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Abstract—It is a classical result that solutions to the total linear momentum and total angular momentum are both

isoperimetric problem, i.e., finding the planar curves with a  conserved. So for an initially stationary snake, we must have
fixed length that enclose the largest area, are circles. As a

generalization, we study an asymptotic version of the dual sy .

isoholonomic problem in a Euclidean space with a co-dimension Z w = 0, (1)
one distribution. We propose the concepts of asymptotic rank i=1

and efficiency, and compute these quantities as well as the n+42

efficiency-achieving curves in several special cases. In particular, Z g xqg = 0. 2
an example of a snake moving on ice is worked out in detail to im1

ill h Its. . . L
Hlustrate the results Without loss of generality, we assume that the snake is ini-

|. INTRODUCTION tially centered at the ori92in, i.eZ;‘:*f ¢:(0) = 0. Condition
. o . (1) then implies thab_7""7 ¢; = 0.

As the dual to the isoperimetric problem, the isoholonomic Tpe configuration of the snake is uniquely determined by
problem has application in a variety of fields, for exampley,e angled, .. ., 0,1, whered; is the angley;, —q; makes
control theory [3], the falling cat problem [6], the swimmingith the positivez-axis fori = 1,...,n + 1. Eaché; takes
microorganism at low Reynolds number [9], and the Berry5j,es inR modulo 27, namely, the 1-toru§ = R/277Z,
phase in quantum mechanics [7], etc. Another reference cgp (61,...,0,.1) takes values in thén + 1)-torus T"+1,

be found in [1]. In this paper, we will formulate and study anyhich is the configuration spaceof the snake. For given

asymptotic version of the isoholonomic problem for whicr‘[g1 ce 0its 1, -, qnie CAN be recovered by

analytic solutions are available in certain cases. To define the i

problem, we shall start from a motivating example, which can _ 9_ 0. sinf.)t 3
be thought of as the planar version of the falling cat problem. *' n+2 ;(n +2 = j)(cos b, sin ), (3)

i—1
¢+ Z(cosﬁj,sinej)t, 1=2,...,n+2, (4)

Jj=1
Equation (3) and (4) together define an embedding of the
configuration spac&”*! into R?"*4. Thus T"*! inherits
isometrically via this embedding a riemannian metric from
the standard metric oRR?>"*+4. After some calculation, this
metric (-, -) can be determined as

qi

o 0
gij = <£a 87> = Ajjcos(6; —0;), 1 <i,j <n+1, (5)
i J
whereA;; are constants defined by
i(n+2—j) e .
Fig. 1. A snake. Ay — 7n+2‘3‘, if 1<y,
R Ee=== N F Py

Suppose that the trajectory of the snake over an intdrval

[0,1] is given by the curvey in T"*!. Unless otherwise
Consider the following model of a snake moving on a horstated, we assume that all the curves in this paper are defined

izontal plane. The snake consists/of- 2 unit point masses on I. Define L(y) = fOl 7]l dt and E(~) = fOl %] dt as

(nodes) whose positions are denotedgby. .., gn12 € R?,  the lengthand theenergyof +, respectively, wherd - || is

respectively. These nodes are then connected subsequegily norm corresponding tg, -). From the definition of-, -),

by n + 1 rigid bars of unit length and zero weight, formingif the positions of the nodes of the snake corresponding to

a kinematic chain. Figure 1 shows an example when 3.  are given byq, . .., ¢,,2, respectively, then

Suppose that the plane is ideal ice (i.e., frictionless) so that L ni2 1/2 L ni2

the sna!<e cannot “push .off" the ground to gain Iocomotlon.. L(y) = / (Z 4?) dt, E(y)= / Z 2 dt.

Then since the snake is a closed mechanical system, its = 0 i3

A. Motivating Example: Snake on Ice



The problem we study in this paper can be roughly statedod 27}. We shall callT™ the shape spaceAs the notation
as: how can the snake turn most efficieRtlPne possible suggestsT™ is topologically ann-torus.
formulation is described in the following. Suppose that the There is a natural projectiom : T**! — T" defined

snake starts from configuratigf?, ..., 65, ) attime0, and by 7(6;,...,0,.1) = (6, — 25{11101 e O — %)
wishes to retain the shape but with different orientation, foguch that for eachfy, .. .79“’1) e T" its inverse image

example, it tries to reach configuratiof +6,...,6)  ,+6)  underr is exactly theT-orbit in T"*! passing through it. In

at time1. Among all such trajectorieg, we want to find the the terminology of principal bundles; makesT"+! into a
one with minimal lengthL(v) (or energyE(v), which are principal bundle with base spa@" and structure grouft.
equivalent), subject to the constraint (2) that the total angul@ach fiber of this bundle consists of all configurations of the
momentum are zero at all time. snake with a fixed shape but different orientations.

