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Abstract  

Given a group of autonomous vehicles, an initial config- 
uration, a final configuration, a set of inter- and intra- 
vehicle constraints, and a time for reconfiguration, the 
Formation Reconfiguration Planning problem is focused 
on determining a nominal input trajectory for each ve- 
hicle such that the group can start from the initial con- 
figuration and reach its final configuration at the spec- 
ified time while satisfying the set of inter- and intra- 
vehicle constraints. In this paper, we are interested in 
solving the Formation Reconfiguration Planning prob- 
lem for a specific class of systems and a particular form 
of input signals so that the problem can be reformu- 
lated as an optimization problem which can be solved 
more efficiently, especially for a large group of vehicles. 

1 Introduct ion 

Advances in sensing, communication and computation 
are revolutionizing the development of advanced con- 
trol technologies for distributed, multi-vehicle systems. 
These advances also enable the conduct of missions 
deemed impossible in the recent past. Autonomous for- 
mations have applications anywhere there is a task to 
be done requiring a group effort with minimal human 
supervision. Space applications benefit from formation 
control of satellites to perform distributed observations. 
In automated highway systems (AHS), cars organize 
themselves in platoons to increase highway throughput. 
Groups of unmanned aerial vehicles (UAVs) perform 
search and rescue collectively in restricted areas where 
human intervention is dangerous. To perform deep sea 
exploration, autonomous underwater vehicles (AUVs) 
must maintain tight formations due to limited band- 
width for communication and low visibility. In order to 
perform a set of predetermined missions, each vehicle 
is equipped with the necessary sensing, communication, 
and computation capabilities. 

Recent yeam have seen the emergence of autonomous 
formation planning and control as a topic of great in- 
terest. In [l] and [2] , by considering vehicles as lin- 
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ear systems, the problem of stabilizing a set of vehicles 
according to a given graph structure by utilizing only 
relative measurements is studied. The feasibility for 
keeping vehicles in such a given formation is studied in 
[l]. [4] also studies the feasibility for keeping vehicles in 
formation, while also considering a kinematical model 
of vehicle. Given a formation and vehicle dynamics, 
various control strategies have been developed based on 
information flow and group organization. In 121, a dis- 
tributed control law for stabilizing the formation is de- 
rived for keeping a feasible formation around the group 
equilibrium point. A control design that preserves mesh 
stability of a group of vehicle is presented in [3] where 
a leader-follower organization is considered in the con- 
trol design and only local information is wed. In [5] a 
different control strategy based on virtual leaders and 
artificial potentials in order to keep a stable formation 
is considered. A method of formation reconfiguration 
planning and control for a group of vehicles in order to 
avoid obstacles is presented in 161. The reconfiguration 
planning is based on enumeration of formation graphs 
to  obtain next possible formation that can be used to 
navigate in the environment. 

We are interested in the formation reconfiguration 
problem. In particular, we first consider if the problem 
is feasible assuming that all the information is accessi- 
ble. Given a feasible problem, we will then be able to 
derive the necessary information flow and group organi- 
zation for decentralized formation planning and control. 
Here, we are interested in solving the feasibility prob- 
lem. The Fornation Reconfiguration Planning (FRP) 
problem addressed in this paper is: 

P rob lem 1.1 Given a group of autonomow vehicles, 
an initial configuration, a final configuration, a set of 
inter- and intra- vehicle constraints, and a time for re- 
configuration determine a nominal input trajectory for 
each vehicle such that the group can start from the ini- 
tial configuration and reach its final configuration at the 
specified time while sutbfying the set of inter- and in tn-  
vehicle constraints. 

In this paper, we are interested in solving the FFlF' 
problem for a specific class of systems and a partic- 

http://shannonzQeecs.berkeley.edu
http://kooQeecs.berkeley.edu
http://sastryQeecs.berkeley.edu


ular form of input signals so that we can represent the 
problem as an optimization problem that can he solved 
more efficiently especially for a large group of vehicles. 

