fig-
ure 1). The classical approach to these pursuit-evasion
games is to first build a map of the terrain and then
play the game in a known environment. Several tech-
niques have been proposed for map building: In [15]
an algorithm is proposed for maximum likelihood esti-
mation of the map of a region based on noisy measure-
ments obtained by a mobile robot. However, system-
atic map building is time consuming and computation-
ally expensive, even in the case of simple two dimen-
sional rectilinear environments [4]. On the other hand,
most of the literature in pursuit-evasion games, see e.g.
[9], assumes worst case motion for the evaders and an
accurate map of the environment. In practice, this re-
sults in overly conservative pursuit policies if applied
to inaccurate maps built from noisy measurements.

0-7803-6475-9/01/$10.00 © 2001 IEEE

 UAV Pursuer

Figure 1: UAV-UGV Pursuit Evasion Game

Recently, the pursuit-evasion game and map build-
ing problems have been combined in a probabilistic
framework [5], which avoids the conservativeness in-
herent to the classical worst-case approaches and takes
into account inaccuracies in sensor information. The
basic setup considers multiple pursuers trying to cap-
ture a single evader undergoing random motion. In [5]
it is shown that, under certain assumptions, there ex-
ists a “persistent” pursuit policy that guarantees that
the evader can be captured in finite time with proba-
bility one. In [11, 12] the basic scenario is extended to
consider supervisory agents, such as a helicopter, that
can estimate the position of the evader but not capture
it. The approach has also been extended to multiple
evaders, under the assumption that each one can be
identified separately. The case where the evaders ac-
tively avoid the pursuers has been investigated in [6].

We present the implementation of a pursuit-evasion
game between ground and aerial robots following the
approaches in [5, 11, 12]. Section 2 describes the sce-
nario and Section 3 describes a hierarchical architec-
ture for multi-agent coordination and control adapted
from [7, 8, 10, 16]. Section 4 describes the implemen-
tation of the architecture, Section 5 presents the ex-
perimental results and Section 6 concludes the paper.

2948

2 Pursuit-Evasion Scenario

This section describes the pursuit-evasion scenario
considered in this paper. We first outline the theoretic
foundations for the problem, including map building
and pursuit policies (See [5, 11, 12] for details) and
then propose a visual-based algorithm for estimating
the position of obstacles and evaders.

2.1 Rules of the Game

Consider a scenario in which the environment is a
two dimensional grid X with n. square cells. x, C X
(xe C X&) is the set of cells occupied by the n, pursuers
(n. evaders) and w the set of obstacle locations. The
motion of all the agents is constrained to either remain
in the current cell or move to a cell in A(x), the set
of (up to eight) cells adjacent to x. Aerial pursuers
can move to any cell in A(z) (they can fly over obsta-
cles an evaders), but ground pursuers and evaders are
restricted to move to empty cells.

Each pursuer collects information about X at dis-
crete time instants ¢t € 7 2 {1,2,...}. Each measure-
ment y(t),t € T is a triple {v(t),e(t),o(t)}, where
v(t) C X denotes the measured positions of the pur-
suers and e(t) C X (o(t) C X) is a set of cells where
each evader (obstacle) was detected. Sensor informa-
tion is assumed to be perfect for the cells in which
pursuers are located, but not for the adjacent cells. A
simple sensor model based on the probability of false
positives p € [0,1] and false negatives ¢ € [0,1] of an
agent detecting an evader in adjacent locations is con-
sidered. Also, we assume that pursuers have perfect
knowledge of their own locations, that is v(t) = x,(t).

Since pursuers are able to identify each evader, they
keep one map for each evader and one map for the
obstacles. It is possible to have one pursuer collect all
the measurements, build the maps and broadcast them
to the rest of the team, or each pursuer build its own
map and share its measurements. If the communica-
tion network is perfect (no packet loss, no transmission
time or delay), all the pursuers have identical maps.
Otherwise, each pursuer will update its maps with the
information available to it.

Whenever an evader is captured, which happens
when a ground pursuer and an evader occupy the same
cell, the captured evader is removed from the game and
its map is no longer updated. Aerial pursuers are not
allowed to capture an evader.

