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Abstract—In this paper, the problem of automated aircraft
conflict prediction is studied for two-aircraft midair encounters.
A model is introduced to predict the aircraft positions along some
look-ahead time horizon, during which each aircraft is trying to
follow a prescribed flight plan despite the presence of additive
wind perturbations to its velocity. A spatial correlation structure
is assumed for the wind perturbations such that the closer the two
aircraft, the stronger the correlation between the perturbations
to their velocities. Using this model, a method is introduced to
evaluate the criticality of the encounter situation by estimating the
probability of conflict, namely, the probability that the two aircraft
come closer than a minimum allowed distance at some time instant
during the look-ahead time horizon. The proposed method is
based on the introduction of a Markov chain approximation of
the stochastic processes modeling the aircraft motions. Several
generalizations of the proposed approach are also discussed.

Index Terms—Air traffic control, conflict prediction, stochas-
tic approximation, stochastic fields, stochastic modeling, wind
correlation.

I. INTRODUCTION

N the current air traffic management (ATM) system, air

traffic controllers are in charge of guaranteeing safety by
issuing to pilots correcting actions whenever a safety critical
situation is predicted. The achievable capacity of the air traffic
system is limited by the human-operated nature of this proce-
dure, and it can be increased by introducing automatic tools to
support air traffic controllers in detecting and resolving safety
critical situations.

In this paper, among the many different safety critical situa-
tions that may occur in the ATM system, the authors focus on
those midair “conflict” situations that arise when two aircraft
flying at the same altitude come closer to each other than a
minimum allowed distance, currently 5 nautical miles (nmi) in
en route airspace and 3 nmi in airspace close to the airports [1].

Typically, the procedure used to prevent the occurrence of
a conflict consists of two phases, namely, conflict detection
and conflict resolution. See [2] for a comprehensive review
on the automated tools proposed in the literature to support
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the air traffic controllers in performing these tasks. Roughly
speaking, in the conflict detection phase, models for predicting
the aircraft future positions are introduced, and the possibility
that a conflict would occur within a certain time horizon is
evaluated based on these models [3]-[6]. In the case that a
conflict is predicted, the aircraft flight plans are modified in the
conflict resolution phase so as to avoid the actual occurrence
of the predicted conflict. When selecting the new flight plans,
the cost of the resolution action in terms of, e.g., delay, fuel
consumption, deviation from the originally planned itineraries,
is usually taken into consideration [7]-[14].

In this paper, the conflict detection issue is studied and
addressed from a probabilistic viewpoint. Two aircraft flying in
some region of the airspace, each of which is following a certain
flight plan, are considered. The aircraft actual motions differ
from the planned ones due to various sources of uncertainty,
primarily the wind. The objective here is to evaluate if the
aircraft flight plans are safe by estimating the probability that
a conflict will occur over some look-ahead time horizon. In
practice, once a prescribed threshold value of the probability of
conflict is surpassed, an alarm of corresponding severity should
be issued to the air traffic controllers/pilots to warn them on the
level of criticality of the situation [15].

There are several factors that, combined, make the problem
of estimating the probability of conflict highly complicated
and, as such, impossible to solve analytically. For example, in
principle, the aircraft flight plans can be arbitrary motions; in
fact, they are generally more complex than the simple planar
linear motions assumed, e.g., in [5] and [16] when deriving
analytic expressions of the probability of a two-aircraft conflict.
In addition, and probably most importantly, the random wind
perturbations to the aircraft motions are spatially correlated.
This spatial correlation property of the wind field has been
observed and studied at both the microscopic scale [17] and the
mesoscopic scale [18]. Neglecting the wind spatial correlation
can cause erroneous evaluations when computing the proba-
bility of conflict, since the closer two aircraft are to each other,
the more correlated the wind perturbations to their motions;
hence, it is more likely that these perturbations will cancel each
other. However, although known to be a critical issue in aircraft
conflict prediction [19], the wind spatial correlation is largely
ignored in the current literature, probably due to the difficulty
in its modeling and analysis. Indeed, the methods proposed in
the literature to compute the probability of conflict are generally
based on the two-aircraft model introduced in [4], where each
aircraft motion is described as a Gaussian random process
whose variance grows in time, and the processes modeling the
motions of the two aircraft are assumed to be uncorrelated.
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Inspired by [20], a model for a two-aircraft encounter con-
sisting of a pair of coupled stochastic differential equations
is introduced, where the correlation between the wind pertur-
bations affecting the aircraft positions is taken into account.
Specifically, in this model, the flight plan of each aircraft can
be arbitrary; the aircraft actual motion may deviate from the
planned one due to the presence of spatially correlated wind
perturbations affecting the aircraft velocity additively. To a
certain extent, this model is a simplified version of the one
proposed in [20], which is interesting but too complicated for
the purpose of computing the probability of conflict.

Based on this model, the probability of conflict is computed
by introducing a Markov chain whose state space is obtained
by discretizing the region of the airspace where the encounter
occurs. With properly chosen transition probabilities, the
Markov chain converges weakly to the stochastic processes
modeling the aircraft motions as the grid size approaches zero.
The probability of conflict can then be approximated by the
corresponding quantity associated with the Markov chain. Nu-
merical algorithms are presented for computing the probability
of conflict map, which assigns to a pair of locations the prob-
ability that a conflict occurs within a certain look-ahead time
horizon starting from a given time instant with the two aircraft
being at those locations at that time instant. Simulation results
confirm that the wind correlation effect cannot be ignored when
estimating the probability of conflict.

The approximating Markov chain has a state space of di-
mension four, as each aircraft position at a fixed altitude can
be identified by two coordinates in R?. Under some additional
assumptions, the problem can be simplified and solved by
referring to the relative position of the two aircraft and using
an approximating Markov chain with a two-dimensional (2-D)
state space, which greatly reduces the computation load.

The proposed approach can be extended to address encoun-
ters where the aircraft do not necessarily fly at the same fixed
altitude and may perform vertical maneuvers. Work in this di-
rection has been done in [21] for a simplified case where it suf-
fices to track the relative position of the two aircraft to estimate
their probability of conflict in three-dimensional (3-D) airspace.

Finally, it is remarked that the distinguishing feature of the
proposed method for conflict prediction is its consideration
of correlated wind effect when predicting the aircraft future
positions. Thus, the performance of the approach cannot be
directly compared with that of other probabilistic methods for
conflict prediction in the literature [2], where wind correlation
is neglected.

