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In this paper, we study the problem of designing optimal coordinated maneuvers for
multiple aircraft conflict resolution. We propose an energy function to select among all
the conflict-free maneuvers the optimal one. The introduced cost function incorporates
a priority mechanism that favors those maneuvers where aircraft with lower priority
assume more responsibility in resolving the predicted conflicts. The energy-minimizing
resolution maneuvers may involve changes of heading and speed, as well as of altitude.
However, vertical maneuvers are penalized with respect to horizontal ones for the sake of
passenger comfort. A geometric construction and a numerical algorithm for computing
the optimal resolution maneuvers are given in the two aircraft case. As for the multi-
aircraft case, an approximation scheme is proposed to compute a suboptimal two-legged
solution. Extensive examples are presented to illustrate the effectiveness of the proposed

algorithms.

Introduction

The main concern of Air Traffic Management
(ATM) systems is guaranteeing safety.  This is
achieved by avoiding the occurrence of conflicts, i.e.,
of those situations where two aircraft come closer to
each other than a minimum allowed horizontal sepa-
ration R and a minimum allowed vertical separation
H at the same time. Currently, R is set equal to 5
nautical miles (nmi) in en-route airspace, and 3 nmi
inside the Terminal Radar Approach Control facilities
(TRACONS), whereas H is 2000 feet (ft) above the al-
titude of 29,000 ft (FL290), and 1000 ft below FL290.
Conflict avoidance is typically decomposed into two
phases:

— conflict detection, where potential conflicts that
may arise in the future are detected based on the
available information on the aircraft current posi-
tions, headings, and flight plans;

— conflict resolution, where the flight plans of the
aircraft involved in the detected conflicts are re-
planned so as to prevent that any conflict actually
occurs.
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In this paper we shall focus on conflict resolution.

The existing approaches to aircraft conflict reso-
lution can be classified according to various criteria.
The interested reader is referred to' for an up-to-date
survey on the different conflict resolution approaches
proposed in the literature. In the following we shall
review briefly some of the most relevant ones.

Based on the level of coordination or on the level
of mutual trust among participating aircraft, conflict
resolution methods can be classified as noncooperative
and cooperative®.

In the noncooperative case, the aircraft involved in
the encounter do not exchange information on their
intentions and do not trust one another at all, hence
the worst case approach is adopted. In the solu-
tion proposed in®* , the two-aircraft conflict resolution
problem is formulated as each aircraft playing a zero-
sum noncooperative game against disturbances that
model the uncertainty in the other aircraft intentions,
with the value function being the aircraft distance.
The differential game methodology is also used in® for
determining the safe region for aircraft approaching
closely spaced parallel runways.

In the cooperative conflict resolution case, the current
positions and intentions of the aircraft are assumed
to be perfectly known to a supervising central con-
troller. Each aircraft completely trusts the central
controller (and hence all the other aircraft), and fol-
lows its advice. The cooperative conflict resolution
problem is typically formulated as an optimization
problem, where the flight plans of all the aircraft are
designed so as to avoid conflicts while minimizing a
certain cost function. Contributions in the literature
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belonging to this class includeb 1!

few.

In between the extremes of noncooperative and co-
operative conflict resolution there is the probabilistic
conflict resolution approach. In this approach, each
aircraft position is assumed to be distributed according
to some probabilistic law, which models the presence
of disturbances affecting the aircraft motion as well
as the partial confidence of each aircraft in the avail-
able information on the intentions of the other aircraft.
Contributions belonging to this category include 213
for the two aircraft case, and '41° for the multiple air-
craft case.

, to mention only a

Based on whether vertical maneuvers are employed
or not, conflict resolution methods can be classified
as two-dimensional (2D) or three-dimensional (3D),
with the former being a particular case of the lat-
ter. Typically, conflicts are resolved by resorting to
three different actions: turn, climb/descend, and ac-
celerate/decelerate, which affect the aircraft heading,
altitude, and speed, respectively. Resolution strategies
adopting one of these actions or a combination of them
are analyzed and compared in terms of cost and effi-
cacy in'®. Tt is found that climb/descend is the most
efficient action for resolving short-term conflicts, since
the horizontal separation requirement is much more
stringent than the vertical one. Vertical maneuvers are
actually used to resolve imminent conflicts in the Traf-
fic Alert and Collision Avoidance System (TCAS!7-18)
currently operating on board of all commercial aircraft
carrying more than thirty passengers. On the other
hand, excessive changes of altitude are likely to cause
discomfort to passengers and are not much compati-
ble with the current vertically layered structure of the
airspace. These facts together with the relative sim-
plicity of dealing with the two dimensional case have
caused most of the approaches proposed in the litera-
ture to focus on 2D conflict resolution, assuming level
flight and horizontal resolution maneuvers.

