
GiPSi: An Open Source/Open Architecture
Software Development Framework

for Surgical Simulation

Tolga Gokce Goktekin2, Murat Cenk Çavuşoğlu1,
Frank Tendick3, and Shankar Sastry2

1 Dept. of Electrical Eng. and Computer Sci., Case Western Reserve University
2 Dept. of Electrical Eng. and Computer Sci., University of California, Berkeley

3 Dept. of Surgery, University of California, San Francisco

Abstract. In this paper we propose an open source/open architecture
framework for developing organ level surgical simulations. Our goal is
to facilitate shared development of reusable models, to accommodate
heterogeneous models of computation, and to provide a framework for
interfacing multiple heterogeneous models. The framework provides an
intuitive API for interfacing dynamic models defined over spatial do-
mains. It is specifically designed to be independent of the specifics of the
modeling methods used and therefore facilitates seamless integration of
heterogeneous models and processes. Furthermore, each model has sep-
arate geometries for visualization, simulation, and interfacing, allowing
the modeler to choose the most natural geometric representation for each
case. I/O interfaces for visualization and haptics for real-time interactive
applications have also been provided.

1 Introduction

Computer simulations have become an important tool for medical applications,
such as surgical training, pre-operative planning, and biomedical research. How-
ever, the current state of the field of medical simulation is characterized by scat-
tered research projects using a variety of models that are neither inter-operable
nor independently verifiable models. Individual simulators are frequently built
from scratch by individual research groups without input and validation from
a larger community. The challenge of developing useful medical simulations is
often too great for any individual group since expertise is required from differ-
ent fields. The motivation behind this study is our prior experience in surgical
training simulators and physically based modeling [10, 11].

The open source, open architecture software development model provides an
attractive framework to address the needs of interfacing models from multiple
research groups and the ability to critically examine and validate quantitative
biological simulations. Open source models ensure quality control, evaluation,
and peer review, which are critical for basic scientific methodology. Further-
more, since subsequent users of the models and the software code have access

S. Cotin and D. Metaxas (Eds.): ISMS 2004, LNCS 3078, pp. 240–248, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

GiPSi: An Open Source/Open Architecture Software Development 241

to the original code, this also improves the reusability of the models and inter-
connectibility of the software modules. On the other hand, an open architecture
simulation framework allows open source or proprietary third party development
of additional models, model data, and analysis and computation modules.

In this paper we propose GiPSi (General Interactive Physical Simulation
Interface), an open source/open architecture framework for developing surgical
simulations such as interactive surgical training and planning systems. The main
goal of this framework is to facilitate shared model development and simulation
of organ level processes as well as data sharing among multiple research groups.
To address these, we focused on providing support for heterogeneous models of
computation (e.g. differential equations, finite state machines and hybrid sys-
tems) and defined APIs for interfacing various heterogeneous physical processes
(e.g. solid mechanics, fluid mechanics and bioelectricity). In addition, I/O in-
terfaces for visualization and haptics for real-time interactive applications have
been provided. The implementation of the framework is done using C++ and it
is platform independent.

An important difference of GiPSi from earlier object-oriented tools and lan-
guages for modeling and simulation of complex physical systems, such as Mod-
elica [8], Matlab Simulink [7], and Ptolemy [3], is its focus on representing and
enforcing time dependent spatial relationships between objects, especially in the
form of boundary conditions between interfaced and interacting objects. The
APIs in GiPSi are also being designed with a special emphasis on being general
and independent of the specifics of the implemented modeling methods, unlike
earlier dynamic modeling frameworks such as SPRING [9] or AlaDyn-3D [6],
where the underlying models used in these physical modeling tools are woven
into the specifications of the overall frameworks developed. This allows GiPSi to
seamlessly integrate heterogeneous models and processes, which is not possible
with the earlier dynamic modeling frameworks [5].

2 Overview

The goal of GiPSi is to provide a framework that facilitates shared develop-
ment that would encourage the extensibility of the simulation framework and
the generality of the interfaces allowing components built by different groups and
individuals to plug together and reused. Therefore, modularity through encapsu-
lation and data hiding between the components should be enforced. In addition,
a standard interfacing API facilitating communication among these components
needs to be provided.