The rest of the paper is organized as follows. In Section II,
the model of a two-aircraft encounter is described and the
problem of computing the probability of conflict is formalized.
A Markov chain approximation scheme is then proposed to
estimate the probability of conflict, starting from a simplified
case in Section III and then extending the approach to the
general case in Section IV. Simulation results for both cases
are also presented, which show that the probability of con-
flict depends on the wind spatial correlation structure. The
extension of the proposed method to estimating the proba-
bility of intrusion for a single aircraft into a forbidden area
of the airspace is briefly discussed in Section V. Finally,

Section VI draws some conclusions and outlines future direc-
tions of research.

II. MODEL OF THE AIRCRAFT MOTION

In this section, a kinematic model of the aircraft motion to
predict the aircraft future positions during the time interval 7' =
[0, t¢] is introduced, where 0 is the current time instant and ¢y €
(0, 00) represents the look-ahead time horizon.

Consider an aircraft flying at a constant altitude. The airspace
can then be identified with R2, and the aircraft position at time
t € T can be denoted by a vector X (¢) in R2. The dynamics of
X (t) during the time interval 7" depends on the aircraft velocity
profile and an additive perturbation term to the aircraft velocity.
These two terms are detailed next.

It is assumed that during the time interval 7, the aircraft is
trying to follow a velocity profile v : R? x T — R?, meaning
that at time ¢ € T, the aircraft plans to fly at velocity u(z,t)
if its location at time ¢ is @ € R2. The velocity profile u is
the sum of two terms: a nominal velocity profile u, : T —
R? and a correction term u. : R? x T'— R?, ie., u(z,t) =
Un(t) + uc(z,t), € R?, t € T. The nominal velocity profile
u., represents the aircraft flight plan, which is typically chosen
to be a piecewise constant function, since it is a common
practice in the ATM systems that aircraft are advised to travel at
constant speed piecewise linear motions specified by a series of
way-points. The correction term u. models the feedback control
action of the flight management system (FMS) trying to bring
the aircraft back to its nominal path should a deviation occur
due to some perturbations.

In addition to the velocity profile that is designated by
the air traffic controller and by the onboard FMS, there are
also various environmental factors that can affect the aircraft
velocity. Among them, wind is a major one and is the one
considered in this paper. Specifically, the wind contribution
to the aircraft velocity is modeled as the sum of two terms:
1) a deterministic term f: R% x T — R? (called the wind
field) representing the nominal wind velocity, which may de-
pend on the aircraft location = and the time ¢, and is assumed
to be known to the air traffic controller through measurements
or forecast; and 2) a stochastic term representing the effect of
air turbulence and errors in the wind speed measurements and
forecast. The time integral of the stochastic term is modeled by
arandom field B(-,-) on R? x T with the following properties.

1) For each fixed z € R?, B(z,-) is a standard 2-D Brown-
ian motion.

2) B(:,-) is time increment independent. This implies, in
particular, that the collections of random variables
{B(z,t2)— B(x,t1) }yerz and {B(z,t4) —B(x,t3) }pere
are independent for any ¢1,t2,t3,t4 € T, with t; <ty <
ts < ty4.

3) {B(I,tz) — B(zytl)}xeR27 for t17t2 € T with tl S t2,
is an (uncountable) collection of Gaussian random vari-
ables with zero mean and covariance

E{[B(x,t2) - Bla,t)] [B(y.tz) - B(y,t2)]" }

=h(z —y)(te —t1)Ia Vz,y € R?
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where I is the 2 x 2 identity matrix and h: R? — R
is a continuous function such that h(0) =1, h(z) =
h(—z) Yo € R?, and h(x) — 0 as  — oco. In addition,
h has to be nonnegative definite in the sense that the
k-by-k matrix [h(z; — x;)]F ;_, is nonnegative definite
for arbitrary xq,...,7x € R? and positive integer k.
In this paper, the spatial correlation function is taken
to be h(z) = exp(—p||z||) for some 3 > 0, a popular
choice for the random field models in geostatistics [22].
This choice is actually shown to be suitable for ATM
applications in [19], where the wind field prediction
made by the rapid update cycle (RUC) [23] developed
at the National Oceanic and Atmospheric Administration
(NOAA) Forecast System Laboratory (FOL) is compared
with the empirical data collected by the Meteorological
Data Collection Reporting System (MDCRS) near Den-
ver International Airport. The result of this comparison is
that an exponentially decaying function of the horizontal
separation fits in very well with the spatial correlation
statistics of the wind field prediction errors. A proof that
such an exponentially decaying h is nonnegative definite
can be found, e.g., in [24].

Remark 1: Typically, the wind field f is assumed to satisfy
some continuity property. This condition, together with the
monotonicity assumption on the spatial correlation function A,
is introduced to model the fact that the closer two points in
space are, the more similar the wind velocities at those points
are, and as the two points move farther away from each other,
the wind velocities become nearly independent.

The random field B(-,-) is Gaussian, stationary in space
(its finite dimensional distributions are invariant to shifts of the
origin of R?), and isotropic (its finite dimensional distributions
are invariant with respect to changes of orthonormal coordi-
nates). A constructive proof of the existence of B(-, -) with the
desired properties can be found in the Appendix.

For later developments, it is convenient to write B(+, -) in the
Karthunen—Loeve expansion as

B(z,t) =Y \/Antn(x) Bn(t) (1)
n=0

where {B,(t)}n>0 is a series of independent 2-D standard
Brownian motions, and {(An, ¢n(2))}n>0 is a complete set
of eigenvalue and eigenfunction pairs for the integral operator

() = [z h(s — z)o(s)ds, ie.,

{ Antn () = [o h(s — z)¢n(s)ds ey €R%. ()

Thus, the position X of the aircraft during the time horizon
T is governed by the following stochastic differential equation

AX (1) = u(X, t)dt + f(X, t)dt

+9(X, 1) Z VAndn(X)dB,(t)  (3)
n=0

initialized with the aircraft current position X (0). Recall that
the aircraft velocity profile u is given by u(x,t) = wu,(t) +
uc(x,t), and f(x,t) is the wind field, x € R?, t € T. In
addition, g : R2 x T — R2*2 is a matrix-valued function in-
troduced to modulate the variances of the random wind pertur-
bations along different directions.

In this paper, it is assumed for simplicity that g = ol
for some constant o > 0. This implies in particular that the
random contribution of the wind to the aircraft velocity after
the modulation of g remains isotropic, which is a reasonable
assumption considering that, in the proposed model, there is no
apparent direction in R? preferential to others.

Equation (3) is rewritten as

AX (1) = u(X. 0t + FX. 0L+ 05 VAn(X)ABA(D)
n=0
4)

with the initial condition X (0). The two-aircraft conflict pre-
diction problem based on (4) is now described.

