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Abstract— It is a classical result that solutions to the
isoperimetric problem, i.e., finding the planar curves with a
fixed length that enclose the largest area, are circles. As a
generalization, we study an asymptotic version of the dual
isoholonomic problem in a Euclidean space with a co-dimension
one distribution. We propose the concepts of asymptotic rank
and efficiency, and compute these quantities as well as the
efficiency-achieving curves in several special cases. In particular,
an example of a snake moving on ice is worked out in detail to
illustrate the results.

I. I NTRODUCTION

As the dual to the isoperimetric problem, the isoholonomic
problem has application in a variety of fields, for example,
control theory [3], the falling cat problem [6], the swimming
microorganism at low Reynolds number [9], and the Berry
phase in quantum mechanics [7], etc. Another reference can
be found in [1]. In this paper, we will formulate and study an
asymptotic version of the isoholonomic problem for which
analytic solutions are available in certain cases. To define the
problem, we shall start from a motivating example, which can
be thought of as the planar version of the falling cat problem.
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Fig. 1. A snake.

A. Motivating Example: Snake on Ice

Consider the following model of a snake moving on a hor-
izontal plane. The snake consists ofn + 2 unit point masses
(nodes) whose positions are denoted byq1, . . . , qn+2 ∈ R2,
respectively. These nodes are then connected subsequently
by n + 1 rigid bars of unit length and zero weight, forming
a kinematic chain. Figure 1 shows an example whenn = 3.
Suppose that the plane is ideal ice (i.e., frictionless) so that
the snake cannot “push off” the ground to gain locomotion.
Then since the snake is a closed mechanical system, its

total linear momentum and total angular momentum are both
conserved. So for an initially stationary snake, we must have

n+2∑
i=1

q̇i ≡ 0, (1)

n+2∑
i=1

qi × q̇i ≡ 0. (2)

Without loss of generality, we assume that the snake is ini-
tially centered at the origin, i.e.,

∑n+2
i=1 qi(0) = 0. Condition

(1) then implies that
∑n+2

i=1 qi ≡ 0.
The configuration of the snake is uniquely determined by

the anglesθ1, . . . , θn+1, whereθi is the angleqi+1−qi makes
with the positivex-axis for i = 1, . . . , n + 1. Eachθi takes
values inR modulo 2π, namely, the 1-torusT = R/2πZ,
so (θ1, . . . , θn+1) takes values in the(n + 1)-torus Tn+1,
which is the configuration spaceof the snake. For given
θ1, . . . , θn+1, q1, . . . , qn+2 can be recovered by

q1 = − 1
n + 2

n+1∑
j=1

(n + 2− j)(cos θj , sin θj)t, (3)

qi = q1 +
i−1∑
j=1

(cos θj , sin θj)t, i = 2, . . . , n + 2, (4)

Equation (3) and (4) together define an embedding of the
configuration spaceTn+1 into R2n+4. Thus Tn+1 inherits
isometrically via this embedding a riemannian metric from
the standard metric onR2n+4. After some calculation, this
metric 〈·, ·〉 can be determined as

gij , 〈 ∂

∂θi
,

∂

∂θj
〉 = ∆ij cos(θi− θj), 1 ≤ i, j ≤ n+1, (5)

where∆ij are constants defined by

∆ij =

{
i(n+2−j)

n+2 , if i < j,
(n+2−i)j

n+2 , if i ≥ j.

Suppose that the trajectory of the snake over an intervalI =
[0, 1] is given by the curveγ in Tn+1. Unless otherwise
stated, we assume that all the curves in this paper are defined
on I. DefineL(γ) =

∫ 1

0
‖γ̇‖ dt and E(γ) =

∫ 1

0
‖γ̇‖2 dt as

the length and theenergyof γ, respectively, where‖ · ‖ is
the norm corresponding to〈·, ·〉. From the definition of〈·, ·〉,
if the positions of the nodes of the snake corresponding toγ
are given byq1, . . . , qn+2, respectively, then

L(γ) =
∫ 1

0

(n+2∑
i=1

q̇2
i

)1/2

dt, E(γ) =
∫ 1

0

n+2∑
i=1

q̇2
i dt.