We are developing our tools on a specific test-bed application: the construc-
tion of a heart model for simulation of heart surgery. This test-bed model cap-
tures the most important aspects of the general problem we are trying to address:
i) multiple heterogeneous processes that need to be modeled and interfaced, and
ii) different levels of abstraction possible for the different processes. In the heart
surgery simulation, several different processes, namely physiology, bioelectrical
activity, muscle mechanics, and blood dynamics, need to modeled. Physiological

242 Tolga Gokce Goktekin et al.

Simulation
Kernel

Input/Output

Haptic
Interface

Visualization

Simulation Objects
(Models)

Heart Tissue
Deformation

Blood Dynamics
…

Computational Tools
Ordinary Differential Eq.
Differential-Algebraic Eq.

NL Algebraic Eq.
Discrete Event Systems

Hybrid Systems…

Auxiliary
Functions

Collision Detection
Collision Response

…

Parameters

Physiology of
Heart Beat
Regulation

Modeling Tools
NL Finite Element Models

Linear Finite Element Models
Mass-Spring-Damper Models

…

Simulation
Kernel

Simulation
Kernel

Input/Output

Haptic
Interface

Visualization

Input/Output

Haptic
Interface
Haptic

Interface

VisualizationVisualization

Simulation Objects
(Models)

Heart Tissue
Deformation
Heart Tissue
Deformation

Blood DynamicsBlood Dynamics
…

Computational Tools
Ordinary Differential Eq.
Differential-Algebraic Eq.

NL Algebraic Eq.
Discrete Event Systems

Hybrid Systems…

Computational Tools
Ordinary Differential Eq.
Differential-Algebraic Eq.

NL Algebraic Eq.
Discrete Event Systems

Hybrid Systems…

Ordinary Differential Eq.
Differential-Algebraic Eq.

NL Algebraic Eq.
Discrete Event Systems

Hybrid Systems…

Auxiliary
Functions

Collision Detection
Collision Response

…
Auxiliary
Functions

Collision Detection
Collision Response

…

ParametersParameters

Physiology of
Heart Beat
Regulation

Physiology of
Heart Beat
Regulation

Modeling Tools
NL Finite Element Models

Linear Finite Element Models
Mass-Spring-Damper Models

…

Modeling Tools
NL Finite Element Models

Linear Finite Element Models
Mass-Spring-Damper Models

…

Fig. 1. The system architecture of GiPSi.

processes regulate the bioelectrical activity, which, in turn, drives the mechanical
activity of the heart muscle. Muscle dynamics, coupled with the fluid dynam-
ics of the blood, determine the resulting motion of the heart [2]. Models for all
these processes need to be intimately coupled: the mechanical and fluid models
through a boundary interaction, and the electrochemical and mechanical models
through a volume interaction.

The overall system architecture of GiPSi is shown in Fig. 1. The models of
physical processes such as muscle mechanics of the heart are represented as Sim-
ulation Objects (Sect. 3). Each simulation object can be derived from a specific
computational model contained in Modeling Tools such as finite elements, finite
differences, lumped elements etc. The Computational Tools provide a library of
numerical methods for low level computation of the object’s dynamics. These
tools include explicit/implicit ordinary differential equation (ODE) solvers, lin-
ear and nonlinear algebraic system solvers, and linear algebra support. The ob-
jects are created and maintained by the Simulation Kernel which arbitrates their
communication to other objects and components of the system (Sect. 6). One
such component is the I/O subsystem which provides basic user input provided
through the haptic interface tools and basic output through visualization tools
(Sect. 4). There are also Auxiliary Functions that provide application dependent
support to the system such as collision detection and collision response tools that
are widely used in interactive applications (Sect. 5)

3 Simulation Objects

In this framework, organs and physical processes associated with them are repre-
sented as Simulation Objects. These objects define the basic API for simulation,
interfacing, visualization and haptics (see Fig. 2a).

GiPSi: An Open Source/Open Architecture Software Development 243

Each Simulation Object can be a single level object implementing a specific
physical process or can be an aggregate of other objects creating a hierarchy of
models. For example, if we were interested only in muscle model of a beating
heart, then we would define the heart as a single object that simulates the muscle
mechanics. However, if we were to model a more sophisticated heart with both
muscle and blood models, then our heart object would be an aggregate of two
objects, one implementing the muscle mechanics and the other implementing the
blood dynamics. The specific coupling of these muscle and blood objects would
be implemented at their aggregate heart object (see Fig. 2c).