A. Two-Aircraft Conflict Prediction Problem

Consider two aircraft, say “aircraft 1”” and “aircraft 2,” flying
at the same altitude during the time interval 7'. Denote their
positions and their velocity profiles by X; and u;, ¢+ =1, 2,
respectively. Based on (4), the evolutions of X;(-) and X5(-)
during 7" are governed by

dX1(t) =wi (Xy, t)dt + f(Xq,t)dt
+0 YV A (X1)dBy(t) (5)
n=0
dXQ(t) = ’LLQ(XQ, t)dt + f()(g7 t)dt

+0 YV A (X2)dBy(t) ©6)
n=0

starting from the initial positions X (0) and X5(0).

A conflict occurs whenever the two aircraft get closer than
r horizontally at some time ¢ € T'. The objective here is to
compute the probability of this event, namely

P. 2 P{||Xa(t) — X1(t)|| < r for some t € T}.

P, is referred to as the probability of conflict. Given that it is,
in general, impossible to derive P, analytically, the goal in this
paper is then to design numerical algorithms to compute P,.

III. SIMPLIFIED CASE

First, a simplified case where the computation of P, can be
especially efficient is considered.
Assumption 1: Assume that

1) the wind field f(x,t) is affine in z, i.e.,
f(z,t) = Rt)x +d(t) VeecR*teT

where R: T — R?*2 and d : T — R? are continuous;
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2) the velocity profiles u; (x,t) and ug(z,t) depend only on
t, not on x.

Under Assumption 1, (5) and (6) become
dX(t) =ui(t)dt + [R(t) X, +d(t)] de
+o i VAnn (X1)dBy (1) (7)
dXs(t) = UQ(t;LdZtO-i— [R(t) X2 + d(t)] dt

+0 YV Andn(X2)d By (1) ®)

n=0

It is shown next that it suffices to study the problem in the
relative coordinate system, which effectively reduces the state
space dimension of the problem to two.

Denote by Y and v the relative position and the relative
velocity profile of the two aircraft

Y(0) 2 Xa(t) = Xa(t), v(t) 2 ua(t) —wa(t).
Then, the probability of conflict can be expressed as
P.=P{||Y(t)|]| <rforsomet cT}.
Moreover, subtracting (7) from (8) yields

dY (t) = v(t)dt + R()Y (t)dt

+o Z VA [6n(X2) = ¢n(X1)]dBp(t).  (9)
n=0

Fix 21,22 € R? and let y = x5 — x1. Define

o0

Z(t) 2>V [bn(@2) — dn(21)] Ba(t).

n=0

(10)

Z(t) is a Gaussian process with zero mean and covariance

E{[2(t2)~Z(0)] [2(t2) = Z(t)]" | =2[1=h(y)] (t— )]

fort, < to, where the last equation follows from (2) and the fact
that 4(0) = 1. Note also that Z(0) = 0. Therefore, in terms of
distribution

Z(t) £ \/2[1 — h(y)]| W(t)

where W (t) is a standard 2-D Brownian motion.
Consider now the stochastic differential equation

Y

dY (t) = v(t)dt + R()Y (t)dt + oy/2 [1 — h(Y)] dW ()
12)
initialized with Y'(0) = Y'(0). In view of (10) and (11), Y (t)
has the same distribution as Y (¢). Then, the probability of
conflict P, can be determined as

P.=P{Y(t) € Dforsomet e T}

where D C R? is the closed disk of radius 7 centered at the
origin modeling the protection zone surrounding each aircraft.

In order to compute the probability of conflict numerically,
choose an open domain U C R? with compact support con-
taining D. U should be large enough so that the situation
can be declared safe once the relative position of the two
aircraft wanders outside U. With reference to the domain U,
the probability of conflict can be approximated by

PCU 2 P{Y hits D before hitting U within T'}. (13)
Implicit in the above definition is that if Y hits neither D nor U*¢
during 7', still no conflict occurs. To compute PZ,J , (12) can now
be considered, where Y is defined on the open domain U \ D

with initial condition Y'(0) and is stopped as soon as it hits the
boundary U U 0D.

A. Markov Chain Approximation

An approach to approximate the solution Y (-) to (12) defined
on U\ D is now described. The idea is to discretize U \ D
into grids that constitute the state space of a Markov chain.
By carefully choosing the transition probabilities, the solution
to the Markov chain will converge weakly to that of (12) as
the grid size approaches zero. Therefore, at a small grid size, a
good estimate of PY is provided by the corresponding quantity
associated with the Markov chain, which can be computed
numerically.

Some notations are needed to define the Markov chain. Fix a
grid size § > 0. Denote by 6Z? the integer grids of R? scaled
by 6, namely, 0Z2 = {(md,nd)|m,n € Z}. Bach grid point in
572 has four immediate neighbors (left, right, down, and up
positions). Define S = (U \ D) N §Z?, which consists of all
those grid points in 6Z? that lie inside U but outside D. The
interior of S, denoted by S, consists of all those points in
S whose all four neighbors in §Z?2 belong to S as well. The
boundary of S is defined to be 9S = S\ SY. and is the union
of two disjoint sets: 05 = Sy U 0Sp, where points in 0.5y
have at least one neighbor outside U, and points in 9Sp have at
least one neighbor inside D.

A time-inhomogeneous Markov chain {Qy, k¥ > 0} can now
be defined on the state space S as follows.

1) States in OS are absorbing, i.e., the chain remains un-

changed upon arriving at any of the states in 0S.

2) Starting from a state ¢ in S°, the chain jumps to one
of its four neighbors: ¢, = ¢+ (—6,0), ¢- = ¢+ (4,0),
qa = q+ (0,—9), and g, = g+ (0,0), or stays at g ac-
cording to transition probabilities determined by its cur-
rent location ¢ and the current time step k as

,5§k‘
pf(q) = % q=a
sek
pi(q) = expc(']; Q)a = qr
k - exp(fﬁnk) _
P{Qri1=q|Qu=q} ={ Pal@) = —er— 4 =au
S5 k
pﬁ(q) = eXp((j{];nq)) = qu
Kk
plg(Q) = %zca q, =q
0, otherwise.
(14)
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The parameters in the above expression are given by

[v(kAt) + R(kAt)q],

& =
‘ 202 [1— h(q)]

i — A + R(EAY,
! 202 [1 = h(q)]
k 1

Xo = 3T M—h(g)]

C(’f =2csh (7555) + 2csh (76175) + x];
where for an arbitrary vector z € R?, [2]; denotes its ith
component with ¢ = 1, 2. \ is a positive constant small
enough such that XZ defined above is positive for all g and
all k. In particular, this is guaranteed if 0 < \ < (402)7!
At > 0 is the amount of time elapsed between any two
successive discrete time steps k and k£ + 1, k£ > 0. Here,
At = N2

Suppose that at time step k, the chain is at ¢ € S°. Define

my = AitE{kaLl — Qk|Qr = g}

qu = éE {(Qk+1 - Qk)(Qk—H - k)T‘Qk = q} .