The problem we study in this paper can be roughly stated
as: how can the snake turn most efficiently? One possible
formulation is described in the following. Suppose that the
snake starts from configuration(θ0

1, . . . , θ
0
n+1) at time0, and

wishes to retain the shape but with different orientation, for
example, it tries to reach configuration(θ0

1 +θ, . . . , θ0
n+1+θ)

at time1. Among all such trajectoriesγ, we want to find the
one with minimal lengthL(γ) (or energyE(γ), which are
equivalent), subject to the constraint (2) that the total angular
momentum are zero at all time.

B. Solutions as Sub-Riemannian Geodesics

Without the constraint (2), the above problem becomes
finding geodesics inTn+1 with the riemannian metric〈·, ·〉,
which is studied in [5]. However, with the addition of the
constraint (2), the problem becomes one of finding sub-
riemannian geodesics in a certain sub-riemannian geometry.
In fact, let γ = (θ1, . . . , θn+1) be a curve inTn+1, and
let q1, . . . , qn+2 be the corresponding positions of its nodes.
Then careful calculations show that (2) is equivalent to

n+1∑
i,j=1

∆ij cos(θi − θj)θ̇j = 0. (6)

In other words, if we define a one-form onTn+1 by

α =
n+1∑
i,j=1

∆ij cos(θi − θj)dθj , (7)

then condition (2) is equivalent toα(γ̇) = 0, i.e., γ̇ ∈ ker α.
Note thatH = kerα is a co-dimension one distribution on
Tn+1. Henceγ must be a horizontal curve for this distribu-
tion. Moreover, the restriction of〈·, ·〉 to H defines a sub-
riemannian metric〈·, ·〉H. In this sub-riemannian geometry,
the sub-riemannian length of the horizontal curveγ coincides
with its riemannian lengthL(γ).

Therefore, the problem stated above is to find the short-
est horizontal curves inTn+1 connecting(θ0

1, . . . , θ
0
n+1) to

(θ0
1 + θ, . . . , θ0

n+1 + θ), which is a distance-minimizing sub-
riemannian geodesic.

Compared with general sub-riemannian geometries, how-
ever, the one defined above belongs to a very special category.
In fact, Tn+1 is a principalT-bundle overTn with distribu-
tion H and sub-riemannian metric〈·, ·〉H that are compatible
with the action of the structure groupT. To see this, consider
the following actionR of T on Tn+1: for each θ ∈ T,
Rθ : Tn+1 → Tn+1 is defined by

Rθ(θ1, . . . , θn+1) = (θ1 + θ, . . . , θn+1 + θ).

The configuration of the snake corresponding to
Rθ(θ1, . . . , θn+1) is obtained from that corresponding to
(θ1, . . . , θn+1) by a rotation ofθ counterclockwise. In fact,
the set of all shapes of the snake corresponds in a one-to-one
way to the set ofT-orbits of Tn+1, which can be identified
as Tn , {(θ1, . . . , θn+1) ∈ Tn+1 : θ1 + . . . + θn+1 = 0

mod 2π}. We shall callTn theshape space. As the notation
suggests,Tn is topologically ann-torus.

There is a natural projectionπ : Tn+1 → Tn defined

by π(θ1, . . . , θn+1) = (θ1 −
∑n+1

i=1 θi

n+1 , . . . , θn+1 −
∑n+1

i=1 θi

n+1 ),
such that for each(θ1, . . . , θn+1) ∈ Tn its inverse image
underπ is exactly theT-orbit in Tn+1 passing through it. In
the terminology of principal bundles,π makesTn+1 into a
principal bundle with base spaceTn and structure groupT.
Each fiber of this bundle consists of all configurations of the
snake with a fixed shape but different orientations.