In this paper, we address the problem of optimal
cooperative 3D conflict resolution involving multiple
aireraft. Conflict situations involving more than two
aircraft may actually occur in areas with high traffic
density. For example, it may happen that by solving
a two aircraft conflict without taking into considera-
tion the surrounding aircraft, a new conflict with a
third aircraft is generated (domino effect). Neverthe-
less, only a few of the existing treatments on conflict
resolution deal with the multiple aircraft case, since re-
solving them is intrinsically more difficult than dealing
with the two aircraft case. In'4 1519 the potential and
vortex field method is used to determine multi-aircraft
coordinated maneuvers, which, however, are not guar-
anteed to be safe. An alternative approach consists
in formulating the multiple aircraft conflict resolution
problem as a constrained optimization problem. The
contributions belonging to this category®8:-10:20,21 djf.
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fer for the model and cost function used, and also
for the method adopted to solve the resultant opti-
mization problem, e.g., genetic algorithms® , semidefi-
nite programming combined with a branch-and-bound
search” | and sequential quadratic programming (SQP)
using a linear approximation of the feasible region'® .
The last method is the closest in spirit to the ap-
proximation scheme we shall propose in this paper,
though our problem formulation is different. In?,
time-optimal cooperative conflict resolution for mul-
tiple aircraft flying at the same altitude with constant
speed and bounded curvature is studied using optimal
control techniques, and a numerical algorithm is pro-
posed for computing a suboptimal solution.

This paper is organized as follows. First we formu-
late precisely the optimal conflict resolution problem
we shall deal with. In particular, we describe the en-
ergy cost function used for selecting among all the
conflict-free coordinated maneuvers the optimal one.
This cost function favors resolution maneuvers of not
only shorter travel distance, but also less speed varia-
tion, thus taking into account important practical fac-
tors such as fuel consumption and passenger comfort.
Also, the energy function depends on some parameters
that allow one to assign different priorities to the air-
craft and penalize excessive vertical maneuvers.

A necessary condition for a conflict-free coordinated
maneuver to be optimal is then derived through a vari-
ational analysis. Compared with conventional varia-
tional problems, special attention has to be paid to the
presence of the conflict-free constraint. We show that
in the two aircraft case the derived necessary condition
is sufficient to give a geometric characterization of the
optimal resolution maneuvers. A numerical procedure
is proposed to compute them, and simulation results
are presented. In the multiple aircraft case, the origi-
nal constrained optimization problem is approximated
by a finite dimensional convex optimization problem
with linear constraints. This is achieved by considering
two-legged coordinated maneuvers specified by a set of
waypoints, and making a linear approximation of the
region to which the waypoints should belong for the
corresponding two-legged coordinated maneuver to be
conflict-free. We describe how a not-too-conservative
inner approximation scheme can be carried out, and
discuss the effect of various parameters on the optimal
resolution maneuvers by simulation examples.

We then point out the limitations of the proposed ap-
proach and suggest some methods to alleviate them.
In particular, we introduce additional (convex) con-
straints on the waypoints position so as to avoid sharp
turns near the waypoints, which would eventually
cause the two-legged maneuvers to be not flyable in
practice. Conclusions are given at the end of the pa-
per.

As a general remark, note that, in order to make
the comprehension of the technical derivations easier,
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we give a geometric interpretation of the obtained re-
sults, wherever possible. Also, we put emphasis on the
implementative aspects of the proposed algorithms.

Problem formulation

Consider a single aircraft, say aircraft i, flying from
position a; € R3? at time tg to position b; € R? at time
ty. Set T £ [to,ts], and denote by P; the set of all
maneuvers for aircraft ¢, where a maneuver is defined
to be a continuous and piecewise C'!' map, say «;, from
T to R3 satisfying a;(to) = a; and a;(ty) = b;'.

The energy of a maneuver «; € P; is then defined
as

J(ay) = %/f||ai(t)||2dt.

to

(1)

Denote by L(a;) the length of the curve «;, i.e.,
L(es) = [ |lai(t)||dt. Then, by the Cauchy-
Schwartz inequality,?? J(«;) satisfies

The equality holds if and only if the speed ||&;(¢)]| is
constant, and in this case the energy J(c) is propor-
tional to the square of the length of a;. This implies
that the maneuver with the least energy for a single
aircraft is the constant-speed motion along the line
segment from its starting to its destination position.
If the aircraft is forced to move along some fixed curve
other than the line segment, then the parameterization
of the curve with the least energy is the one with con-
stant speed, and the minimal energy is proportional to
the square of the curve length. As a result, the least
energy maneuver between two points in the presence
of static obstacles is the shortest curve joining the two
points without crossing the obstacles, parameterized
proportionally to its arc length. This observation will
be used in a later section when dealing with the two
aircraft case.

In the following developments, we assume that a
group of aircraft flying in a certain region of the
airspace has been isolated so that only conflicts among
aircraft within this group need to be considered dur-
ing the time interval of interest. This assumption,
although impractical, is commonly adopted in the lit-
erature.