2.2 Updating Evader and Obstacle Maps

Since each evader is identified separately, we can
assume n, = 1. Let pe(z,7|Y;) be the (conditional)
posterior probability of the evader being in cell = at
time 7, given the measurements Y, Y; taken up

2949

to time ¢. Similarly, let p,(z|Y;) be the (conditional)
probability of having an obstacle in cell z given the
measurements Y;. At time ¢ we have an estimate of the
evader map, p.(z,t|Y;—1) and an estimate of obstacle
map po(x|Y;—1). We obtain a new measurement y(t)
and wish to estimate p,(z,Y;) and pe(z,t + 1|Y;). We
do this in three steps: First we compute p.(z,t|Y;) as:

{

where « is a normalizing constant chosen so that
Yosex Pe(®,1,Yy) = 1; kg is the number of pursuers
that reported in e(t) seeing the evader at cells other
than x that are adjacent to their one (false positives);
ks is the number of pursuers that reported in e(t) not
seeing the evader at cells other than x that are adja-
cent to their one (true negatives); ks is the number of
pursuers that reported in e(¢) not seeing the evader at
the cell adjacent to their one (false negatives); and
k4 is the number of pursuers that reported in e(t) see-
ing the evader at the cell x adjacent to their one (true
positives). E;.l:l k; must be equal to the number of
cells adjacent to any of the pursuers positions in v(t).
Second, we compute p,(z|Y:) as:

0 zeo(t)Uv(t)\e(t) or Iz#z:Zev(t)Ne(t)

ape(w,t|Y;—1)p* (1—p)F2q*s (1—q)*+ otherwise

(1—g)po(z|Yi—_1)
(I—q)po (2[Yi—1)+p(1—po (=Y 1)
apo(z|Yi—1
qpo(2]Ye—1)+(1—p)(1—po(z|Yi—1))

1
0
po($|Y;{,1)

7T € A(xp(t)
z € A(xp(t)
T € Xp(t)
T € Xp(t)
otherwise

o(t)
(t)
(2)

n
\o
(t)

(t)

)
)
No
\o

Finally, in order to compute pe(x,t + 1|Y;) pursuers
assume a Markov model for the motion of the enemy
which is determined by the probability p € [0,1/8] that
the evader moves to an empty adjacent cell. Therefore,
the evader map is updated as:

(1 = |A(2)|p)pe (x, t[Y1)+

ppo(z, Y1) Y pe(Z,t|Y7).
z€eA(z)

Pe(z,t +1|Y;) =
3)

2.3 Pursuit Policies

Given the current estimate of the location of obsta-
cles and evaders, the pursuers need to choose where
to move. A natural objective would be to minimize
the expected value of the time of capture. However,
such an objective is a complicated function of the pur-
suit policy, which makes the optimization not suitable
for real-time applications. Therefore, we consider the
following suboptimal policies:

Greedy Policy: here each pursuer moves to the ad-
jacent cell with the highest probability of containing

an evader over all the evader maps, that is

Xp(t+1) = argmax Cmax pe)(z, t+1]Y;) (4)
mE{.A(xp(t))uxp(t)}1={l...ne}

where p,(;)(z,t + 1|Y;) represents the probability of
evader ¢ being in cell x at time ¢ + 1 given the mea-
surements Y;. Notice that this policy is advantageous
in scalability, since it assigns more importance to local
measurements by searching only in {A(x,(t))Ux,(t))}
regardless of the size of the environment X

Global Maximum Policy: one disadvantage of the
greedy policy is that the location of the evader does not
have an immediate effect on selecting x, (¢ + 1) when
X (t) is far from x,(¢). The global maximum policy
intends to improve this by searching the entire envi-
ronment. Each pursuer sets a trajectory traj towards
the global location in X with the highest discounted
probability of containing an evader over all the evader
maps, that is

De(i) ('Z'a t+1, Y:‘,))
d(x, zp(t))

where the discount factor d is the distance between x
and x,(t). One of the disadvantages of this policy is
that multiple pursuers may try to move to the same
cell. Simulation results [11, 12] show that this can
be solved with an appropriate combination of the two
policies.

()

Xp(t+1) = traj (argér(l‘{a,:){i_?llaxfL ;
T =1l...ne

2.4 Visual based estimation of the position of
obstacles and evaders

To build a probabilistic map of obstacles and
evaders, each agent needs to detect their location in
the 3D world. Here, we assume that ground and aerial
pursuers (UGV and UAV, respectively) know their ori-
entation and are equipped with a camera to sense the
environment. Then, the 3D location of obstacles and
evaders is estimated by triangulation, given their ob-
served positions in the image plane, the orientation of
the camera and the orientation of the observer.