Note that in the definitions (5) and (7), the terms involving
θi’s are of the formθi − θj , which remain unchanged under
the actionR. Hence the horizontal distributionH and the
sub-riemannian metric〈·, ·〉H are both invariant under the
actionR. Such distributions and sub-riemannian metrics are
calledcompatible(with the action of the structure groupT).

In this perspective, the problem is to determine the shortest
horizontal curve from a configuration(θ1, . . . , θn+1) to a new
configurationRθ(θ1, . . . , θn+1) in the same fiber.

C. Asymptotic Problem

Due to the global nature of the problem proposed above, its
solutions are usually impossible to obtain analytically. In this
paper, we shall study an asymptotic version of the problem:
what is the most efficient way of turning if the snake can
only exert an increasingly smaller amount of energy? Besides
giving approximate solutions to the global problem when
the snake is confined to a neighborhood of the current
configuration, solutions to the asymptotic problem can be
employed repetitively for the snake to turn a significant angle,
which makes sense if the snake has to take a breath at its
original shape from time to time.

The paper is organized as follows. First, some notions
in sub-riemannian geometry are reviewed in Section II. In
Section III, we formulate the problem of asymptotic iso-
holonomy by proposing the concepts of rank and efficiency.
The rank two case is solved in Section IV, and the rank three
case withn = 2 in Section V. The results are then illustrated
in Section VI for the snake example.

II. BASIC SETUP

Since we are concerned with local solutions, we consider
Rn+1 instead ofTn+1. The projectionπ : (x1, . . . , xn+1) ∈
Rn+1 7→ (x1, . . . , xn) ∈ Rn defines Rn+1 as a bundle
over Rn whose fiber over each pointm ∈ Rn is given by
π−1(m) ' R, makingπ : Rn+1 → Rn a principalR-bundle.

A. Co-Dimension One Distribution onRn+1

A co-dimension one distributionH on Rn+1 is defined by
the vanishing of a one-form

α =
n∑

i=1

αidxi − dxn+1, (8)

where α1, . . . , αn are C∞ functions on Rn+1. At each
point q ∈ Rn+1, the horizontal spaceHq is the kernel of



αq in TqRn+1 ' Rn+1, thought of as ann-dimensional
subspace ofRn+1, namely,Hq = {(v1, . . . , vn+1) ∈ Rn+1 :∑n

i=1 αi(q)vi − vn+1 = 0}.
A horizontal curveγ in Rn+1 is an absolute continuous

curve inRn+1 whose tangent vectoṙγ(t) wherever it exists
belongs toHγ(t). Write γ = (γ1, . . . , γn+1) in coordinates
and note thatH = kerα, we have thatγ is horizontal if
and only if γ̇n+1 =

∑n
i=1 αiγ̇i, a.e. For a curvec in Rn

starting fromm, let q = (m,h) ∈ π−1(m) be arbitrary.
The horizontal lift of c based atq is the unique horizontal
curve γ in Rn+1 starting fromq and satisfyingπ(γ) = c
at all time. If in particularc is a loop in Rn based atm,
then its horizontal liftγ must start and end in the same fiber
π−1(m), i.e., the end point ofγ has the samex1, . . . , xn

coordinates asm. The difference in theirxn+1 coordinates
is called theholonomyof the loopc (based atq), which in
general depends on the choice ofq ∈ π−1(m).

B. Compatible Distribution

The distributionH is calledcompatible(with the bundle
structureπ : Rn+1 → Rn) if it is invariant under the action of
the structure groupR, namely, translations along thexn+1-
axis. In other words,H is compatible if and only if the
horizontal spacesHq, thought of asn-dimensional subspaces
in Rn+1, are the same forq in the same fiberπ−1(m). In
terms of equation (8), this is equivalent to

the functionsα1, . . . , αn+1 are independent onxn+1. (9)

Because of (9), we can defined a one-form onRn as

Θ =
n∑

i=1

αidxi, (10)

which is called theconnection formof H. The curvature
form of H is the two-form onRn defined as

Ω = dΘ. (11)

An important implication of compatible distributions is
that the holonomy of a loopc in Rn based atm is inde-
pendent of the starting pointq ∈ π−1(m) of its horizontal
lift, thus can be simply denoted byh(c).