Direct computation shows that
K 2 sh (6¢F)
7 XoCF [sh (5775)

vk — 2 [csh (8¢F) 0 }
7 NCk 0 csh (6nk) |

m

If for each § > 0, ¢ is chosen to be a point in SO closest to a
fixed point y € U \ D, then one can verify that, as 6 — 0

m’; — v(kAt) + R(EAt)y

VFE— 2071 = h(y)] L.

Assume that the chain starts from a point § € S closest to
Y (0). Then, by Theorem 8.7.1 in [25] (see also [26]), the fol-
lowing holds.

Proposition 1: Fix 6 > 0 and consider the corresponding
Markov chain {Qg, k£ > 0}. Denote by {Q(t),¢ > 0} the sto-
chastic process that is equal to (i on the time interval
[kAt, (k 4+ 1)At) for all k. Then, as § — 0, {Q(t),t > 0}
converges weakly to the solution {Y'(¢),t > 0} to (12) defined
onU\ D W1th absorption on the boundary 0U U 0D.

Let ky = Lt ¢/At] be the largest integer not exceeding
ty/At. Due to the weak convergence of Q(t) to Y(t), for
small §, the probability PY in (13) can be approximated by the
corresponding probability

Pcé—P{Qkf E()SD} P{QkhltsasD

before hitting Sy within 0 < k < ky} (15)

with @, starting from a point ¢ € .S closest to Y (0).

Remark 2: In a single time step of duration At = A2, the
maximal distance that the Markov chain can travel is a unitary
grid step . Thus, given v(t), R(t), and U, in order for Y (¢)
to be approximated by the Markov chain, the quantity ||v(t) +
R(t)y||, t € T, y € U, has to be upper bounded roughly by
1/A3, which is 402/§ if X is chosen to be (402)~L. This
condition translates into an upper bound on the admissible
values of 4. In other words, fast diffusion process Y (¢) cannot
be simulated by Markov chains corresponding to large §’s.

Remark 3: The Markov chain approximation described
above still applies with suitable modifications to the case when
the velocity profiles of the two aircraft depend affinely on x
with identical matrices multiplying the x variable.

B. Numerical Algorithm

The algorithm to compute Pg(; is described next. For each
geSandk =0,1,..., k¢, define
P (q) £ P{Qx, € 9Sp|Qi =} . (16)
The set of functions P( ). S — R, 0< k < ky, satisfies the
following recursive (Kolmogorov backward) equation

P® (@), ifqes°
1, if g € 9Sp
0, if ¢ € OSy

P (g) = (17)

with boundary condition
k 1,
P =1{,

where in (17), P! MSW( ) is defined by

ifq € dSp

otherwise (18)

= pE@P ™ (@) + P @ P% ™ (@)

(k-‘rl)(

k
Pc(,ﬁ),new (q)

plk+D)

ar) + PP (g (D

+pr(q) P, @)+ PE ()P (qu)-

In particular, pY .5 can be computed recursively by iterating
ky times the backward equation (17) initialized with (18).
The desired quantity PU; defined in (15) is then P‘%)(g). The
following algorithm summarizes the overall procedufe.

Algorithm 1. For given Y (0), v(t), and R(t), t € T

1) Fix 6 >0 and A € (0,1/(40?)]. Set At = \§%. Define
{Qk,k > 0} to be the Markov chain with state space

= (U \ D) N §Z? and transition probabilities (14).

2) Initialize Pc(f'sf ) according to (18).

3) For k=ky—1,...,0, compute Pc(f;) from PSZH) ac
cording to (17).

4) Output PCU(; = P( )( q) for G € S closest to Y(0).

Remark 4. For a grid size 4, the size of the state space .S is
of the order of 1/42. Since the number of iterations is given by
k ~ty/At = O(1/6?) and each iteration takes O(1/6%) time,
the running time of Algorithm 1 grows as O(1/§%) as § — 0.
Therefore, small §’s may result in exceedingly long running
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Fig. 2. Level curves of the estimated probability of conflict over the time horizon [¢,40] as a function of the aircraft relative position at time ¢ = 0, 10, 20

(B =1/20).

time. On the other hand, as pointed out in Remark 2, large §’s
may not allow for the simulation of fast moving processes and
may lead to rough estimates. A suitable § is then a compromise
between these conflicting requirements.

Remark 5: Algorithm 1 determines the whole family of
functions Pffs) : S—=R, k=0,1,...,kf, in a single run.
Hence, at any future time ¢ € [0, ¢ ], should the aircraft velocity
profiles be unchanged, an estimate of the probability of conflict
over the new time horizon [¢, ¢ 7] is readily available, eliminat-
ing the need for a recomputation.

C. Extension to the Case When the Aircraft
Current Positions are Uncertain

The procedure for estimating PY described above can be
extended to the case where the aircraft current positions X (0)
and X>(0) are not known precisely. If X;(0) and X5(0) are
described as random variables with a certain joint distribution,
then the initial relative position Y'(0) is also a random variable
with a certain distribution py- on U \ D. Define

Y (y) £ P{Y hits D before hitting U in T'|Y (0) = y}

fory € U \ D, which is the probability of conflict over the time
horizon T' when the initial relative position Y (0) of the two
aircraft is equal to y € U \ D. Then, the probability of conflict
can be expressed in terms of p¥ as fU\D pY (y)dpy (y). This

integral reduces to a finite summation when the state space

U \ D is discretized and p¥ is approximated by Pc(f)).

D. Examples

Algorithm 1 is now illustrated by some examples. Unless
otherwise stated, the following parameters are used in the
examples. The safe distance is » = 3; o and h in (12) are,

respectively, 0 = 1 and h(z) = exp(—03|z|) Vz € R?, with
B3>0, T =10,40]. The relative velocity profile of the two
aircraft during the time horizon 7 is given by

(2,0), 0<t<10
o(t)={ (0,1), 10<t<20
(2,0), 20 <t < 40.

Based on T and v(t), the domain U is chosen to be the rect-
angle (—80,10) x (—40,10). Finally, X = (40%)~! =0.25
and 9 = 1. In all the plots of the estimated probability of
conflict, the reported level curves correspond to values 0.1,
0.2,...,0.9, moving from the largest curves to the smallest one.