In particular, a point mass model is used to model dy- 
namics of each autonomous vehicle. Although the sim- 
ple dynamical model is used, the results can be nat- 
urally extended to systems that can he feedback lin- 
earized 171 such as SjVTOL aircraft [SI, PVTOL air- 
craft 191 and helicopters[lO]. 
The paper structure is as follows. We will begin by for- 
mulating the formation reconfiguration planning p roh  
lem. Then we will discuss our approach to solving the 
problem. This will he followed by a design example 
using our solution and a presentation of some results 
gathered by simulating the design example. The paper 
will end with conclusions. 

2 Problem Formulation 

Consider a group of autonomous vehicles with the fol- 
lowing dynamics 

&(t)  = f i (Zi( t ) , . i ( t ) )  (1) 

where the iih vehicle state xi E B", the ith vehicle input 
u i ~ W ~ a n d i = l , . . . , N  . Each f i : R n x R m i R n  
is assumed to be as smooth as needed. The admissible 
input for each vehicle is specified by an input constraint 
bi(ui(t)) 5 ai such as l/u,(t)l\ 5 ai. Denoting the group 
state as x = [x:,. . . , xZlT and the group input as u = 
[UT,  . . , u;lT, the group dynamics can he rewritten as 

i ( t )  = F ( x ( t ) , 4 t ) )  (2) 

where [ f l (xl( t ;>ul( t ) )  ] 
F(z(t),u(t)) = 

frv ("N ( t ) ,  U N  ( t ) )  

with z E RnN and U E R"". Assume that all 
the inter- and intra-vehicle constraints are specified 
as a set of group state constraints cj(z(t)) < 0, for 
j = 1,. . . , M .  Especially, since we are interested in 
generating collision-free paths, a minimal separation re- 
quirement between vehicles is introduced such that each 
vehicle can keep a safe distance from any vehicle in the 
group. Thus, the minimal separation requirement for 
each pair of vehicles can he encoded as a group state 
constraint and hence there are minimal sepa- 
ration constraints. 
Define the group configuration at time t as g(t)  = 
[xT(t) ,uT(t) lT which specifies the state and input con- 
ditions for all the vehicles in the group at time t .  

In a nrission, a cost function is given as a part of the 
mission specification and in general can be written as 

J = ip(x(T),T)+S,TL(x(t) ,u(t) , t)dt  where ip(x(T),T) 
and L ( z ( t ) ,  u ( t ) ,  t )  define the terminal cost and the run- 
ning cost, respectively. Hence, if there are feasible so- 
lutions for the FRP problem as specified in Problem 
1.1, it is desirable to  find the optimal one with respect 
to the given cost function. Now, we restate our FRP 
problem as follows: 

Problem 2.1 (FRP Problem) Given a group dy- 
namics, an initial group configuration gs, a final group 
configuration gf,  a set of inter- and intra-vehicle con- 
straints bi(u,(t)) 5 ai for i = 1, . . . , N and cJ(x(t)) < 
0, f o r j  = 1 , .  . . , M ,  and the time for reconfiguration T, 
does there exit a group input a(t) f o r t  E [0,T] such that 
the yroup starting from g(0) = gs can reach g(T) = gf 
while satisfying the set of inter- and intra- vehicle con- 
straints? If so, then select the group input a( t )  over 
[O,T] which produces minimal value for a given cost 
function. 

The Formation Reconfiguration Planning (FRP) p rob  
lem can be formulated as an optimal control 
problemIl1, 12, 131 with dynamical and algebraic con- 
straints as follows: 

min J = p ( x ( T ) , T )  + L(z( t ) ,u( t ) , t )dt  (3) 
4 t )  J,' 

subject to 

i ( t )  = F ( Z ( t ) > U ( t ) )  (4) 
g(0) = 9. ( 5 )  
g ( T )  = Yf ( 6 )  
b i ( u i ( t ) ) < a i V t t [ O , T ]  V i € { l ,  . . . ,  N }  (7) 

c j ( x ( t ) )  < 0, Vt E [O,T] Vj E {l,. . . , M } .  (8)  