An alternative interpretation ofh(c) is the following. Let
c : I → Rn be a loop based atm, andγ be its horizontal
lift based at an arbitrary point inπ−1(m). Then h(c) =
γn+1(1) − γn+1(0) =

∫ 1

0
γ̇n+1 dt =

∫ 1

0

∑n
i=1 αiγ̇i dt =∫

c
Θ. Now we find a two-dimensional submanifoldS im-

mersed inRn whose boundary∂S is exactly c under the
canonical orientation ofRn. Then by the Stokes equations,

h(c) =
∫

∂S

Θ =
∫

S

dΘ =
∫

S

Ω. (12)

Equation (12) expresses the holonomyh(c) as an integral of
the curvature formΩ over an arbitrary surface encircled by
c. This relation will be useful later.

C. Sub-Riemannian Metric

A sub-riemannian metric onH is an assignment of inner
products to horizontal spacesHq that varies smoothly with
q ∈ Rn+1. One often denotes these inner products by〈·, ·〉H
and their corresponding norms by‖ · ‖H. The existence of a
sub-riemannian metric enables one to measure the length of
horizontal curves: for a horizontal curveγ in Rn+1, its length
is given byL(γ) =

∫ 1

0
‖γ̇‖ dt. It should be emphasized here

that the length of a non-horizontal curve is in general not
defined. The sub-riemannian distance between two arbitrary
points q1 and q2 in Rn+1 is the infimum of the length of
all horizontal curves connecting them. With this distance, the
distributionH and the sub-riemannian metric〈·, ·〉H together
specify asub-riemannian geometryon Rn+1.

D. Compatible Metric

For a compatible distributionH, a sub-riemannian metric
is calledcompatible(with the bundle structureπ : Rn+1 →
Rn) if it is invariant under the action of the structure group
R. Hence translations along thexn+1-axis are isometries for
the sub-riemannian geometry.

Compatible sub-riemannian metrics onH corresponds in
a one-to-one way to riemannian metrics on the base space
Rn. To see this, we first define the horizontal lift operator.
For each pair ofm ∈ Rn and q ∈ π−1(m), the horizontal
lift hq : TmRn → Hq is a linear map that mapsv ∈ TmRn

to the uniqueu ∈ Hq satisfying dπq(u) = v. Thus hq is
the inverse of the mapdπq restricted onHq, which is an
isomorphism by our choice ofα in (8). Now starting from a
compatible sub-riemannian metric〈·, ·〉H, there is a unique
riemannian metric〈·, ·〉Rn on Rn that makes all horizontal
lifts isometries. In fact,〈·, ·〉Rn is defined by

〈u, v〉Rn = 〈hq(u), hq(v)〉H, ∀u, v ∈ TmRn, (13)

which is independent of the choice ofq ∈ π−1(m) since
〈·, ·〉H is compatible. Conversely, a riemannian metric〈·, ·〉Rn

on Rn induces a compatible sub-riemannian metric onH as

〈u, v〉H = 〈dπq(u), dπq(v)〉Rn , ∀u, v ∈ Hq. (14)

III. PROBLEM FORMULATION

A. Asymptotic Holonomy

Suppose thatH = kerα is a co-dimension one distribution
on Rn+1, where α is given in (8), and〈·, ·〉H is a sub-
riemannian metric onH. Fix a pair(m, q), wherem ∈ Rn,
q ∈ Rn+1, and q ∈ π−1(m). Let c be a non-trivial loop in
Rn based atm, and letγ be its horizontal lift inRn+1 based
at q. Denote byh(c) the holonomy ofc based atq and, with
some abuse of notation, byL(c) the length ofγ (the length
of c is in general not defined). Note thatL(c) > 0 sincec
is non-trivial. For eachε > 0, denote byεc the loop inRn

obtained by scalingc by a factor ofε towardsm (a more
accurate notation should bem + ε(c−m)). Thush(εc) and
L(εc) are similarly defined. It is easy to show that asε → 0,