Class SimulationObject {
Geometry DisplayGeometry;
Domain DomainGeometry;
Boundary BoundaryGeometry;
…
Simulate();
Display();
Haptics();
…

}

Class
FEMObject:SimulationObject {

FEMNode *Nodes;
FEMElement *Elements;
…
Assemble();
…

}

Class
MSDObject:SimulationObject {

MSDNode *Nodes;
MSDSpring *Springs;
…

}

Class Electrochemical:SimulationObject {
// User defined custom electrochemical model
…

}

Class Heart:SimulationObject {
Electrochemical Bioelectricity;
MSDObject Muscle;
FEMObject Blood;

}

a) b)

c)

Fig. 2. a) Simulation Object, b) Examples of modeling tool and user defined objects,
c) Heart object.

The majority of the models in organ level simulations involve solving mul-
tiple time varying PDEs that are defined over spatial domains and are coupled
via boundary conditions, e.g. a structural model representing the heart muscles
coupled with a fluid model representing the blood which share the inner surface
of the heart wall as their common boundary. Our goal is to design a flexible
API that facilitates the shared development and reuse of models based on these
PDEs. Therefore the focus of our effort is to provide: i) a common geometric
representation of the domain, ii) a library of tools for solving these PDEs, iii) a
standard API for coupling them.

3.1 Simulation API

The first step in solving a continuous PDE is to discretize the spatial domain
it is defined on. Therefore, every object must contain a proper geometry that

244 Tolga Gokce Goktekin et al.

describes its discretized domain, called the Domain Geometry. The definition
of this geometry is flexible enough to accommodate the traditional mesh based
methods as well as point based (mesh free) formulations. GiPSi defines a set of
geometries that can be used as a domain including but not limited to polygonal
surface and polyhedral volume meshes. In our current implementation we provide
geometries for triangular and tetrahedral meshes.

Second, a method for solving a PDE should be employed such as Finite
Element Methods (FEM), Finite Difference Methods (FDM) or Mass-Spring-
Damper (MSD) methods. Basic general purpose objects that implement these
methods are provided as Modeling Tools, e.g. there is a general customizable
FEM object that implements the basics of the finite element method (see
Fig. 2b). For example, an FEM based fluid model with linear elements can
be modeled as an FEM object with a tetrahedral volume mesh as its Domain
Geometry and with Navier-Stokes equations as its user defined PDE. So far we
have implemented objects for FEM and MSD methods. GiPSi also provides a li-
brary of numerical analysis tools in the Computational Tools that can be used to
solve these discretized equations. Our current implementation provides explicit
and implicit integrators, some popular direct and iterative linear system solvers
and C++ wrappers around a subset of BLAS and LAPACK functions [1].

3.2 Interfacing API

In addition to representing the domain geometry and assigning a method of
computation, the simulation API also needs to provide a standard means to
interface multiple objects. In the models mentioned above, the basic coupling
of two objects are defined via the boundary conditions between them. There-
fore, we need to provide an API to facilitate the passing of boundary conditions
between different models. First, we need a common definition of the boundary,
i.e. each object needs to have a specific Boundary Geometry. In our current im-
plementation, we chose triangular surfaces as our standard boundary geometry.
Even though the type of the boundary geometry is fixed for every object, the
values that can be set at the boundary and their semantics are up to the mod-
eler and should be well documented. Moreover, it is also the developer’s task
to interface two objects with different semantics on the boundary. For example,
a generic fluid object can compute velocities and pressures on its boundary. In
order to interface it with a structural object that requires forces on its boundary
as boundary conditions, the developer needs to convert the boundary pressure
values to boundary forces by integrating the pressure on the boundary.

Use of boundary conditions is not the only interfacing scheme for objects.
For example, the coupling between the electrochemical and mechanical models
(excitation-contraction coupling) in the heart is through the commonly occupied
volume rather than a shared boundary. A more general information passing is
provided by a simple Get/Set scheme, i.e. an object can read and write values
inside another object by simply using Get(value) and Set(value) methods pro-
vided by the object respectively. The set of values that can be get and set by
other objects and their semantics are again left to the modeler. In the above

GiPSi: An Open Source/Open Architecture Software Development 245

SimObject Heart
BoundaryGeometry

Bioelectricity (Electrochemical)

DomainGeometry

Get()

Bioelectricity to
Muscle Connector

Excitation to Stress

Domain 1 Domain 2

Muscle to
Blood Connector

Displacement to Velocity

Pressure to Force

Boundary 1 Boundary 2

Blood (FEM Fluid)
BoundaryGeometry

DomainGeometry

SetBoundaryCondition()

GetBoundaryCondition()

Muscle (MSD Solid)

BoundaryGeometry

DomainGeometry

Get()

Set()

SetBoundaryCondition()

GetBoundaryCondition()

Fig. 3. Connector class example.

example, the electrochemical model sets the internal force values of mechanical
model based on the excitation level which in turn result in the contraction of
the muscles.