Figure 2 shows the coordinate frames and Euclidean
motions involved in the calculation of the 3D posi-
tion of obstacles and evaders. The coordinate frames
are labeled as: (a) Inertial frame, (b) UAV frame, (c)
Camera base, (d) Camera head, and (e) UGV frame.

Let gij £ (Rij,pij) € SE(3) represent the relative
orientation (rotation and translation) of frame i with
respect to frame j. Let @ € so(3) be the skew sym-
metric matrix associated with axis w € R®. Also let
(e1, €2, e3) be the usual basis for R?. If the observer is
a UAV, then gq, = (exp(€3¢) exp(éx0) exp(€16), pas),
where (1,0,$) are the estimates of the yaw, pitch

2950

/g°\" X
g
X - bc Y
Zd, Camera 7
Head
¢, Camera 7
Base :
b, UAV gba
e, UGV
Y -
‘] , .. a, Inertial
z g

ae

z

Figure 2: Coordinate frames for visual based estima-
tion of the positions of obstacles and evaders

and roll angles of the helicopter and pg; € R?
is the estimate of its position. gpe = (Rpe,Pbe)
is a predefined (known) transformation and g.q =
(exp(é2c0) exp(€18),0), where (a, 3) are the estimates
of the pan and tilt angles of the camera. Then, the ori-
entation of the camera head with respect to the fixed
inertial frame is then given by:

(Radapad) = (RabRbcRcda Rabpbc + pab)- (6)

Let f be the estimate of the zoom factor of the camera,
(w, h) be the (known) width and height of an image in
pixels and (fovg, fovy) be the (known) fields of view
of the camera for f = 1. Then the camera calibration
matrix is given by:

Qtan()}z}vz/m th w/2
4= 0 tan(fovy /2) h/2 : (7)
0 1

Let x be the estimate of the position of an obstacle
(evader) in the image plane. Then its 3D position is
obtained as:

_ (20 — €5Pad)
e3TRadA—1x

where zp is the (fixed) z-coordinate of the evader on
the ground, assuming a flat terrain.

If obstacles (evaders) are being observed by a ground
agent, equation 8 can still be applied with minor
changes. Replace frame (b) by frame (e), the UGV
frame. Then R, = exp(2v), where v is the estimate
of the heading of the UGV, p,. is the estimate of the
position of the observer and g, is also a predefined
(fixed) transformation.

RogA™'X 4 paa (8)

3 System Architecture

The efforts and design of the BEAR project are
based on a hierarchical architecture of control [7],
which segments the control of each agent into a number
of different layers of abstraction as shown in Figure 3.
The layers of abstraction allow for the same high-level
intelligent control strategies to be applicable to both
UAVs and UGVs. By abstracting away the details of
sensing and control of each agent, we gain the inter-
operability of a unified framework for high level intel-
ligent pursuit policies across all platforms. We first
give an overview of the high levels of abstraction for
the control architecture, then dive into the details of
implementation for each agent.

3.1 Strategic Planner & Map building

The strategic planner handles the selection and con-
trol of tasks at the highest level. It maintains a state-
space of the system useful for mission planning and
then tasks the robots according to mission objectives.
It is at the strategic planner level that inter-agent com-
munication takes place. In order to effectively and effi-
ciently incorporate information from other agents, yet
maintain the autonomy of each individual agent, the
strategic planner must be carefully designed. State in-
formation maintained by the strategic planner is used
by the tactical planner for motion control of the agent.
Each agent will make observations of the environment
using sensors and through communication with other
agents, and then decide a course of action (to map the
environment or attempt to capture an evader, depend-
ing on the scenario). For this paper the details of the
map builder and strategic planner have already been
described in Sections 2.2 and 2.3 on pursuit-evasion
games.

The trajectory planner is responsible for the design
of a realizable trajectory for each agent, based on a
detailed dynamic model of the vehicle and the set of
way-points given by the tactical planner. It is at this
level safety routines, such as obstacle avoidance, also
reside. The trajectory planner provides a set of way-
points to the regulation layer. The regulation layer
uses classical control techniques (fuzzy control on the
UGVs [1] and multivariable control on the UAVs [14])
to guide the agent to the desired way-point and send
the tracking error back to the trajectory planner in
case rescheduling is necessary. The specific details of
regulation layer for the UGV and UAV agents will be
described in Section 4.