L(εc) is of the order ofε, while |h(εc)| is of the order ofεr

for some integerr ≥ 1. We call this integer therank of the
loop c, and denote it byrq(c). The (asymptotic) efficiencyof
c is defined as

ηq(c) , lim
ε→0

|h(εc)|
Lr(εc)

. (15)

The rank and the(asymptotic) efficiencyat q are defined as

r(q) , min
c

rq(c),

η(q) , sup{ηq(c) : c such thatrq(c) = r(q)}.
(16)

Remark 1 Both rq(c) and ηq(c) depend onq ∈ π−1(m)
sinceh(c) and L(c) in general vary withq. However, if the
distributionH and the sub-riemannian metric〈·, ·〉H are both
compatible, thenh(c) and L(c) are the same asq varies
in the fiberπ−1(m). Therefore, in this case one can write
rm(c), ηm(c), r(m), andη(m) instead. We shall simply call
r(m) andη(m) the rank and the efficiency atm, respectively.

Example 1 (Heisenberg Geometry)Consider the follow-
ing compatible distributionH and sub-riemannian metric
〈·, ·〉H on R3. Suppose thatH is given by the vanishing of
α = 1

2 (x1dx2−x2dx1)−dx3, and that〈·, ·〉H is induced by
the canonical riemannian metric onR2. Then the holonomy
h(c) of a loop c in R2 is the signed area it encloses, and
L(c) is simply its length inR2. Thus by the well-known
isoperimetric theorem, the rank at anym ∈ R2 is two, and
the efficiencyη(m) = 1/4π, both realized whenc is a circle
of arbitrary radius passing throughm.

The following lemmas are direct consequence of the above
definitions. We omit their proofs here.

Lemma 1 For a loopc in Rn based atm, andq ∈ π−1(m),
• (invariance to scaling)rq(c) = rq(λc) and ηq(c) =

ηq(λc) for any λ > 0;
• (invariance to reparameterization)rq(c◦ρ) = rq(c) and

ηq(c ◦ ρ) = ηq(c) for any diffeomorphismρ : I → I.

Obviously, the rank atq ∈ Rn+1 depends only on the
horizontal distributionH nearq, and is independent of the
sub-riemannian metric〈·, ·〉H. For compatibleH, we have

Lemma 2 SupposeH is compatible with connection formΘ
and curvature formΩ, respectively. WriteΩ in coordinates
as Ω =

∑
1≤i,j≤n Ωij dxi ∧ dxj , whereΩij = −Ωji. Then

at any m ∈ Rn, r(m) − 2 is equal to the smallest integer
k ≥ 0 for which there exist somei0, j0 such that at least one
k-th order partial derivative ofΩi0j0 at m is nonzero.

On the other hand, althoughη(q) does depend on〈·, ·〉H,
due to the smoothly varying nature of〈·, ·〉H nearq, we have

Lemma 3 η(q) depends on the sub-riemannian metric
〈·, ·〉H only through its restriction onHq.

By Lemma 3, to the effect of studyingη(q), we can modify
〈·, ·〉H on other horizontal spaces so that for anyq′ ∈ Rn+1,

dπq′ : Hq′ → Tπ(q′)Rn is an isometry, (17)

where the metrics on allTπ(q′)Rn are given by the same
positive definiten-by-n matrix A0. For compatibleH, 〈·, ·〉H
thus chosen is also compatible. By a transformation of
coordinates withinRn, in the rest of the paperwe shall
assume that(17) holds withA0 = I. HenceL(c) is simply
the arc length ofc as a curve inRn with the canonical metric.

B. Equations of Efficiency-Achieving Loops

To find the efficiencyη(q) at q ∈ Rn+1 and the (family
of) loops c based atm = π(q) for which ηq(c) = η(q), one
needs to solve the following variational problem.