Both interfacing through a surface via boundary conditions and interfacing
through a volume (domain) via the Get/Set scheme are achieved by the use of the
Connector classes. Since the connection of two arbitrary models is application
dependent, it is the modeler’s task to develop these connectors. Fig. 3 shows two
connector classes that interface three basic models contained in the aggregate
Heart model. The first connector class provides basic communication between
the Bioelectrical and Muscle models through their volumetric domain. It basi-
cally gets the excitation levels from the Bioelectric models (Domain 1), converts
them to stress and sets the stress tensor values in the Muscle model (Domain 2).
The second connector interfaces the Lumped Fluid Blood model with the Muscle
model through their surfaces via boundary conditions. In this example the com-
munication is in both ways. The connector class reads the displacement values
on the Muscle boundary (Boundary 1), converts them into velocity and passes
the velocities to Fluid model (Boundary 2) as boundary conditions. Similarly
it receives the boundary pressure values from Boundary 2, converts them into
forces and passes them to Boundary 1 as traction values on the boundary.

3.3 Visualization API

In order to display an object we again need a geometry dedicated for visualiza-
tion. This geometry is called the Display Geometry and can be of any type of

246 Tolga Gokce Goktekin et al.

geometry defined in GiPSi. Each display geometry has a Display Manager asso-
ciated with it. Display managers convert the data in geometries into a standard
format used by the visualization module where the actual display takes place
(see Sect. 4.2 for details). This makes the development of visualization tools and
development of models mutually exclusive and ensures the modularity and the
flexibility of the system.

3.4 Haptics API

Haptic interfacing with the simulation object uses the multi-rate simulation
method proposed by Çavuşoğlu in [4]. In this method, each simulation object in
haptic interaction provides local dynamic and geometric models for the haptic
interface. The local dynamic model is a low-order linear approximation of the
full deformable object model, constructed by the simulation object from the full
model at its update intervals, and the local geometric model is a planar approx-
imation of the local geometry of the simulation object at the haptic interfacing
location. These local models are used by the haptic interface, running at a sig-
nificantly higher update rate than the dynamic simulations, for estimating the
inter-sample interaction forces and inter-sample collisions.

4 Input/Output Subsystem

The Input/Output subsystem provides basic tools for interacting with the ob-
jects. Currently, GiPSi provides haptics tools for input and visualization tools
for output. These tools provide modularity and encapsulation of data, and define
a standard API for model developers.

4.1 Haptics

Haptic interfaces require significantly higher update rates, usually in the order
of 1 kHz, than are possible for the rest of the physical models, which are typi-
cally run at update rates in the order of 10 Hz. It is not possible to increase the
update rate of the physical models to the haptic rate with their full complexity
due to computational limitations, or to decrease the haptic update rate to phys-
ical model update rates due to stability limitations. As described in section 3,
GiPSi handles this conflicting requirements using a multi-rate simulation scheme
[4]. The Haptic I/O module completely encapsulates the haptic interface and its
real-time update rate requirements, and provides a standard API for all of the
simulation objects which will be haptically interactive. The interface between
the haptic I/O module and the simulation objects is through the local dynamic
and geometric models provided by the simulation objects, and the haptic in-
strument location and interaction forces provided by the haptic I/O module.
The instrument-object interaction forces are applied to the objects through the
object boundary conditions and the instrument-object collision detections are
handled no differently than the regular object-object collisions.

GiPSi: An Open Source/Open Architecture Software Development 247

4.2 Visualization

Visualization of an object involves displaying the geometry of the object on the
screen. In our current implementation we use OpenGL for display. The geometry
to be displayed is defined in the object as discussed in Sec.3.3. However, to
assure modularity, the object converts its geometry data into a standard form
using the display manager associated with the type of geometry it has. Then
the visualization tool accesses this data through the object pool maintained by
the simulation kernel and displays it. In our current design, the standard format
used is simply the list of vertex positions, vertex normals, vertex colors and
connectivity information.

5 Collision Detection/Collision Response

In interactive surgical simulations one needs to detect collisions to prevent pen-
etration between objects in the system, such as organ models and tools used
during surgery. Therefore collision detection (CD) and collision response (CR)
play a very important role. In our framework, CD module detects the collisions
between boundary geometries of different models and the CR module computes
the required response to resolve these collisions in terms of displacements and/or
penalty forces and communicates the result to the models as displacement or
force based boundary conditions. The models process these boundary conditions
if necessary and iterate. As a result, the mechanics of contact detection and
resolution becomes transparent to the model developer.