B. Solutions as Sub-Riemannian Geodesics Note that in the definitions (5) and (7), the terms involving

With h it (2). the ab blem b g;'s are of the formd; — 6;, which remain unchanged under
ithout the constraint (2), the above problem €COME&Re actionR. Hence the horizontal distributioh! and the

fm@ng.geode.sms.ml‘”“ with the riemannian metric:, -), g, rjiemannian metri¢-, -)», are both invariant under the
which 'S studied in [5]. However, with the add|t_|on. of theaction R. Such distributions and sub-riemannian metrics are
constraint (2), the 'pro.blem becpmes one of .fmdmg SUtEalledcompatible(with the action of the structure group).
riemannian geodesics in a certain sub-riemannian geometry,, g perspective, the problem is to determine the shortest

— i +1
lln fact, let _b (916...,9%1) bs_ a curve m']I‘”f N an(zlj horizontal curve from a configuratidd;, . .., 6,4+1) to a new
elqu, ..., ¢n+2 DE the corresponding positions of Its NOdeSyqfiqrationRy (6:, . .. , 0,.1) in the same fiber.
Then careful calculations show that (2) is equivalent to ]
— C. Asymptotic Problem
n

Z A;j cos(0; — 6;)8; = 0. (6) Due to the global nature of'the problem propoged above,.its
solutions are usually impossible to obtain analytically. In this

paper, we shall study an asymptotic version of the problem:

what is the most efficient way of turning if the snake can

ij=1

In other words, if we define a one-form &+ by

n+1 only exert an increasingly smaller amount of energy? Besides
a= Y Ajcos(f; —0;)do; (7) giving approximate solutions to the global problem when
i,j=1 the snake is confined to a neighborhood of the current

then condition (2) is equivalent ta(4) = 0, i.e., 4 € ker a. configuration, solutions to the asymptotic problem can be

Note that{ = ker« is a co-dimension one distribution on employed repetitively for the snake to turn a significant angle,
T»+1, Hencey must be a horizontal curve for this distribu-WhiCh makes sense if the snake has to take a breath at its

tion. Moreover, the restriction of-,-) to H defines a sub- °riginal shape from time to time. _ _
riemannian metric-, -)5. In this sub-riemannian geometry, The paper is organized as follows. First, some notions

the sub-riemannian length of the horizontal cupveoincides " sub-riemannian geometry are reviewed in Section Il. In
with its riemannian lengtiL(v). Section I, we formulate the problem of asymptotic iso-

Therefore, the problem stated above is to find the shorfo/onomy by proposing the concepts of rank and efficiency.
est horizontal curves iff"*! connecting(6?,...,6°. ) to The rank two case is solved in Section IV, and the rank three
(69 +6,....60,, +6), which is a distance}r,nini;ni?nlg sub- Case withn = 2 in Section V. The results are then illustrated

n . .
riemannian geodesic. in Section VI for the snake example.

Compared with general sub-riemannian geometries, how- Il. BASIC SETUP
ever, the one defined above belongs to a very special categorysince we are concerned with local solutions, we consider
In fact, T"*! is a principalT-bundle overI™ with distribu-  pn+1 jnstead of "+, The projectionr : (x1,...,Zp41) €
tion  and sub-riemannian metrig, -) that are compatible pn+1 (z1,...,2n) € R" definesR™*! as a bundle
with the action of the structure groth To see this, consider ,yer R» whose fiber over each point. € R” is given by
the following actionR of T on T"*!: for each§ € T, 7=1(m) ~ R, makingr : R"+! — R" a principalR-bundle.

Ry : Tl — T+t js defined b
0 y A. Co-Dimension One Distribution oriR™+!