Example 1: Suppose that the wind field is identically
zero: R(t)=0, d(t)=0 VteT. Let 3=1/5 so that
h(z) = exp(—||z||/5) for # € R?. By executing Algorithm
1, the set of functions P,y : S —[0,1], k=0,1,...,kf is
computed. In Fig. 1 the level curves of Pf %t/ A are plotted
at t =0, t = 10, and t = 20, respectively, from left to right.
Recall that PC( L;/ Ath) represents an estimate of the probability of
conflict over the time horizon [t,ts] as a function of the aircraft
relative position at time ¢. As one can expect, the probability of
conflict over [¢, ¢ ] has peak values along a nominal path traced
by a point starting from the origin at time ¢ = 40 and moving
backward in time according to the nominal relative velocity v (+)
until time ¢. The probability of conflict decreases as the relative
position between the aircraft at time ¢ moves farther away from
that path. Furthermore, experiments (not reported here) show
that the smaller the variance parameter o is, the faster this
decrease is.

Example 2: This example differs from the previous one
only in the value of 3, which is now = 1/20. So h(z) =
exp(—||«]|/20) Vo € R?, implying a stronger correlation be-
tween the random wind perturbations to the two aircraft veloc-

ities than in Example 1. In Fig. 2, the level curves of PC(E/ At))



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.

332

6, NO. 3, SEPTEMBER 2005

Y
N
N
N N
N N
\ ; R
v . ~ K
VA : SN \
[ ! 7 [ A
‘ ‘ : N w 1 1 t . . | |
Lo Vob !
of ' Vb I o8 Coe
. O VN P
. D N Do
-50F . . L Y LA
> - Ly S e e oy oy
AN - v NN SN e e r
SRR A A - . T s s
= -100 -
150 =100 -50 0 50 100 150

Fig. 3.
attime ¢ = 0, 10, 20 (8 = 1/20).

computed by Algorithm 1 are plotted for ¢t =0, ¢ = 10, and
t = 20, from left to right. One can see that, compared to the
plots in Fig. 1, the regions with higher probability of conflict
in Fig. 2 are more concentrated along the nominal path, which
is especially evident near the origin. The intuitive explanation
of this phenomenon is that random wind perturbations to the
aircraft velocities with larger correlation are more likely to
cancel each other in the relative coordinates, resulting in more
predictable behaviors and, hence, smaller probability of conflict
outside the nominal collision course. In a sense, this implies that
those approaches where the probability of conflict is estimated

under the assumption of independent wind perturbations to the

aircraft velocities could be pessimistic.

Example 3: In this example, 8 = 1/20 is chosen as in Ex-
ample 2. However, it is assumed that there is a nontrivial affine

wind field f defined by

flz,t) = R(t) [z — 2(t)], x€R? te]0,40]

5[5 1) -2

The wind field f can be viewed as a windstorm swirling clock-
wise, whose center z(t) accelerates along a parabolic curve
during T'. In fact, the choice of z(t) has no effect on the prob-
ability of conflict since it will be canceled out in the relative
coordinates. In the first row of Fig. 3, the wind field f on
the region [—100,200] x [—100,200] is plotted at the time
instants ¢ = 0, 10, 20, from left to right. In the second row,
the level curves of Pc’ ; At) are plotted, where ¢ = 0, 10, 20,
from left to right. One can see that, compared to the results in
Fig. 2, the regions with high probability of conflict are “bent”
counterclockwise, and the farther away from the origin, the

where

0 1

R(®) ~1 0

Wind field (top) and level curves of the estimated probability of conflict over the time horizon [¢, 40] as a function of the aircraft relative position (bottom)

more the bending. This is because the net effect of the wind field
f on the relative velocity v of the two aircraft when they are at
the relative position y is Ry, which points clockwise when y is
in the third quarter of the plane.

IV. GENERAL CASE

In this section, the approach described in the previous
section for estimating the probability of conflict is extended
to the general case where Assumption 1 does not necessar-
ily hold. Namely, the wind field f(z,¢) may not be affine
in space, and/or the velocity profiles wu;(x,t) and ua(z,t)
may depend on x. The idea is still to use a Markov chain
approximation method. However, in this general case, one
has to keep track of each aircraft position, not simply their
relative position, which causes the dimension of the state
space of the introduced Markov chain to be four instead
of two.

Consider the model of a two-aircraft encounter described in
Section II, where the motions X (-) and X5(+) of the aircraft
are governed by (5) and (6), respectively.

Define

Then, (5) and (6) can be written in terms of X as a single
stochastic differential equation

dX () = (X, t)dt + f(X,t)dt + o i VAo (X)dB, (1)
n=0
(19)
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where
NN _ (xbt)
a(z,t) = 2(x2’t)}
£ oA _ (‘Tlvt)
f(l‘,t) - (.’L’Q,t):|
AN n(21) 12
9n(®) = _¢n(9€2)12]

for z = [2] € R*and t € T. The probability of conflict is

PcéP{X(t) GFforsometeT}

where the set F' is defined as

Fa {ﬁc: [ml] eER*: 21,15 € R?, ||z — 29| <r}.
Z2

Fix & € R* and define

202 3"\ hun (@)

n=0

(20)

Z(t) is a Gaussian process with zero mean and covariance

E{[2(t2) - Z(t)] [Z(t2) - Z(t2)]" }

L W@
= . to —1 Vit <t
[h(:fc)lg I (t2 —t1) 1<t
with h(Z) £ h(ze — 1), where & = (z1,z2). Note also that
Z(0) = 0. Therefore, in terms of distribution

i ~

Z(t) = B(2)W(1)

where W (t) is a standard Brownian motion in R* and

Al L h@DL]E
z(a;)_{h(;)b 122} e R¥4,

As a result, the process X solving (19) initialized with X(0)
has the same distribution as the process X solving
dX () = a(X,t)dt + f(X t)dt + oX(X

X)dw(t) @D

with X (0) = X (0), and the probability of conflict becomes

P,=P{X(t) € FforsometeT}.

To evaluate numerically the probability of conflict, choose
bounded open regions V; and V> of R? large enough so that
whenever the state X wanders outside V =V; x V5, the

situation can be declared to be safe. The quantity of interest
then becomes

PY 2 P{X hits F before hitting V “within the time interval 7'}
(22)

where X is the solution to (21) on the open set V' \ F' with
the initial condition X (0) = (X7(0), X2(0)) € V\ F and
absorption on the boundary 0V U OF'.

A. Markov Chain Approximation

Proceed now as in Section III. For each § >0, let
0Z* be the integer grid in R* scaled by 4, ie., 0Z* =
{(i6, j8,md,nd)|i, j, m,n € Z}. Bach q in 6Z* has the follow-
ing eight neighbors: q; = ¢ + (—6,0,—96,0), ¢ = g+ (6,0,
6,0), qtr = q + (—0,0,6,0), g1 = ¢+ (5,0,—0,0), gaa = q +
(0,-6,0,-6), Guu =g+ (0,0,0,6), gan = q+ (0,-6,0,6),
and quq = q + (0,0,0,—9).