Problem 1 Let c be an arbitrary loop inRn based atm, and
let h(c) be its holonomy. Then solving forη(q) is equivalent
to one of the following problems:

1) minimizeL(c) =
∫ 1

0
‖ċ‖ dt, subject toh(c) = 1;

2) maximizeh(c), subject toL(c) = 1;
3) minimizeE(c) =

∫ 1

0
‖ċ‖2 dt, subject toh(c) = 1;

4) maximizeh(c) subject toE(c) = 1.

Formulation 3 is adopted here since it avoids the ambiguity of
reparameterizations (solutions in formulations 3 are solutions
in formulation 1 parameterized with unit speed). Using the
Lagrangian multiplier approach [8], solutions are given by:

c̈ = −λ iċΩ. (18)

Here,iċΩ = Ω(ċ, ·) is a one-form onRn that we identify as
a vector via the canonical metric onRn. We are interested
only in those solutions to (18) that start and end in the
origin. The constraint thath(c) = 1 can be ignored if one is
only interested in the shape of such solutions. Equation (18)
describes the motions of a particle of unit mass and unit
charge moving in a magnetic field onRn given byΩ in the
case ofn = 2, 3, and in general admits no analytic solution.

IV. RANK TWO CASE

Let H be a compatible co-dimension one distribution on
Rn with connection formΘ and curvature formΩ, and let
〈·, ·〉H be a riemannian metric onH obtained by lifting the
canonical metric onRn. In this section, we try to determine
η(m) at a pointm ∈ Rn with rank r(m) = 2. Without loss
we assume thatm = 0 ∈ Rn andq = 0 ∈ Rn+1.

By Lemma 2, ifΩ =
∑

1≤i,j≤n Ωij dxi ∧ dxj in coordi-
nates, thenΩij(0) 6= 0 for at least somei, j. DefineΩ0 ,∑

1≤i,j≤n Ωij(0) dxi ∧ dxj . The for any two dimensional
submanifoldS in Rn encircled by a loopc based at0, we
haveh(εc) =

∫
εS

Ω ∼
∫

εS
Ω0 = ε2

∫
S

Ω0, as ε → 0. Hence
in determining the efficiency at0, we may as well assume



that H has the curvature formΩ0. Under this assumption,

η0(c) = limε→0
|h(εc)|
L2(εc) = limε→0

ε2
∣∣ ∫

S
Ω0

∣∣
ε2L2(c) =

∣∣ ∫
S

Ω0
∣∣

L2(c) , so

η(0) = sup
c

η0(c) = sup
c

∣∣ ∫
S

Ω0
∣∣

L2(c)
= sup

c

∣∣ ∫
S

Ω0
∣∣

E(c)
. (19)

Define ann-by-n skew-symmetric matrix

Z = [Ωij(0)]1≤i,j≤n. (20)

Z can be transformed into the following standard form:

Z = Q · diag

([
0 −σ1

σ1 0

]
, . . . ,

[
0 −σl

σl 0

]
, 0, . . . , 0

)
·Qt,

whereQ ∈ Rn×n is orthonormal,l > 0 is an integer with
2l ≤ n, and σ1 ≥ · · · ≥ σl > 0. In fact, σ1, . . . , σl each
repeated twice are the nonzero singular values ofZ.

Now perform the following coordinate transformation:

(y1, . . . , yn) = (x1, . . . , xn)Q. (21)

ThenΩ0 = 2(σ1dy1 ∧ dy2 + · · ·+ σldy2l−1 ∧ dy2l). So for
S in Rn encircled by a loopc based at0 with coordinates
y1, . . . , yn, we have

∫
S

Ω0 = 2
∑l

i=1 σi

∫
S

dy2i−1 ∧ dy2i.
Note that

∫
S

dy2i−1 ∧ dy2i is the area of the projection of
S onto the planeΠi spanned by they2i−1 and y2i axes.
By the classical isoperimetric theorem [4],|