The optimal control problem in principle can be solved 
by applying standard techniques described in [ll, 12, 
131 based on calculus of variations or on Pontryagin's 
maximum principle. However, for a large group of ve- 
hicles these techniques become computationally ineffi- 
cient since the performance of these techniques scales 
poorly not only with the number of states hut also with 
the number of inter- and intra- constraints which in- 
crease rapidly with the number of vehicles. For ex- 
ample, the number of minimal separation constraints 
grows in the order of O ( N z ) .  
In this paper, we are interested in solving the FRP 
problem for a specific class of systems and a partic- 
ular form of input signals so that the problem can be 
reformulated as an optimization problem that can be 
solved more efficiently especially for a large group of 
vehicles. 

3 Approach 

In order to reduce the problem complexity, we parame- 
terize each input signal u;(t) over the interval [0,T] by 
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a set of parameters 8 k ,  E R" for k = 1,. . . , K.  Hence, 
for t E [0, TI we have 

K 

= CQlc,wic(t) 
k=O 

where wk : W + W are basis functions for input u.(t) 
Many families of basis functions such as B-splines can 
be chosen and each would provide different advantages 
on representation and efficiency. This approach is pro- 
posed in [14] for solving many motion planning prob- 
lems. In this paper, polynomials are used as basis func- 
tions and hence 

K 

u.(t) = x 8 k l t k  (9) 
k=D 

where W k ( t )  = t k  for k = 1 , .  . . , K .  However, the selec- 
tion of the order of polynomials K is problem depen- 
dent. In the next section, we will show how to pick the 
order of polynomials for an application. Therefore, the 
FFW problem becomes: 

min J = v ( x ( T ) , T )  + t ( x ( t ) , u ( t ) , t ) d t  (10) 
BO ,,..., B K N  

subject to 

i ( t )  = F ( x ( t ) ,  4 t ) )  (11) 
d o )  = g s  (12) 
g(T) = gf (13) 
b i ( ? l i ( t ) ) < ( Y i V l t E [ O , T ] V i € { l ,  . . .  ,N} (14) 
c j ( x ( t ) )  5 Vt E [O,T] V j  E {l,. . . , M } .  (15) 

Depending on applications, various cost functions could 
be considered. However, the same set of constraints 
specified by (10)-(15) has to be satisfied regardless of 
which cost function is chosen. Once the feasible p a r m -  
eter range is obtained, then one can solve the FRP prob- 
lem by searching for minimal value of the cost function 
over the range. Here, we are interested in the existence 
of solution for the FRP problem. 

Problem 3.1 (Existence of Solution for FRP) 
Given the FRP problem specified by (10)-(15), does 
there exit a set of parameters 011, .  . . , Q K N  such that 
all the constraints (11)-(15)can be satisfied? If so, then 
determine the feasible range of the parameters. 

For certain classes of'systems, Problem 3.1 can be 
solved by using computational tools. 

Theorem 3.2 Given the FRP problem specified by 
(10)-(15) i f  F ( x ( t ) , u ( t ) )  = Ax( t )  + Bo(t), where A is 
a n N  x n N  nilpotent matrix, B is a nN x m N  matrix, 
and constraints specified by  (12)-(15) are semi-algebraic 
constraints, there exits a computational procedure that 
decides whether there exits a set of parameters that sat- 
isfies (12)-(15). 

The system equation k( t )  = A x ( t )  + Bu(t) with nilpc- 
tent matrix 4 and polynomial input u(t) belongs to 
a family of linear differential equations with decidable 
reachability problem 11.51. Theorem 3.2 can be proved 
by posing the reachability computation as a quantifier 
elimination problem in the decidable theory of the teals. 
There are quantifier elimination tools that can perform 
symbolic computation and answer the existence prob- 
lem. Since the problem is proved to be decidable for 
this class of systems, the computation is guaranteed to 
terminate in finite steps. 

A clear illustration on how to apply the theory is pc- 
vided in 11.51 for a single robot navigation problem. Fur- 
thermore, a feasible range of the parameters is also 
provided. The current algorithms for solving quanti- 
fier elimination are not able to handle problems with a 
large number of constraints or high order polynomials. 