Ro(0r, - Ons1) = (01 + 0, Ong1 +6). A co-dimension one distributioft on R"*! is defined by
The configuration of the snake corresponding tdhe vanishing of a one-form
Ry(0y,...,0,+1) is obtained from that corresponding to n
(01,...,0,.+1) by a rotation ofg counterclockwise. In fact, a= Zaid% —drpy, 8)
the set of all shapes of the snake corresponds in a one-to-one i=1
way to the set ofl-orbits of T"*!, which can be identified where a1,...,a,, are C= functions onR"*!. At each

asT" £ {(01,...,0n41) € T" L 2 601 +... + 60,41 = 0 point g € R**1, the horizontal spacé, is the kernel of



ag in T,R™™! ~ R"*1 thought of as am-dimensional C. Sub-Riemannian Metric

sugspace oR™ "1, namely,H, = {(v1, ..., vnt1) € R™TL: A sub-riemannian metric oft{ is an assignment of inner
2z @i(@)vi — vng1 = 0} products to horizontal spacé¢, that varies smoothly with
A horizontal curvey in R**! is an absolute continuous g € R™'. One often denotes these inner products by
curve inR"** whose tangent vectoy(t) wherever it exists anq their corresponding norms Hy | The existence of a
belongs toH., ;). Write 7 = (y1,..,m+1) In coordinates g, riemannian metric enables one to measure the length of
and note thatl = kerg' we have thaty is horizontal if  orizontal curves: for a horizontal curyein R™+!, its length
and only if 41 = > i, ais, a.e. For a curvec in R™ g given by L(y) = [ %]l dt. 1t should be emphasized here
starting fromm, let ¢ = (m,h) € W_l(m? be arbitrary. hat the length of a non-horizontal curve is in general not
The horizontal lift of ¢ based ay is the unique horizontal efined. The sub-riemannian distance between two arbitrary
curvey In RnJ_rl starting fromg and satisfyingr(y) = ¢ points ¢, and g, in R**! is the infimum of the length of
at all time. If in particularc is a loop inR™ based atm, || horizontal curves connecting them. With this distance, the
then its horizontal lifty must start and end in the same fiberyistribution and the sub-riemannian metric -)5, together
7~1(m), i.e., the end point ofy has the same;,...,z, specify asub-riemannian geometryn R™+!.
coordinates asn. The difference in their,; coordinates
is called theholonomyof the loopc (based ag), which in D. Compatible Metric
general depends on the choiceqo& 7~ (m). For a compatible distributioft{, a sub-riemannian metric
is calledcompatible(with the bundle structure : R**+1 —
R™) if it is invariant under the action of the structure group
The distribution’ is called compatible(with the bundle R. Hence translations a|0ng tm+1_axis are isometries for
structurer : R™*t! — R7) if it is invariant under the action of the sub-riemannian geometry.
the structure groufiR, namely, translations along the, ;- Compatible sub-riemannian metrics &h corresponds in
axis. In other words} is compatible if and only if the 3 one-to-one way to riemannian metrics on the base space
horizontal space®{,, thought of as:-dimensional subspaces r”. To see this, we first define the horizontal lift operator.
in R"*!, are the same fog in the same fiberr='(m). In For each pair ofn € R™ andq € =—1(m), the horizontal
terms of equation (8), this is equivalent to lift h, : T,,R™ — H, is a linear map that maps € T;,R"
to the uniqueu € H, satisfyingdnr,(u) = v. Thus h, is

B. Compatible Distribution

the functionsay, ..., a1 are independent om, 4. (9) the inverse of the magr, restricted onH,, which is an
Because of (9), we can defined a one-formRih as isomorphism by our choice af in (8). Now starting from a
n compatible sub-riemannian metrie -)4, there is a unique
o — Zaidwi, (10) riemannian metric(, -)g» on R™ that makes all horizontal
Pl lifts isometries. In fact{:, -)g~ is defined by
which is called theconnection formof H. The curvature (u, v)rn = (hg(u), hq(v))n, VYu,v € T,,R™, (13)

form of H is the two-form onR"™ defined a
' s ' I S which is independent of the choice gf € 7~!(m) since

Q =de. (11) (-, -)n is compatible. Conversely, a riemannian metric)gn

) o ) S ~ onR" induces a compatible sub-riemannian metrictoras
An important implication of compatible distributions is

that the holonomy of a loop in R™ based atn is inde- (u,v)p = (dmg(u),dmg(v))rn, Yu,v € Hy o (14)
pendent of the starting point € 7—1(m) of its horizontal
lift, thus can be simply denoted by(c). _
An alternative interpretation of(c) is the following. Let A. Asymptotic Holonomy

c¢: I — R™ be a loop based at, and~ be its horizontal Suppose thak{ = ker « is a co-dimension one distribution
lift based at an arbitrary point im~!(m). Thenh(c) = on R"*!, wherea is given in (8), and(-, ) is a sub-
Ynt1(1) = Yns1(0) = fol A1 dt = fol Yor aiyidt = riemannian metric ori{. Fix a pair(m, q), wherem € R",
J.©. Now we find a two-dimensional submanifolfl im- ¢ € R"*!, andq € #~*(m). Let ¢ be a non-trivial loop in
mersed inR™ whose boundanysS is exactly c under the R" based atn, and lety be its horizontal lift inR"** based
canonical orientation oR™. Then by the Stokes equations, at ¢q. Denote byh(c) the holonomy ofc based ay and, with

some abuse of notation, biy(c) the length ofy (the length
h(c):/ @:/d@:/Q.
oS S S