3.2 Communication Architecture

While the autonomy of each agent is central to our
design, some coordination within a group of agents

2951

: pomiben of rendars

| « poeion of cbsecies
Strutezy Flanmer | - postors of pemsrs | Map Builder
W
.'-'___I__— —_I_I l

Conmumications Metwork -"

=
e o e o e O

ey
FIRE |l|n|.l|.|

il 'hlle- T 5'“““'5
n..:ﬂ B —
3 e e e ied
—— Tactical Flanner | | =" ybicle-leved
. T
ne | & Regalalion — sican i [iis o
- ST

l"'_@ A : e
- DM |r EwBadEiE

dore b

[REN
1-mmh-:: 1

| Exngenius

".E_TIM-\.' .

Figure 3: System Architecture

greatly enhances performance and thus communica-
tion between agents is necessary. The original theo-
retical work in the BEAR group assumed that each
agent was fully aware of the state, position, and ob-
servations of every other agent. In effect a perfect,
infinite-bandwidth, delay-free communication channel
was modeled.

For a real implementation this is not realizable, so
a simple scheme was developed for the remote agents
to communicate with each other over wireless Ether-
net. Information exchange between agents is purpose-
fully made minimal and the algorithms employed by
the agents are robust to the presence or absence of in-
formation from other agents. This ensures that each
agent will still be able to operate autonomously and
makes the system, as a whole, robust to communica-
tion loss or loss of an agent.

4 Implementation on UAV / UGV

This section describes the tactical planner, regula-
tion layer, as well as the hardware and software sys-
tems for the BEAR project’s fleet of UAVs and UGVs.

4.1 Common Hardware/Software

The BEAR project’s UAVs and UGVs share many
components for sensing and communication. Each
agent has two on-board computers: the tactical plan-
ner is implemented on one computer while the trajec-
tory generator and regulation layers are implemented

on the other. The commonality among all the UAVs
and UGVs lies in the strategic layer and the following
components:

e Ayllu multi-agent communication/control system
WaveLAN wireless Ethernet

NovAtel MillenRT2 GPS

LittleBoard Pentium 233MHz running Linux
Color tracking vision system

Ayllu: Ayllu is a tool for development of distributed
control systems for groups of intelligent mobile robots.
An Ayllu system consists of a group of behaviors which
run in parallel and a set of connections through which
messages are passed between behaviors. The behaviors
may all be instantiated on one host computer, or may
be spread across the network. Thus a single computer
might control a number of robots, or a group of robots
could be controlled in a fully distributed manner. Each
behavior has a set of output ports which are connected
at run-time to input ports of either local or remote
behaviors [1].

Communication: Each robot has a Lucent Wave-
LAN wireless Ethernet card operating at 11Mbs. The
wireless LAN is setup such that agents share informa-
tion using either TCP/IP sockets or Ayllu. A limi-
tation of the wireless LAN is that communication be-
tween two agents is lost if they are more than 100m
apart. We are currently working with SRI to inte-
grate a mobile routing scheme that allows agents to
automatically detect when connectivity with another
agent is lost [2]. In such a situation, packets are routed
through a third agent inside the radius of operation of
the network cards if such an agent exists.

GPS: Each agent is able to keep track of its posi-
tion and orientation based on internal sensors: dead-
reckoning from wheel motion for the UGVs and in-
ertial navigation system (INS) for the UAVs. Due
to drift, the accuracy of internal measurements of
both the dead-reckoning and INS systems deteriorates
rapidly over time. Therefore, we incorporated a No-
vAtel GPS MillenRT-2, which gives a 2cm accuracy
for the position of the agents with respect to a global
coordinate frame. We developed software for a sim-
ple sensor fusion strategy to continuously correct the
dead-reckoning and INS sensors with the GPS mea-
surements. The whole system operates at 10Hz.

Vision System: Each agent is equipped with a Lit-
tleBoard Pentium 233MHz vision computer running
the Linux OS. The vision computer controls a Sony
EVI-D30 pan/tilt/zoom (PTZ) color camera and an
Imagenation PXC200 frame-grabber which acquires

Figure 4: UGV based on Pioneer 2-AT Ground Robot

video at 30Hz. We developed software for controlling
and sensing the state of PTZ camera at 30Hz (See [13]
for details). We use the ActivMedia Color Tracking
System (ACTS) [1] which, in combination with the
color camera and the frame grabber, allows our appli-
cations actively track up to 320 colored objects at 30
frames per second. For our pursuit-evasion scenario,
we use the vision system to identify and locate obsta-
cles and evaders based on their colors.