4 Design example 

Now, we focus on the point-mass dynamics of N vehi- 
cles. The dynamics of each vehicle is then specified by 
a double integrator which is: 

w h e r e p ; , u , , a i E R 3 a n d i = 1 , . . . , N  . Definex;(t)= 
bT(t) uT(t) lT,  u i ( t )  = ai( t ) .  Hence, (16) can be written 
as $<(t) = Aix i ( t )  + Biu;(t) with 

Thus, the group dynamics can be written as x ( t )  = 
A x ( t )  + Bu(t) where A E RnNYnN and B E W n N X n M  
with x = [x:.. .xK]T E RnN and u = [ U T . .  . uf]' E 
E"M. 
Given the input signals, the state trajectories of each 
vehicle can be derived according to the vehicle dynam- 
ics. In articular, we have the following equations 
u,(t) = .fO a,(t)dt  + v,(O) and p.(t) = ./iuu.(t)dt + ~ " ( 0 )  
Therefore, if the input trajectories and the initial condi- 
tions are provided, we can derive the state trajectories. 
The input signals are parameterized as polynomials of 
time. a*( t )  is the acceleration vector of the z t h  vehicle 
and it can represented as: 

P 

k=O 

where K is the order of the polynomial, and ao%. . . aK% 
are the parameter vectors for the ith vehicle. As with 
a % ( t ) ,  all of the a k ,  pasameter vectors are in R3. 
Given the initial configuration ga, the final configura- 
tion gf> and the time for reconfiguration T ,  the state 
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trajectories axe constrained by the four vector equations 
ai(Oj = aio,  ai(^) = Cp=oa&,  vi(^) = Jo a,(t)dt  + 
ui(oj, p , ( ~ )  = ~ , T v ~ ( t ) d t  + pi(o) for i = I , . .  .,N. 
Therefore, in order to obtain feasible solutions for the 
FRP problem by considering only the dynamical and 
configuration constraints, K 2 4. The necessary or- 
der of polynomials K thus depends on the remaining 
constraints. 

Now, we are ready to formulate the FRP problem for 
autonomous vehicles. The objective is to determine 
the parameters for the input trajectories, minimizing 
the input energy, subject to dynamical, configuration, 
minimnm vehicle proximity and maximum acceleration 
constraints. In general, other cost functions and con- 
straints could he used, but we found energy, minimnm 
proximity, and maximum acceleration to he most nec- 
essary to this problem. 

T 

subject to 

i ( t )  = Az( t )  + Bu(t) (19) 
!do) = 9. (20) 
g(T) = Sf (21) 

I l P i M  -Pj(t)ll 2 Vt t IO,T], Vi#ji>j (22) 
llai(t)ll 5 a, V t  E [O,T], Vi  (23) 

where i , j  = 1 , .  . . , N ,  E is the minimum allowable dis- 
tance between vehicles, and a is the maximum allow- 
able acceleration input a t  any time. W, is a diagonal 
matrix of weighting constants for the ith vehicle. 

Wi helps shape the cost function to different scenar- 
ios. For example if one wants to restrict movement of 
a vehicle in the z plane, one would make the diagonal 
entries of Wi associated with acceleration in the z di- 
rection higher than the rest. A higher weight can he 
given to all entries of W for any vehicle with special 
energy limitations dne to low fuel and make it move 
slower than the other vehicles. In the following section 
we will show several examples of how Wi can be used 
to shape the result. 
It can been easily shown that the FRP problem for 
autonomous vehicles satisfies the conditions specified in 
Theorem 3.2. Thus, given an order of the polynomials 
K, one can apply Theorem 3.2 to determine whether 
the K t h  polynomials would he sufficient for solving the 
FRP problem. 

5 Optimization results 

In order to simplify the problem further, we have chosen 
to use 4th-order polynomials for the parameterization 
of the acceleration trajectories. Hence, there is just one 
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free vector for each vehicle. Without loss of generality, 
we choose this free parameter vector to be ali .  Define 
the optimization vector q to he the composite of all free 
parameters ali given hy 

(24) T T  q = [ a z  . . . a l N ]  . 