6 Simulation Kernel

The simulation kernel acts as the central core where everything above comes
together. Its tasks include the management of the top level object pool, coordi-
nation of the object interactions, and arbitration of the communication between
the components. The part which coordinates the top level objects is provided by
the user. This coordination involves specifying the execution order of the models
and the specific interfacing between them, allowing the user to properly inter-
pret the semantics of the individual top level objects and the interfacing between
them, based on the specific application that the simulation is being developed
for.

7 Conclusion

We have presented an open source/open architecture framework for organ level
simulations that facilitates shared development and reuse of models. This frame-
work provides an intuitive API for interfacing dynamic models defined over spa-
tial domains. In addition, it is independent of the specifics of modeling methods
and thus facilitates seamless integration of heterogeneous models and processes.
Furthermore, each model has separate geometries for visualization, simulation,
and interfacing. This lets the modeler choose the most natural geometric repre-
sentation for each.

248 Tolga Gokce Goktekin et al.

We want to emphasize that the framework proposed in this paper is a work
in progress. It is intended to be a draft that will be modified according to the
feedback we receive from the broader surgical simulation community. As we indi-
cated throughout the paper, the implementation itself is incomplete and is only
presented as a proof of concept. If the framework is adopted, the implementation
can easily be extended by the community. Therefore, we plan to have a meeting
with the interested parties at ISMS to discuss the future of the framework.

Acknowledgements

This research was supported in part by National Science Foundation under grants
CISE IIS-0222743, CDA-9726362 and BCS-9980122, and US Air Force Research
Laboratory under grant F30602-01-2-0588. We also would like to thank Xunlei
Wu for his valuable discussions and feedback.

References

1. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra,
J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LA-
PACK Users’ guide (3rd ed.). SIAM, 1999.

2. R. M. Berne and M. N. Levy, editors. Principles of Physiology. Mosby, Inc., St.
Louis, MO, third edition, 2000.

3. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. Int. Journal of Computer
Simulation special issue on Simulation Software Development, 1994.

4. M. C. Çavuşoğlu and F. Tendick. Multirate simulation for high fidelity haptic
interaction with deformable objects in virtual environments. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2000), pages
2458–2465, April 2000.

5. S. Cotin, D. W. Shaffer, D. A. Meglan, M. P. Ottensmeyer, P. S. Berry, and S. L.
Dawson. CAML: A general framework for the development of medical simulations.
In Proceedings of SPIE Vol. 4037: Battlefield Biomedical Technologies II, 2000.

6. A. Joukhadar and C. Laugier. Dynamic simulation: Model, basic algorithms, and
optimization. In J.-P. Laumond and M. Overmars, editors, Algorithms For Robotic
Motion and Manipulation, pages 419–434. A.K. Peters Publisher, 1997.

7. Mathworks, Inc. Simulink. http://www.mathworks.com/products/simulink/.
8. Modelica — A Unified Object-Oriented Language for Physical Systems Modeling;

Language Specifications 2.0. The Modelica Association, 2002.
http://www.modelica.org/.

9. K. Montgomery, C. Bruyns, J. Brown, S. Sorkin, F. Mazzella, G. Thonier, A. Tel-
lier, B. Lerman, and A. C. Menon. Spring: A general framework for collaborative,
real-time surgical simulation. In J. Westwood et al., editor, Medicine Meets Virtual
Reality (MMVR 2002), Amsterdam, 2002. IOS Press.

10. F. Tendick, M. Downes, T. Goktekin, M. C. Çavuşoğlu, D. Feygin, X. Wu, R. Eyal,
M. Hegarty, and L. W. Way. A virtual environment testbed for training laparo-
scopic surgical skills. Presence, 9(3):236–255, June 2000.

11. X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adaptive nonlinear finite
elements for deformable body simulation using dynamic progressive meshes. In
Proceedings of the EUROGRAPHICS 2001, September 2001.

	1 Introduction
	2 Overview
	3 Simulation Objects
	3.1 Simulation API
	3.2 Interfacing API
	3.3 Visualization API
	3.4 Haptics API

	4 Input/Output Subsystem
	4.1 Haptics
	4.2 Visualization

	5 Collision Detection/Collision Response
	6 Simulation Kernel
	7 Conclusion
	Acknowledgements
	References