∫
S

dy2i−1 ∧
dy2i| ≤ 1

4π

∫ 1

0
(ẏ2

2i−1 + ẏ2
2i) dt, with equality if and only

if (y2i−1, y2i) for t ∈ I draws a circle of arbitrary radius
through the origin inΠi. Summing up, we have|

∫
S

Ω0| ≤
2

∑l
i=1 σi|

∫
S

dy2i−1 ∧ dy2i| ≤ 2σ1

∑l
i=1

1
4π

∫ 1

0
(ẏ2

2i−1 +
ẏ2
2i) dt ≤ σ1

2π E(c), where the equality holds if and only if for
all i = 1, . . . , l such thatσi = max1≤i≤l σi, the projection
of c ontoΠi is a circle of arbitrary radius through0, and the
projection ofc to all other axes are all zero. Therefore,

Theorem 1 Suppose thatH is a compatible distribution on
Rn with curvature formΩ, and 〈·, ·〉H is a sub-riemannian
metric onH such thatdπ is an isometry fromH0 to T0Rn

with the canonical metric. Letσ1 ≥ · · · ≥ σl each repeated
twice be the nonzero singular values of the matrixZ defined
in (20). Then the efficiency at0 is

η(0) =
σ1

2π
. (22)

Moreover, letΠi be the subspace spanned by they2i−1 and
y2i axes under the coordinate transformation(21). Then for a
loop c in Rn based at0 to have efficiencyη(0), its projection
onto each planeΠi with σi = σ1 must be a circle, and its
projections on all other axes are zero.

V. RANK THREE CASE

In this section, we study the efficiency at pointm = 0 ∈
Rn for a compatible horizontal distributionH on Rn+1 with
rankr(0) = 3. So the curvature formΩ satisfiesΩ0 = 0 and
Ω1 ,

∑
1≤i,j,k≤n

∂Ωij(0)
∂xk

xk dxi ∧ dxj 6= 0. By our previous
discussions, we can replaceΩ by Ω1.
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Fig. 2. A solution curve to problem (23).

We study the simplest casen = 2 only. So
Ω1 = 2(∂Ω12(0)

∂x1
x1 + ∂Ω12(0)

∂x2
x2)dx1 ∧ dx2. Define κ =√

[∂Ω12(0)
∂x1

]2 + [∂Ω12(0)
∂x2

]2, which is nonzero by assumption.
Perform the coordinate transformation(y1, y2) = (x1, x2)Q,
whereQ is the orthonormal matrix defined by

Q =
1
κ

[
∂Ω12(0)

∂x1

∂Ω12(0)
∂x2

−∂Ω12(0)
∂x2

∂Ω12(0)
∂x1

]
.

ThenΩ1 is now Ω1 = 2κy1 dy1 ∧ dy2. For a nontrivial loop
c in R2 based at0 enclosing the (oriented) areaS, we have

h(εc) ∼
∫

εS

Ω1 = ε3
∫

S

Ω1 = ε3
∫

c

κy2
1dy2.

Henceη0(c) = limε→0
h(εc)

L3(εc) = κ
∫

c
y2
1dy2

L3(c) , and

η(0) = sup
c

η0(c) = sup
c

κ
∫

c
y2
1dy2

L3(c)
= κ · sup

c

∫
c
y2
1dy2

E3/2(c)
.

To determine thec for which η(0) is achieved, one needs to
solve the following variational problem:

find c that minimizesE(c) such that
∫

c

y2
1dy2 = 1. (23)

Problem (23) can be solved using the Maximal Principle.
The details are omitted here, and can be found in an
upcoming paper. Figure 2 plots one solution curve (up to
a scaling) to problem (23), which should be parameterized
so that it proceeds counterclockwise with constant speed.

Remark 2 The efficiency-achieving loop calculated in this
section is part of the trajectory of a charged particle mov-
ing in a magnetic fieldB with linear components onR2,
referred to as agradB drift since it exhibits an overall drift
orthogonal to the direction grad|B| ([2]).