4.2 TUnmanned Ground Vehicles

Here we describe the hardware/software compo-
nents specific to our unmanned ground vehicles. Our
UGV fleet consists of two ActivMedia Pioneer 2-AT [1]
all terrain ground robots (see Figure 4), which in ad-
dition to the common hardware described above, are
endowed with a 20MHz Siemens 88C1 microproces-
sor running P20S (Pioneer 2 Operating System). The
micro-controller implements the regulation layer which
is responsible for low level control of the robot. It man-
ages the motors, position encoders and user accessories
such as sonars, compasses, grippers, etc.

The tactical planner and trajectory planner are im-
plemented by the vision computer with either the
Ayllu or Saphira software (see below). The vision com-
puter (client) communicates with the micro-controller
(server) through a serial connection. The vision com-
puter receives the current state of the robot (posi-
tion, heading, translational velocity, rotational veloc-
ity, sonar readings, etc.) and sends motion commands
(move forward, rotate, etc.).

Ayllu: Ayllu has a standard set of predefined behav-
iors for the low level control and sensor interpretation
of the Pioneer robots. These behaviors propagate in-
formation such as sonar ranges, dead-reckoning infor-
mation, compass readings, etc., and accept messages
for direct motion control [1].

2952

Saphira: Saphira is an open architecture for behav-
ior based mobile robot control developed by SRI Inter-
national and ActivMedia [1]. It consists of a set of rou-
tines for communicating with and controlling a robot
from a host computer. Saphira provides a facility for
implementing behaviors as sets of fuzzy control rules.
Behaviors have priority, activity-level and other state
variables that mediate their interaction with other be-
haviors. For example, a routine can check whether a
behavior has achieved its goal, and two behaviors can
control the same actuator with the control actions be-
ing combined according to fuzzy rules.

4.3 TUnmanned Aerial Vehicles

Here we describe the hardware/software compo-
nents specific to our unmanned aerial vehicles. Our
UAV testbed is a Yamaha R-50 helicopter (see Fig-
ure 5), which in addition to the hardware/software
common to the UGVs, is endowed with a Boeign DQI-
NP inertial navigation system (INS), ultrasonic height
sensors and a Pentium 233MHz navigation computer
running QNX real-time OS. The navigation computer
is responsible for sensor management, wireless com-
munication and low-level flight control. The trajectory
planner and regulation layer are implemented by the
navigation computer using classical control techniques
based on p-synthesis as described in [14].

The vision and navigation computers communicate
with each other over a 115200bps RS232 serial link.
Currently the communication link is only used for the
vision system to gather state information from the nav-
igation system. In the near future, we will implement
the already existing QNX version of the tactical plan-
ner on the vision computer, which will send way-point
commands for the trajectory planner and regulation
layers of the navigation computer to follow.

Figure 5: UAV based on Yamaha R-50 Helicopter

2953

5 Experimental Results

As a first stage towards implementing the full
pursuit-evasion scenario, we divided the problem in
two stages, each one consisting of a simplified version
of the scenario.

In the first stage, we implemented the algorithm for
building a probabilistic map of obstacles on two UGVs.
Here the location of the obstacles is not estimated, but
artificially generated by a ground station.

In the second stage, we implemented the pursuit-
evasion scenario on one UAV and 2 UGVs. In this
case the location of the evader is estimated by both
the ground and aerial pursuers. However, none of them
builds a map of the evader. The ground pursuer goes
directly to the estimated position of the evader.

5.1 Map Building

In this scenario there is a ground station that stores
a real map of the terrain. The ground station estab-
lishes a communication link with each robot, receives
their current positions and sends the positions of ob-
stacles located in cells adjacent to each robot’s loca-
tion. This process is meant to simulate each robot’s
sensing its surrounding environment. Then each robot
communicates with the other to exchange its (artifi-
cial) measurements for the purpose of coordinated map
building. Afterwards, both agents update their prob-
abilistic maps of the environment based on the sensor
readings, according to equation (2). Given their maps,
the robots move using a greedy strategy designed to
minimize the entropy of the obstacle map (as opposed
to maximizing the probability of catching an evader).