I11. PROBLEM FORMULATION

(12) of ¢ is in general not defined). Note thafc) > 0 sincec

is non-trivial. For eack > 0, denote byec the loop inR™

Equation (12) expresses the holonofy:) as an integral of obtained by scaling: by a factor ofe towardsm (a more
the curvature fornf2 over an arbitrary surface encircled byaccurate notation should be + e(c — m)). Thush(ec) and
c. This relation will be useful later. L(ec) are similarly defined. It is easy to show thateas- 0,



L(ec) is of the order of, while |h(ec)| is of the order ofe” By Lemma 3, to the effect of studying(q), we can modify
for some integer > 1. We call this integer theank of the (-, -)3, on other horizontal spaces so that for afiye R"*+1,

loop ¢, and denote it by, (c). The (asymptotic) efficiencyf . )
c is defined as drg : Hey — Tr(HR™ is an isometry, (17)
a i |h(ec)|
(€)= 112% L7(ec)’ (15)  where the metrics on all’;,HR" are given by the same
positive definiten-by-n matrix Ay. For compatibleH, (-, )
thus chosen is also compatible. By a transformation of

The rank and the(asymptotic) efficiencwt ¢ are defined as

r(g) £ min r4(c), coordinates withinR", in the rest of the papewe shall
L - (16)  assume tha{17) holds with Ay = I. HenceL(c) is simply
n(q) = sup{ny(c) : ¢ such thatry(c) = r(q)}. the arc length of as a curve iiR™ with the canonical metric.

Remark 1 Both r,(c) and 7,(c) depend ong € 7~'(m) B. Equations of Efficiency-Achieving Loops
sinceh(c) and L(c) in general vary withg. However, if the

distributionH and the sub-riemannian metrig, -)4; are both
compatible, them(c) and L(c) are the same ag varies
in the fiberw—1(m). Therefore, in this case one can write
rm(C), nm(c), r(m), andn(m) instead. We shall simply call
r(m) andn(m) the rank and the efficiency at, respectively. Problem 1 Letc be an arbitrary loop inR™ based atn, and

let h(c) be its holonomy. Then solving fgfq) is equivalent
Example 1 (Heisenberg Geometry)Consider the follow- to one of the following problems:
ing compatible distribution’Y and sub-riemannian metric 1) minimizeL(c) = fOl ||¢|| dt, subject toh(c) = 1;
(-,-)2¢ on R3. Suppose that{ is given by the vanishing of 2) maximizeh(c), subject toL(c) = 1;
a = (21dwy — 72d7)) — das, and that(;, -)y is induced by 3) minimize E(c) = [, [|¢|2 dt, subject toh(c) = 1;
the canonical riemannian metric dR?. Then the holonomy 4) maximizeh(c) subject toE(c) = 1.
h(c) of a loop ¢ in R? is the signed area it encloses, and
L(c) is simply its length inR%. Thus by the well-known Formulation 3 is adopted here since it avoids the ambiguity of
isoperimetric theorem, the rank at amy € R? is two, and reparameterizations (solutions in formulations 3 are solutions
the efficiency;(m) = 1/4x, both realized whem is a circle  in formulation 1 parameterized with unit speed). Using the
of arbitrary radius passing througim. Lagrangian multiplier approach [8], solutions are given by:

To find the efficiencyn(q) at ¢ € R**! and the (family
of) loopsc based atn = w(¢) for which n,(c) = n(q), one
needs to solve the following variational problem.