Instead of writing the state and input trajectories 
as functions of q and t ,  we simply express them as 
pi(t),ui(t), and a;(t) to avoid introducing new nota- 
tions. We can now express the FRP related optimiza- 
tion problem as 

N 
ar(t )W;ai( t )dt  (25) 

i=l P 

subject to 

IIPi(t) - p j ( t ) l l  2 6 V t  E [0,T], V i # j i , j  (26) 
Ilai(t)ll 5 a, Vt E [O,T], Vi (27) 

where i , j  = 1 , .  . . , N. The FRP related optimization 
problem was solved using a constrained optimization 
algorithm. We will discuss further in the final version 
of this paper. In order to illustrate the effectiveness of 
the weighting matrix Wi, we perform the same FRP 
related optimization problem in three different cases 
varying only W,. The given formation configurations 
and constraint constants are as follows. 

aa(O)=aQ) = [ O O O ] T V ~ € { 1 " ' 3 }  
v i (o )=v i (T )  = [ O O O ] ~ V i E { 1 ' . . 3 }  

[pT(O) p T ( 0 )  p3O)lT = [O 0 10 0 10 10 10 0 10]T 

[ p T ( T )  pT(Tj p 3 T f  = [O 0 10 10 0 10 0 10 10]T 
T = 30, c = 9.9, a = 3 

In case (a), all vehicles and directions are given equal 
weighting. Wi = 13x3  for all vehicles. Figure l(a) 
shows a simulation of the position trajectory result 
for case (a). Since vehicle 1 was given the same 
desired final position as its initial position, and no 
other restrictions were made, it does not move. How- 
ever, vehicles 2 and 3 curve their position trajec- 
tory to stay at least an 5 distance away from vehi- 
cle 1. The q found for the solution in case (a) is 
q = [-0.0012 0 0 0.0492 0.0065 0 0.0047 0.051 01. 

In case (h), vehicle 2 and 3 are given higher weight- 
ing than vehicle one such that Wl = I s Y 3  and W, = 
Ws = 5 I,,,. Figure l (h)  shows a simulation of 
the position trajectory result for case (h). In Figure 
l(b) it is more optimal for vehicles 2 and 3 to find 
a path that uses less energy than vehicle 1. Thero 
fore, even though vehicle 1 ultimately ends up in the 
same position, it moves away from vehicle 2 and 3 dur- 
ing the formation reconfiguration in order to remain 
E distance away. This illustrates the centralized na- 
ture of the optimization solution of the FRP problem 



by showing how one vehicle sacrifices for the good of 
the group. The q found for the solution in case (b) is 
q = -0.0343 0 0 0.0303 0.002 0 - 0.0132 0.0444 01. 
In case (e), thc x and y directions of all vehicles are 
given a higher weighting than the z dircction. W, = 
dzug(5 5 1) for all vehicles. Figure l(c) shows a simu- 
lation of the position trajectory rcsult for case (e). In 
Figure l(c) once again, since vehicle 2 and 3 must accel- 
erate in x and y but are inhibited in the x and y direc- 
tions, it is optimal for them to find a path that uses less 
energy than vehicle 1. It is still up to vehicle 1 to move 
away froni vehicle 2 and 3 during the formation recon- 
figuration. However this time, it moves away in thc z 
direction because it is more costly to movc in either the 
x or y direction. Once again, this illustrates the cen- 
tralized naturc of the optimization solution of the FRP 
problem by showing how one vehicle sacrifices for thc 
good of the group. The q found for the solution in case 
(e) is q = [0 0 0.0767 0.404 0.004 0 0.004 0.0404 01. 

Figure 1: FRP solutions of the same problem using differ- 
ent M/, matrices. The circles and crosses repre- 
sent the initial and find position of each vehicle 
respectively. (a). All vehicles and directions are 
given identical weighting. (h). Vehicles 2 and 3 
are given higher weighting than vehicle 1. (c). 
The x and y directions are given higher weight- 
ing than the z direction for all vehicles. 