VI. BACK TO THE SNAKE

Suppose that in the snake example we haven = 2. So the
snake consists of three rigid segments, whose orientations are
given by the anglesθi, i = 1, 2, 3. The configuration space
is T3, with a Riemannian metric given by (5), where∆ =

(∆ij)1≤i,j≤3 = 1
4

3 2 1
2 4 2
1 2 3

. By (7), the co-dimension one



distribution H is given by the vanishing of the one-form
α =

∑3
i,j=1 ∆ij cos(θi − θj)dθj .

Suppose now that the snake is at the initial configuration
q corresponding toθ1 = θ2 = θ3 = 0, i.e. the three segments
of the snake are all aligned in the positive horizontal direc-
tion. To compute the rank atq, we perform the following
coordinate transformation in a neighborhood ofq:φ1

φ2

φ3

 =

−
√

5
3

2
√

5
3 −

√
5

3
−1 0 1
1 1 1

θ1

θ2

θ3

 , (24)

The choice of such a transformation serves several purposes.
First, φ3 = θ1 + θ2 + θ3 is the direction along the fibers of
T3 under the action ofT as described in Section I. Second,
the planeΠ spanned by theφ1 and φ2 axes is transversal
to theφ3 axis, hence can be regarded as the base space for
the principal bundleT3, at least locally around the origin.
Third, the projectiondπ : Hq → T(0,0)Π is an isometry
if Π is equipped with the canonical Euclidean metric. Thus
condition (17) is satisfied withA0 = I.

In the new coordinates,q corresponds to the originφ1 =
φ2 = φ3 = 0, and the condition thatα = 0 is equivalent
to the vanishing of a suitable connection formΘ defined on
Π ' R2. After a careful calculation, the curvature formΩ is
Ω = dΘ = f(φ1, φ2)dφ1∧dφ2, wheref(φ1, φ2) is given by

f(φ1, φ2) =
3 sin( 3

√
5

10 φ1)
5f1(φ1, φ2)

{
4 cos(

1
2
φ2) +

f2(φ1, φ2)
f1(φ1, φ2)

}
,

f1(φ1, φ2) = 5 + 4 cos(
3
√

5
10

φ1) cos(
1
2
φ2) + cos φ2,

f2(φ1, φ2) = cos(
3
√

5
10

φ1)[10 sin2(
1
2
φ2)− 6 cos2(

1
2
φ2)]

+ 4 sin2(
1
2
φ2) cos(

1
2
φ2).

One can verify thatf(0, 0) = 0, ∂f
∂φ1

(0, 0) 6= 0, ∂f
∂φ2

(0, 0) =
0. As a result of Proposition 2, the rank atq is three. To
compute the efficiency atq, we can replaceΩ by its first order
approximateΩ1 = 51

250dφ1 ∧ dφ2. In particular, maximum
efficiency atq is achieved by the horizontal lifting of a curve
c in the(φ1, φ2) plane plotted in Figure 2. Horizontally lifting
c to a curveγ in (φ1, φ2, φ3) coordinates, transformingγ
back to the(θ1, θ2, θ3) coordinates using (24), and finally
using equation (3), we obtain the motions for the snake to
turn with the least energy asymptotically starting from the
aligned initial position. Figure 3 shows the snapshots of the
motions at different time instances obtained numerically.

Remark 3 By equation(VI) , in a neighborhood of the origin
in the (φ1, φ2) coordinates, the zero-th order approximate of
the curvature formΩ vanishes if and only ifφ1 = 0, i.e., if
and only ifθ1 + θ3 − 2θ2 = 0. So the rank is three at points
satisfying this condition and two otherwise. As a result, for
snake starting from a shape close to the aligned one, it is
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Fig. 3. Snap shots of snake turning.

more difficult for the snake to turn if its initial shape satisfies
the conditionθ1 + θ3 − 2θ2 = 0.
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