We implemented the scenario on two Pioneer robots
which run Saphira for motion control. Each robot
runs a Saphira micro-task to estimate its “continu-
ous” position from GPS and dead-reckoning measure-
ments. That position is quantized to coordinates in
the map grid with a cell of size 2 x 2m. Each agent
runs a Saphira behavior to go the desired position on
the map. In parallel, each agent runs a Saphira ob-
stacle avoidance behavior based on sonar information.
However, sonar information is not included in the map
building process.

Map building experiments were run outdoors at the
University of California-Berkeley Richmond Field Sta-
tion. The map building system performed well in the
field tests on the Pioneers. The agents were able to
share their readings on the environment and build an
accurate map of obstacle locations. The map building
strategy is robust to modifications in movement due to
lower-level hierarchical segments (i.e. obstacle avoid-
ance, improper regulation). The movement strategies,
however, are not as robust. Agents have a tendency to

be unable to move around obstacles for a number of
iterations. Additionally, the agents tend to focus more
on a local than a global search.

5.2 Pursuit-Evasion Game

We implemented a simplified version of the pursuit-
evasion scenario for one UAV pursuer, one UGV pur-
suer and one UGV evader. In this setup, no agent
builds a map of obstacles or evaders, nor moves ac-
cording to the policies described in Section 2. Instead,
the aerial agent estimates the position of the evader
then commands the UGV pursuer to move directly to
that location. The details of our experiment follow.

Although the aerial pursuer has the capability of
pursuing a moving ground evader, the existing tactical
planner on the navigation computer of the UAV has
not been integrated with the vision computer. Cur-
rently, the vision computer is not able to send com-
mands to the navigation computer, so for our initial
experiment the evader remains stationary.

For identification purposes, the evader is painted
with a known, unique, identifiable color. The UAV is
flown in manual mode by a human operator until the
color tracking software (ACTS) and on-board camera
detect the evader. At this point, the UAV is placed in a
set-point hover-control mode to autonomously main-
tain its position. However, its position and orienta-
tion may vary even in this mode due to exogenous
disturbances. To compensate for this effect, the vision
computer must continuously obtain updates from the
navigation computer of the UAV and control the PTZ
camera to maintain visual lock on the evader. The lat-
ter is done using the control strategy described in [13].
Then, using the state of the UAV, state of the camera,
and calibrated image coordinates of the evader, the vi-
sion computer estimates the evader’s ground position
in the inertial frame as described in Section 2.4. By
fact that it is also engaged as an Ayllu server, the vi-
sion computer transparently broadcasts over TCP /TP
the evader position to the UGV pursuer.

Depending on recently received information, the
UGV pursuer controls its motion using a set of Ayllu
behaviors. If none of the pursuing team detects the
evader, the UGV rotates in place, hoping to eventu-
ally obtain visual lock. If the UGV directly detects
the evader with its on-board camera, it estimates the
position of the evader using its own position, pan/tilt
state of the camera, and calibrated image coordinates
of the evader. Then, given that the pursuer has cur-
rent information on the state of the evader, it engages
a motion-intercept behavior, where position estimates
gathered first-hand override estimates from the UAV.
The pursuer concurrently runs a simple Ayllu obsta-

cle avoidance behavior based on sonar readings. The
UGYV dynamically adapts its motion to avoid detected
obstacles, but does not record those obstacle locations
in a map.

Figure 6 shows the results of our pursuit-evasion ex-
periment. The actors begin in an initial configuration
(a). Once the UAV detects the evader, the vision com-
puter controls the PTZ camera to center the evader in
the image. Upon detection of the evader, the UGV
pursuer engages a motion-intercept behavior (c) until
it finally captures the evader (d).

6 Conclusions and Current Research

This paper presented the implementation of a real-
time platform for muti-agent control of ground and
aerial vehicles. The implementation was based on a
hierarchical control architecture that is applicable to
a heterogeneous group of agents and allows for coor-
dinated efforts among them.

The architecture was successfully applied to a subset
of the pursuit-evasion game scenario described in the
paper, in which a team of agents pursues a second team
of evaders while building a map of the environment.
Overall, our experiments show the possibility and cre-
ate the foundation for using a grid based approach for
multi-agent control in pursuit-evasion games.