Deﬁne a Markov chain {Qy,k > 0} with state space

(V \ F) N 6Z*. Denote by S° the interior of S consisting
of those points in S whose eight neighbors in 6Z* all belong to
S. Let Sy be the set of points in S with at least one neighbor
outside V, and let 9Sr be the set of points in S with at least
one neighbor inside F'. If a point in .S satisfies both these two
conditions, then it is assigned only to 9SF. This will lead to an
overestimation of PV However, if V; and V5 are chosen to be
large enough, this effect on the estimate of P} can become neg-
ligible. The union 98 2 89Sy UdSE =S \ S9 of the two dis-
joint sets Sy and d S is the boundary of S.

Suppose that each state in 0S is an absorbing state for
{Qr, k > 0}, and starting from an arbitrary state ¢ in S at time
step k > 0, the chain stays at the same state or jumps to one
of its eight neighbors listed above according to the following
transition probabilities

P{Qr+1=4|Qr =q}

Poo(@) = o q=q

pi(e) = [1(:)15({22()1(5i)4>7 d=qu
pfr(‘]) = [1+exp(1——;Z§)](X+4)’ q = qr
pfr(Q) = [1+exp(1:a§ ;4 =aqn

ok )] (x+4)

(1-ag) exp(—dng)

k — I
_ pr(q) Mren(on o’ 4 = 4 o3
k o (1+ag’)exp(76u§) ;o
Paalq) = [+exp(—ouk )| (x+4) q = 4dd
k _ Ltay r_
puu(Q) = [1+exp(*5ué’)](x+4)’ q = Quu
k _ 1-of r_
pdu(Q) = [1+exp(féz/§')](x+4)’ q = qdu
& . (1—ak)exp(—6uk) ;o
pud(Q) = [1+exr>q(751/§)](x14)’ q = Qud
0, otherwise
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whose parameters are specified by

_ 2
X= o2
ok =h(q)
2 ro. -
k— kAL + a(q, kAt
& = rap) (@ k80 +ilakao]

+ | fla, kat) + (g, kA0 }
1 oA R -
ey rp {[ Fla.knt) + aa. kap))
— [ fla, kat) + g k0] }
2 oA R -
o = o2 (1+ ak) { | fla, kAY) +alg kAL |
+ [ Fa kAt + (g kan)] )

, A _
R {[F(a ka0 + g ka0)

- [f(q, kAt) + (g, kAt)L)} .

Here, [z]; denotes the ith component of a vector z € R%,
1<i<4. )\ satisfies 0 <)< (202)7L. At is the time
elapsed between successive discrete time steps and At is set
equal to \&2.

For each g € SY and each k > 0, define

mh = 4 B{Qun — QulQx = 0}

qu = AitE {(Qrs1 — Qu)(Qrs1 — Qi) T|Qr = ¢} -

Then, it can be verified that

[ 1- exp( 55’;) k) 1 exp(fénf;) ]
(4 08) Troaraen) — (1) Trow(n)
1- eXP( 5!’«’;) k lfexp(féy(’f)
(1 + aQ) 1+cxp( 5#{;) (1 - 0‘(1) 1+cxp(—6u(’;)
Cow(set) | esl(ont)
(1 + Oéq) 1+exp( 6§§) + (1 aq) 1+6Xp(7577§)
1- exp( 5#’5) k 17exp(751/(’;)
e L0 o0 oy + (L 00) e |
o Ad(x +4)
vk | oL gl
“ O'QOékIg o2l

Therefore, if § — 0 and g is always chosen to be a point in S°
closest to a fixed z € V' \ F, then

mk —a(z, kAt) + f(z,kAt)

VE g2 h(b Wﬂ?} — 0?%2(3).

a z)1s Iy

Therefore, the following proposition is derived.

Proposition 2: Fix § > 0 and consider the corresponding
Markov chain {Qy, k > 0}. Denote by {Q(¢),t > 0} the sto-
chastic process that is equal to ); on the time interval
[kAt, (k4 1)At) for k > 0. Then, as 6 — 0, {Q(¢),t > 0}
converges weakly to the solution { X (¢),¢ > 0} to (21) defined
on V' \ F with absorption on the boundary 0V U OF'.

As a result, a good approximation to the probability of
conflict (22) is given by
PYs 2 P{Qy, hits 0SF before hitting 9Sy within0 < k < ks}

(24)

where k; = |t;/At], for sufficiently small 6. Here, the chain
Q. is assumed to start from a point g in S closest to X (0).
Remark 6: In a time interval of length At = \§2, the max-
imal distance that the Markov chain @)y can travel in any di-
mension is ¢. Thus, given u;(x;,t) and V; for i = 1, 2, in order
for X (t) to be approximated by Q, the quantities [u;(z;,t) +
f(x:,t)];, j =1, 2, have to be upper bounded on V; x T
by 1/Ad, which is 202/§ if A = (202)~! is chosen. These
conditions put upper bounds on the admissible values of d.
If the following set of functions is introduced
Pl

P{Qkf € aSF‘Qk = Q}v qec S

k=0,...,k, then Pg s defined in (24) can be computed
recursively as follows.

Algorithm 2. Given X;(0), X2(0), ui(x,t), uz(x,t), and
f(x,t),forz e R%, t € T:
1) Fix § >0 and X € (0,1/(20?)]. Set At = \§°. Define
the Markov chain {Qy,k > 0} with state space S =
(V' \ F) N §Z* and transition probabilities given by (23).
2) Initialize P( 7) by

k
Pc(,af)(Q) = {

3) For k=k;—1,...,0, compute Pc(’? from PC(IEH) as
follows: for each g € S

1, ifge dSk
0, otherwise.

k .
(k) Pc(,zi),new(Q)a ifge SY
Pc,& (Q) = 1, ifg e Sy
0, if g € Sy

where
P ewl@)=pk, (0P () + ol (0P (an)
5 @ P (@) Tk (0) PE )
+95(0) P (0r) +95a(@) P gaa)
+ (P (qua) +05 (0) PS5 qau)

+984(0) P (qua).-

4) Choose a point g in S that is closest to X (0) =
(X1(0), X2(0)) and output s = P ().
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By Proposition 2, PCV 5 converges to PY as § — 0, thus provid-
ing a good approxim’ation of the probability of conflict when §
is sufficiently small.

Remark 7: The size of the state space S is of the order
of 1/6*. Since the number of iterations is kf ~ts/At =
O(1/62), the running time of Algorithm 2 grows as O(1/§%)
as § — 0. Due to the increase in the state space dimension, the
running time of Algorithm 2 is significantly larger than that of
Algorithm 1, a price paid for the generality of Algorithm 2.