The following lemmas are direct consequence of the above ¢=—X\is. (18)
definitions. We omit their proofs here.
Here,i.Q = Q(¢, ) is a one-form orR™ that we identify as
Lemma 1 For aloopcin R™ based atn, andg € #—1(m), a vector via the canonical metric d&". We are interested

« (invariance to scaling)r,(c) = r,(\¢) and 7,(c) = only in those solutions to (18) that start and end in the
nqg(Ac) for any A > 0; origin. The constraint thali(c) = 1 can be ignored if one is

« (invariance to reparameterization), (cop) = r,(c) and only interested in the shape of such solutions. Equation (18)
nq(c o p) = n,y(c) for any diffeomorphisnp : I — 1. describes the motions of a particle of unit mass and unit

charge moving in a magnetic field @& given by in the

Obviously, the rank ay € R™*' depends only on the case ofn = 2,3, and in general admits no analytic solution.
horizontal distribution{ neargq, and is independent of the

sub-riemannian metri¢., -)4;. For compatibleH, we have IV. RANK Two CASE

Let H be a compatible co-dimension one distribution on
R™ with connection form© and curvature fornf, and let
(-,-)» be a riemannian metric ok obtained by lifting the
canonical metric ofiR™. In this section, we try to determine
n(m) at a pointm € R™ with rank »(m) = 2. Without loss
we assume that, = 0 € R” andg = 0 € R"*1.

By Lemma 2, if2 =37, _, ., Qi dx; A dz; in coordi-
On the other hand, althougj(¢) does depend of,-)», nates, therf2;;(0) # 0 for at least some, j. Define Q° =
due to the smoothly varying nature 6f-)5, nearq, we have >, _; i, €2:;(0) dz; A dz;. The for any two dimensional

submanifoldS in R™ encircled by a loop: based ab, we
Lemma 3 1(q) depends on the sub-riemannian metrichaveh(ec) = [(Q ~ [ Q0 =€ [(Q°, ase — 0. Hence
(-,-)n only through its restriction ort,,. in determining the efficiency &, we may as well assume

Lemma 2 Supposé is compatible with connection for@
and curvature formf2, respectively. Write2 in coordinates
asQ =3 o i<, iy dri Adzj, whereQ;; = —Qj;. Then
at anym € R", r(m) — 2 is equal to the smallest integer
k > 0 for which there exist som&, jo such that at least one
k-th order partial derivative of2;,;, at m is nonzero.



that H has the curvature form2°. Under this assumption,

. (ec . 2l r.qo Q0
770(6) = lim,_.¢ |£2((52)| = lim,_.¢ 6|2£S§(C)| = |i§(c) ‘ » SO
0o 0o
7(0) = supmo(c) = sup 'iﬁ 0 | — g {;’(C) L o)
Define ann-by-n skew-symmetric matrix
Z = [Q2;5(0)1<ij<n- (20)

Z can be transformed into the following standard form:

Z:Q-diag<[£1 gl] e {31 6”],0,...,0) Ot

where@ € R™*" is orthonormal, > 0 is an integer with
2l < mn,andoy > --- > o, > 0. In fact, o1,...,0; €ach
repeated twice are the nonzero singular valueg of

Now perform the following coordinate transformation:

Y1, Yn) = (21, 20) Q. (21)

ThenQ° = 2(oydy; Adys + -+ + oydyar—1 A dyay). So for
S in R™ encircled by a loop: based al with coordinates
Yiye ey Yn, WE havefSQO 2Zi:1 g; fsdygifl /\dygi.
Note thatfs dys;—1 N dys; 1S the area of the projection of
S onto the planell; spanned by they,;_; and y,; axes.
By the classical isoperimetric theorem [4] /g dy2i—1 A
dysi| < & [)(33,_1 + 93,) dt, with equality if and only
if (y2i—1,y2;) for t € I draws a circle of arbitrary radius
through the origin inll;. Summing up, we have [ Q%] <
25 ol [gdynica A dysil < 2000y & [y (@3 +
y3;) dt < S E(c), where the equality holds if and only if for
all s =1,...,1 such thats; = max;<;<; o;, the projection
of ¢ onto1l; is a circle of arbitrary radius through and the
projection ofc to all other axes are all zero. Therefore,

Theorem 1 Suppose that{ is a compatible distribution on
R™ with curvature form(), and (-, -)% is a sub-riemannian
metric on’H such thatdr is an isometry fronf, to ToR"™
with the canonical metric. Let; > --- > o; each repeated
twice be the nonzero singular values of the maffixiefined
in (20). Then the efficiency dt is
o1
n(0) =5 .
Moreover, letll; be the subspace spanned by the ; and
y2; axes under the coordinate transformatig@i). Then for a
loop ¢ in R™ based a0 to have efficiency)(0), its projection
onto each plandl; with o; = o1 must be a circle, and its
projections on all other axes are zero.