We are currently implementing the full pursuit-
evasion game scenario by combining the experimen-
tal results of this paper. We have recently acquired
three additional ground robots for a pursuit-evasion
game between two ground evaders, one aerial and three
ground pursuers.

We are also working on a new implementation of
the strategic planner for the centralized case. The
idea is to integrate the strategic planner implemented
in our Matlab/Simulink simulation platform [12] with
the hardware and lower level control of the ground and
aerial robots through the wireless communication net-
work. In this way, we will be able to use the same
implementation of the strategic planner in both simu-
lations and experiments. This will give us great flex-
ibility to test new control strategies in our pursuit-
evasion game experiments by simply changing a few
lines of Matlab code.

Acknowledgment

The authors would like to thank the BEAR team,
especially Hyunchul Shim. We also want to thank Joao
Hespanha, John Koo and Frank Hoffmann. This re-
search was supported by the ONR grants N00014-97-
1-0946 and N00014-00-1-0621, and ARO MURI grant
DAAH04-96-1-0341.

2954

Figure 6: Results from our pursuit-evasion experi-
ment. (a) Initial configuration, where no pursuer de-
tects the evader. Once detected by the UAV, the vision
computer controls the camera to center the evader in
the image (b). Then, the UGV in engages a motion-
intercept behavior (c), until it finally captures the
evader (d).

References

[1]
[2]

3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

2955

ActivMedia, Inc. http://robots.activmedia.com.

B. Bellur and R. Ogier. A reliable, efficient topology
broadcast protocol for dynamic networks. In Proc. of
IEEE Infocom, pages 178-186, 1999.

BErkeley Aerial Robot (BEAR) Project homepage.
http://robotics.eecs.berkeley.edu/bear.

X. Deng, T. Kameda, and C. Papadimitriou. How to
learn an unknown environment I: The rectilinear case.
Journal of the ACM, 45(2):215-245, March 1998.

J. Hespanha, H. Kim, and S. Sastry. Multiple-agent
probabilistic pursuit-evasion games. In Proc. of 38th
IEEE CDC, pages 2432-2437, Dec. 1999.

J. Hespanha, M. Prandini, and S. Sastry. Probabilistic
pursuit-evasion games: a one-step Nash approach. In
Proc. of 39th IEEE CDC, pages 2272-2277, Dec. 2000.

T. Koo, F. Hoffmann, H. Shim, B. Sinopoli, and
S. Sastry. Hybrid control of an autonomous helicopter.
In IFAC Workshop on Motion Control, pages 285-290,
Grenoble, France, Oct. 1998.

T. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and
S. Sastry. A formal approach to reactive system de-
sign: A UAV flight management system design exam-
ple. In IEEFE International Symposium on Computer-
Aided Control System Design, pages 522-527, 1999.

S. LaValle, D. Lin, L. Guibas, J-C. Latombe, and
R. Motwani. Finding an unpredictable target in a
workspace with obstacles. In Proc. of IEEE Int. Conf.
on Robotics and Automation, pages 732—742, 1997.

G. Pappas, C. Tomlin, J. Lygeros, D. Godbole, and
S. Sastry. A next generation architecture for air traffic
management systems. In Proc. of 36th IEEE CDC,
pages 2405-2410, Dec. 1997.

S. Rashid. Design and Implementation of Multi-Agent
Control: Pursuit & Map Building. Master’s thesis, UC
Berkeley, 2000.

S. Rashid and J. Kim. Multiple-agent probabilis-
tic pursuit-evasion games in 2.5D. Technical Report
Memo No. UCB/ERL M99/34, UC Berkeley, 1999.

C. Sharp, O. Shakernia, and S. Sastry. A vision system
for landing an unmanned aerial vehicle. In Proc. of
IEEE Int. Conf. on Robotics and Automation, 2001.

H. Shim, H.J. Kim, and S. Sastry. Hierarchical control
system synthesis for rotorcraft-based unmanned aerial
vehicles. In Proc. of AIAA Conference on Guidance,
Nawigation and Control, Denver, 2000.

S. Thrun, W. Burgard, and D. Fox. A probabilistic
approach to concurrent mapping and localization for
mobile robots. Machine Learning and Autonomous
Robots, 31(5):1-25, 1998.

C. Tomlin, G. Pappas, J. Lygeros, D. Godbole, and
S. Sastry. Hybrid control models of next generation
air traffic management. In Proc. of Hybrid Systems:
4th International Conference, Oct. 1996.