One can also extend the approach to the case when the
aircraft initial positions are uncertain in a completely similar
way as in Section III. The details are omitted here.

Remark 8: There are infinitely many possible ways of defin-
ing the transition probabilities for {Q, k > 0} on S such that
Proposition 2 still holds. The choice in (23) is “sparse” in the
sense that starting from a point in S° the chain can only jump
to eight of its neighboring grid points. The advantage of such a
choice is that each iteration step in Algorithm 2 takes less time.
The disadvantage is that if the chain starts from a certain point,
it can only reach approximately one half of the grid points in .S,
i.e., those points in S with the same parity as the starting point.
Hence, the level curves of PC(%) computed by Algorithm 2 tend
to be saw-like. One solution can be to smooth P, 5 by passing it
through a low pass filter. This is equivalent to saying that there
is some uncertainty in the aircraft initial positions.

B. Examples

If Assumption 1 holds, experiments show that Algorithm 2
returns similar results to those of Algorithm 1. Hence, examples
for which Assumption 1 fails are presented here.

Example 4: Consider two aircraft that are trying to follow
the same straight path, namely, the [x]; coordinate axis of the
plane, flying along it from left to right at different constant
speeds during the time interval T' = [0, 20]. The velocity pro-
files of the two aircraft are given by

=[]+ 8] o=+ [ )

for £ € R2, t € T, where the parameter a determines the
strength of the feedback control of the pilots or onboard con-
trollers to stabilize the cross-track deviations [z;]2, i = 1, 2,
toward 0.

Suppose that the safe distance is r = 3. The parameter o
and the function h are, respectively, o = 2 and h((z1,22)) =
exp(—||z2 — x1]|), 21, x2 € R?. The wind field f(z,t) is as-
sumed to be time invariant but nonlinear in

exp ( [z]1 420 12+20 ) -1

exp([m}l#)—&-l
0

f(xvt) -

Under this wind field model, the wind direction is along the
[x]1 axis from right to left on the half-plane with [z]; < —20,
and from left to right on the half-plane with [z]; > —20. The
maximal strength || f(z, ¢)|| of the wind is 1, which is achieved
when [z]; — Fo0.

Based on the above parameters, the domains V; and V5 are
chosen to be the open rectangles V; = (—100, 30) x (—24,24)
and V5 = (—60,80) x (—16,16). Finally, set A = (202)7! =
0.125 and § = 1.5 so that At = \§? = 9/32.

In Figs. 4 and 5, the level curves of the probability of
conflict (24) are plotted as a function of the initial position
of aircraft 1, for five different initial positions of aircraft
2: (—40, 0); (=30, 0); (—20, 0); (0, 0); and (20, 0), from top to
bottom. Fig. 4 corresponds to the case when a = 0 (no feedback
control in both aircraft velocity profiles), and Fig. 5 to the
case when a = 0.05 (with stabilizing feedback control). In each
figure, the probability of conflict as computed by Algorithm 2
for a fixed initial position of aircraft 2 is visualized in two
figures on the same row: The original version is shown in
the left one and, to overcome the roughness in the level
curves caused by the coarse grid size § = 1.5, shown in the
right one is a smoothed version whose value at each z €
Vi N6Z? is the average of the original probability of con-
flict at z and at its four immediate neighbors z;, 2., 24, 2.
In effect, this is equivalent to passing the original probabil-

010
ity of conflict through a low pass filter 1/5 |1 1 1|, or
0 1 0

assuming that there is uncertainty in the initial position of
aircraft 1, such that it is equally probable that aircraft 1 oc-
cupies its current position and the four immediate neighboring
grid points.

In Fig. 4 (or Fig. 5), it can be seen that, unlike in the sim-
plified case in Section III, the probability of conflict, in general,
depends on the initial positions of both aircraft, not just on
their initial relative position, for otherwise the level curves in
the plots of Fig. 4 (or Fig. 5) would be all identically shaped
and one could be obtained from another by a proper translation,
which is obviously not the case in either figure. In addition, it is
noted that this dependence of the probability of conflict on the
initial positions of both aircraft rather than simply their relative
position is more eminent at those places where there is a large
acceleration (or deceleration) in wind components, i.e., at those
places with strong nonlinearity in the wind field. Observe that
in this example, the relative velocity of the two aircraft can be
expressed as a function of the aircraft relative position, hence,
it is the nonlinearity of the wind field that makes Algorithm 1
not applicable (see Remark 3). If the nonlinearity of the wind
field is relatively small, Algorithm 1 can be used instead of Al-
gorithm 2, significantly reducing the computation time. Finally,
by comparing Fig. 4 with Fig. 5, it can be seen that in Fig. 5,
the regions with high probability of conflict are more extended
than their counterparts in Fig. 4. This is as expected since the
presence of the feedback control will render some previously
safe configurations unsafe as both aircraft tend to converge to
the same nominal path.

V. PROBABILITY OF INTRUSION INTO A PROTECTED AREA

The approach proposed to estimate the probability of conflict
for a two-aircraft encounter can be generalized to estimate the
probability of intrusion of an aircraft into a protected area of the
airspace with an arbitrary shape.
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Fig. 4. Level curves of the estimated probability of conflict over the time horizon [0, 20] as a function of the initial position of aircraft 1 for fixed initial position
of aircraft 2 [from top to bottom: X2(0) = (—40,0), (=30, 0), (—20, 0), (0, 0), and (20, 0)]. In each case, the right figure shows the level curves of a smoothed
version of the original probability of conflict shown in the left figure. No feedback (a = 0).

Consider the stochastic differential equation (4) describing
the position X € R? of a single aircraft with a certain velocity
profile within some look-ahead time horizon 7'. By following a
similar reasoning as in Sections III and IV, one can show that
the process X has the same distribution as a process X solving
the stochastic differential equation

AX(t) = w(X, t)dt + f(X,t)dt + odW(t)  (25)

with initial condition X (0) = X (0), where ¥ is a standard 2-D
Brownian motion. Denote by D an arbitrarily shaped closed

region of R? that the aircraft should avoid, and by U an open
subset of R? containing D and large enough such that whenever
the aircraft wanders outside U, the situation can be declared to
be safe. Then, the probability of intrusion of the aircraft into the
protected area D over the time horizon 7' can be defined as the
probability that X hits D before it (ever) hits ¢ within the time
interval T'. By adopting the same procedure as in Section III, a
Markov chain {Qy, k > 0} can be constructed on the grid space
(U \ D) N6Z? so that as the discretization size § — 0, Q.
converges weakly to X (t). Then, the probability of intrusion
for X (¢) can be approximated by the corresponding probability
for {Qr,k > 0} for small enough J. Since this procedure is
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Fig. 5.