The FRP optimization method can also be used to 
change formation in the presence of obstacles. All that 
is needed is extra constraints describing the obstacles. 
We assume that the space occupied in R3 by an obstacle 
can be described by an inequality as: 

Oj = {PO t R3 : D ~ ( P o )  > 7 7 )  (28) 

where Dj : R3 + R, PO = [p,op,o~,o]~R~ and îj E R. 
Even though there is only one obstacle, the obstaclc 
constraints apply to all vchicles. Therefore for each 

obstacle constraint, there are N additional constraints 
added to the FRP problem, i . e .  

dj(zi) 5 7j for i = 1,. . . , N (29) 

where d j ( z i )  = ( D j ( n z i ) )  with the projection matrix 
Il = [13xs 03x3]. Figure 2 shows how a formation of 
three vehicles can reconfigure around a circular obstacle 
in the x y plane. The two solutions have the sarnc FRP 

. 0. 

Figure 2: Two examples of a formation avoiding cylindri- 
cal obstacles. The circles and crosses represent 
the initial and final position of each vehicle re- 
spectively. (a). One vehicle breaks from the 
group to avoid the obstacle. (h) All three vehi- 
cles stay together when avoiding the obstacle. 

specifications given by 

G(0)  = a,(T) = vt(0) = v,(T) = [0 0 O]T vt 
[PT(O) P S ( 0 )  P:(0)1 = 

[PT(T) PT(T) P?(T)I  = 

[-15 -30 10 - 5  -30 10 5 -30 101 

1-15 30 10 - 5 30 10 5 30 101 
T = 30, t = 9.9, a = 3, W, = 13x3,  V i  

Results shown in Figure Z(a) and 2(b) were given ad- 
ditional obstacle constraints. The obstacles considered 
in Figure 2(a) and (b)are given by 

respectively, each describing a circular obstacle of ra- 
dius 15 and 21 respectively. In Figure 2(a) the ob- 
stacle is such that vehicle 3 breaks off from the for- 
mation in order to find a more optimal path around 
the obstacle. In 2(b) i t  is more optinial for vehi- 
cle 3 to stay with thc group even though the tra- 
jectories of vehicle 1 and 2 increase in energy in or- 
der to  accommodate the presence of vehicle 3. The 
FRP solution found for these two examples are (a) 
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q = (-0.1199 0.2465 0 -0.1402 0.104 0 0.2107 0.1341 01, 
and (bj q = I-0.403 0.0772 0 - 0.2757 0.1912 0 - 
0.2844 0.1315 01. Even though a formation may be ca- 
pable of finding its way around a given obstacle, it may 
be more beneficial to avoid the obstacle in two FRP 
stages in order the use of high order of polynomials. 
Figure 3 shows a two stage example of how a formation 
can perform a sequence of reconfigurations in order to 
avoid a set of obstacles. 

I . ,  . . , , . 
I .,- ,* rn 

Figure 3: A formation performs a two stage FRP to move 
through a set of obstacles. The circles and 
crosses represent the initial and final configu- 
rations of the entire FRP problem respectivcly. 
The triangles represent the middle configura- 
tion as both thc final configuration of the first 
stage and the initial configuration of the second 
stage of the FRP problem. 

6 Conclusions 

Optimization has proved to be a successful solution to 
the FRP problem. Our method of implementation is 
general and portable allowing for use in a wide range of 
applications for coordinated robots. For example, our 
method could easily be transported to two dimensions 
for ground robot coordination. This centralized con- 
trol scheme has limitations in applications where for- 
mations are very large or communication is disrupted. 
For such applications, a decentralized control scheme 
is preferred. We are currently working on a deceutral- 
ized approach to the FRP problem where each vehicle 
produces its own localized solution based on only local 
sensor information about its neighboring vehicles. As 
expected, this is proving to be a more complex prob- 
lern. Therefore, centralized control is preferred in ap- 
plications for smaller fully connected formations. 
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