(22)

V. RANK THREE CASE

In this section, we study the efficiency at pomt= 0 €
R™ for a compatible horizontal distributiol on R**! with
rankr(0) = 3. So the curvature forr satisfiesQ® = 0 and
Q2N k<n 8%2-}50) z dz; Adxj # 0. By our previous
discussions, we can repla€eby Q.

Fig. 2. A solution curve to problem (23).

We study the simplest case: 2 only. So
0l = 2(8912(0)131 + an(O)IQ)dl‘l A dxo. Define &

Oxq Oxo
\/[6%1;1(0)]2 + 2220012 which is nonzero by assumption.

Perform the coordinate transformation , y2) = (21, 22)Q,
where( is the orthonormal matrix defined by

1 09212(0) 0Q12(0)

Q i oz Oz
K o 8912(0) 8912(0)

8.1‘2 81‘1

ThenQ! is now Q! = 2ky; dy1 A dy,. For a nontrivial loop
c in R? based ab enclosing the (oriented) are®, we have

h(ec) N/ ot 263/ ol = eg/ﬁyfdyg.
€S S c

h(ce) _ #J yidys

I3 = —f3(a » and

RLyRdy: [ yidys

L3(c) "B
To determine the for which n(0) is achieved, one needs to
solve the following variational problem:

Hencenp(c) = lim._,o

7(0) = sup 7o (c) = sup

find ¢ that minimizesE(c) such that/yfdyg =1. (23)

Problem (23) can be solved using the Maximal Principle.
The details are omitted here, and can be found in an
upcoming paper. Figure 2 plots one solution curve (up to
a scaling) to problem (23), which should be parameterized
so that it proceeds counterclockwise with constant speed.

Remark 2 The efficiency-achieving loop calculated in this
section is part of the trajectory of a charged particle mov-
ing in a magnetic fieldB with linear components ofiR?,
referred to as agradB drift since it exhibits an overall drift
orthogonal to the direction graB| ([2]).

VI. BACK TO THE SNAKE

Suppose that in the snake example we have 2. So the
snake consists of three rigid segments, whose orientations are
given by the angle¥;, i = 1,2, 3. The configuration space
is T3, with a Riemannian metric given by (5), where =

3 2

1
(Aij)i<ij<z = i 2 4 2].By(7), the co-dimension one
1 2 3



distribution H is given by the vanishing of the one-form
o = Z?,j:l Aij COS(GZ' — 9])d9j
Suppose now that the snake is at the initial configuration
q corresponding t@, = 6, = 03 = 0, i.e. the three segments
of the snake are all aligned in the positive horizontal direc-

tion. To compute the rank at, we perform the following
coordinate transformation in a neighborhoodgof

P2 = | -1 0 1 02, (24)
¢3 1 1 1 93

The choice of such a transformation serves several purposes

First, 3 = 61 + 0> + 65 is the direction along the fibers of
T3 under the action ofr as described in Section 1. Second,
the planell spanned by the); and ¢, axes is transversal
to the ¢3 axis, hence can be regarded as the base space for
the principal bundlel3, at least locally around the origin.
Third, the projectiondr : H, — Tl is an isometry
if IT is equipped with the canonical Euclidean metric. Thus
condition (17) is satisfied withlg = I.

In the new coordinateg; corresponds to the origi, =
¢2 = ¢3 = 0, and the condition thatr = 0 is equivalent

Fig. 3. Snap shots of snake turning.

to the vanishing of a suitable connection fofindefined on more difficult for the snake to turn if its initial shape satisfies

II ~ R2. After a careful calculation, the curvature fohis the

Q =dO = f(¢1,2)dp1 Ndpa, Where f(¢y, ¢2) is given by

f(¢17¢2) - 5f1(¢17¢2) 4CO§(2¢2)+ f1(¢17¢2) ’

f1(b1,02) =5+ 4008(31—\65@) cos(%qﬁg) + cos ¢o,

(2]
fa(o1,02) = cos(gl—OS@)[lOsinQ(%@) — 6C082(%¢2)]
+4sin2(%q§2)cos(%¢2).

One can verify thatf(0,0) = 0, %(0,0) #0, 3‘97{2(0,0) =

0. As a result of Proposition 2, the rank atis three. To
compute the efficiency at we can replac& by its first order
approximateQ! = 2idg; A dpo. In particular, maximum

[4]
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conditionf; + 03 — 205 = 0.
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