Level curves of the estimated probability of conflict over the time horizon [0, 20] as a function of the initial position of aircraft 1 for fixed initial position

of aircraft 2 [from top to bottom: X2(0) = (—40,0), (=30, 0), (—20, 0), (0, 0), and (20, 0)]. In each case, the right figure shows the level curves of a smoothed
version of the original probability of conflict shown in the left figure. With feedback (a = 0.05).

entirely similar to the one introduced before without any added
complexity, the details are omitted.

VI. CONCLUSION AND FUTURE DIRECTION

Correlation of the wind perturbations to the aircraft motions
has been largely ignored in the current literature on aircraft con-
flict detection. In this paper, a model of a two-aircraft encounter
with a random field term is introduced to address this issue.
Based on this model, one can effectively estimate the probabil-
ity of conflict by using a Markov chain approximation scheme.

Simulation results show that the correlation of wind perturba-
tions does affect the values of the probability of conflict.

One advantage of the approach proposed in this paper is that,
upon completion, one has the probability of conflict not only
at the current time, but also at all future time instants, which
eliminates the need for recomputation if the flight plans remain
unchanged. The approach can also be extended to address more
general cases such as, for example, computing the probability
of conflict when the current aircraft positions are uncertain, or
estimating the probability of intrusion into a protected area of
the airspace with an arbitrary shape.
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One possible future direction is to extend the introduced
algorithms to the case of more realistic aircraft dynamics, such
as second-order feedback control, and to test them with actual
flight and atmospheric data. It would also be interesting to study
how the computed probability of conflict can be used to assist
in the decision process for conflict resolution.

APPENDIX
EXISTENCE OF THE RANDOM FIELD MODELING
THE STOCHASTIC WIND COMPONENT

In this section, we study the existence of a random field
B(-,-) on R? x T with the following properties:

1) For each fixed z € R?, B(z,-) is a standard 2-D Brown-
ian motion.

2) B(-,-)is time increment independent.

3) {B(x,t2) — B(x,t1)}zere, for any tq,to € T with t; <
tg, is an (uncountable) collection of Gaussian random
variables with zero mean and covariance

E{[B(a1,t2) = Blay,t1)] [Blaz, tz) — Blez,11)]" }

= h(xl — (EQ)(tQ — tl)IQ V!I?l, o € R2
for some nonnegative definite i : R? — R with h(z) =
h(—z) Vx € R?, and h(0) = 1.

However, instead of constructing B(-,-) on R? x T directly,
for each § > 0, a random field B;(-,-) on 6Z? x T shall be
constructed, satisfying the above properties on 6Z2 x T, where
872 denotes the integer grid in R? scaled by §. In particular, if
the following correlation functions are defined

R(x1,x9;t1,12)
2 p {[B(xl,tg) ~ Bla1, 1)) [B(a, t2) — B(asg,tl)]T}

Va1, xo € R?
Rs(z1, 2251, t2)

& B {[Bs(z1,t2) ~ Ba(er, 1)) [Bs (22, ) ~ Bz, 1))}

Vz1, 29 € 072

for t1,to € T with t; < ty, then the constructed Bs(-,-) is
such that Rs(z1, z2;t1,t2) coincides with R(x1, xo;t1,t2) for
x1, 29 € 0Z2. Thus, Bs(+,-) can replace B(+, -) for the purpose
of this paper, where the state space R? is discretized into §Z2
for the Markov chain approximation.

Fix a § > 0. Let Ws(z,-), z € 6Z2, be a collection of in-
dependent 2-D standard Brownian motions. Let p : 6Z? — R
be a function to be determined later. For each ¢t € T, define
Bs(+, 1) = Ws(-,t) % dp(-) where * denotes convolution over
072, i.e.,

Bs(z,t) 2 Z Sp(z — 2 YWs(2',t) Vz € §Z2.
z' €872

Then, the correlation function of B;(+,t) can be calculated as
Rs(z1, 2231, t2)

— B {[Bs(21,t2) = B(1,10)] [Bs (22, t2) ~ B2, )]}
= E{ > 6%p(z1 — 21)p(z2 — 2b)
2},24,€022

'[W(S(Z/l’t2)_W5(zl17t1>][W5(z/25 tQ)_WKS(Z/%tl)]T}

> %p(z1 = 2)plz2 — 2)(t2 — 1) ]2

21 €072

Z 8 p(z1 = 22+ 2)p(2')(t2 — t1) ]2
2/ €072

for all 2z, 2o € 72, where in the second equality, the spa-
tial independence of W;(-,t) over §Z2 is used. In order that
R5(21, Zg;thtg) = R(Zl, Zg;tl,tg) Vz1,29 € (SZ?, P needs to
be chosen such that

Z 2p(z + 2 )p(2') = h(z) Vz € 672

2/ €872

(26)

Denote by F|[p] the Fourier transform of p defined as F|[p]
(w17w2) é Zj,kGZ p(é], 5k)e7i(jw1+kw2) Vw1, wsy € [_7-(-77-[-].
Similarly, F[h|sz2] denotes the Fourier transform of h re-
stricted on §Z2. Then, assuming the existence of both F[p] and
Flh|szz], (26) is equivalent to 62| F|[p]|> = F[h|szz]. Since h
is nonnegative definite on R2, hence, on 672, by the Bochner
Theorem, for all j,k € Z

h(dj, k) ://ei(jlerk“’Q)a(wl,wg)dwldwg

for some finite measure with (generalized) density function
o > 0. Thus, F[h|sz2](wi,ws) = 4720 (—w1, —ws) is real and
positive for wy,wq € [—m,7]. As a result, \/F[h|sz2] exists,
and the desired p satisfying (26) can be obtained via inverse
Fourier transformation as

p=0""F  {V/Fhlszal} 27)
Note that p as obtained in (27) must be real since \/F[h|sz2] is
areal even function.

To sum up, for each § >0, a random field Bs(-,:) on
572 x T, whose correlation function coincides with that of the
desired B(+, -) over 072 x T, can be constructed, provided that
h satisfies the condition

F { f[h|5zz]} exists for all § > 0. (28)

The choice of h in this paper, h(z) = exp(—g||z||), 6 > 0,
can be verified to satisfy this condition. As for properties 1) and
2), they directly follow from the definition of Bs(-, ) as a sum
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of independent Brownian motions and from property 3) with
h(0) = 1.

Remark 9: A random field Bs(-,-) on R? x T can be con-
structed from B;(+, -)

Bs (Lﬂt) 2 B; (Bﬁﬂt) Vr,y € Rt T.

The correlation function of Bj(-,-) is stair-like and coincides
with that of B(-,-) on 6Z% x T.

s
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