Suppose that the group under consideration is com-

posed of n aircraft numbered from 1 to n. Set
P(a,b) £ [[_, P;, where a £ (a1,...,a,) and b £
(b1,...,bn). Then, each element o = («vy,...,,) of

P(a,b) represents a joint maneuver (n-maneuver or
simply maneuver when there is no ambiguity) for the

1Piecewise C! means that there is finite subdivision of T
such that the map «; is continuously differentiable till the first
order on each open subinterval. Then ¢&;(t), denotes the first
derivative of «; at those t where it is well defined, i.e., at all
except a finite number of t € T'.

3

n-aircraft system with starting position a and destina-
tion position b. A joint maneuver o = (a,...,0p) €
P(a, b) is said to be conflict-free if, for all the duration
of the encounter, none of the aircraft enters the cylin-
drical protection zone of radius R and height 2H sur-
rounding any other aircraft. If for an arbitrary ¢ € R3
we denote by cgzy € R? and ¢, € R its components
on the horizontal xy plane and the vertical z-axis re-
spectively, then the conflict-free condition is equivalent
to the condition that there is no pair of indices (i, j),
1 <i < j < n,such that ||a; 4y (t) — .y (t)| < R and
lo; - (t) — ;- (t)| < H for some t € T

We denote by P(R, H; a, b) the set of all conflict-free
(joint) maneuvers for the n-aircraft system with start-
ing position a = (aq,...,a,) and destination position
b = (b1,...,b,). Throughout the paper we assume
that each pair of points in the n-tuple (a,...,a,) sat-
isfies either the horizontal or the vertical separation
condition so that there is no conflict for the n-aircraft
system at time ¢o. Similarly for (b1,...,b,). As a re-
sult, the set P(R, H;a,b) is nonempty. Conflict-free
maneuvers in P(R, H;a,b) will occasionally be called
resolution maneuvers.

The performance of each n-maneuver o € P(a,b)
can be characterized in terms of the cost function:

Ju(e) £ ZuiJ(ai), (2)

where J(a;) is the energy of a; defined in equation
(1), and pq,...,p, are positive real numbers adding
up to 1 that represent the priorities of the aircraft.
Given a joint maneuver o € P(a, b), we call J, () its
LL-€energy.

In absence of the separation constraint, the joint ma-
neuver minimizing the p-energy is clearly the one
where each aircraft flies at constant speed along the
straight line joining its starting to its destination posi-
tion. If we consider the separation requirement, then
the conflict-free maneuver with minimal p-energy will
still tend to be straight and smooth, which has impor-
tant practical implications in terms of, for example,
passenger comfort and fuel consumption. Observe
that, by choosing different coefficients u;, i = 1,...,n,
one can assign different priorities to the n aircraft. In
particular, one should associate smaller u;’s to those
aircraft with higher maneuverability so that they will
assume a larger responsibility in resolving the conflict.

Our goal is then to solve the constrained optimiza-
tion problem:

Minimize J,(a) subject to o € P(R, H;a,b). (3)

Each solution a* to problem (3) is called an optimal
(resolution) maneuver for the multi-aircraft system.
Note that, in this formulation, it can be expected
that the optimal resolution maneuvers will mainly uti-
lize the vertical dimension for almost all encounters

American Institute of Aeronautics and Astronautics



since the minimum allowed vertical distance H is much
smaller than the minimum allowed horizontal distance
R. However, vertical maneuvers are usually the least
comfortable ones for passengers. This is the reason
why we now redefine the energy of a maneuver «a; in
equation (1) as follows:

Jai) =5

ty
i @1 + e @F e @

0
where n > 1 is a coefficient introduced to penalize
vertical maneuvers. This modification does not add
further difficulties to the solution of problem (3), since
the minimization of the new cost function can be eas-
ily reduced to the minimization of the one without
penalty by scaling the z-axis by a factor of . The
p-energy with penalty 7 of a joint maneuver is in fact
equal to the p-energy without penalty of the scaled
version of the same joint maneuver, and optimal solu-
tions to the scaled problem can be scaled back to give
the optimal solutions to the original problem.

After scaling, the protection zone becomes a cylinder
of radius R and height 2nH, hence for large values of
7, horizontal resolution maneuvers are more likely to
be invoked. In particular, in the level flight case, when
1 — oo the problem degenerates into the 2D resolution
problem studied in?' .

Without loss of generality, we shall then consider
1 =1 in the following developments.

The p-alignment condition

In this section we derive a necessary condition for a
conflict-free maneuver to be optimal, which will then
be used to obtain the optimal resolution maneuvers in
the two aircraft case.

Consider the destination position b = (by,...,by).
For each w € R? we denote by b + w the n-tuple
(b1 +w,...,b, +w), which can be thought of as a new
destination position of the n-aircraft system.

Definition 1 The tilt operator T, : P(R,H;a,b) —
P(R,H;a,b + w) is a map such that for any a €
P(R,H;a,b), 8 = T,(a) € P(R,H;a,b + w) is de-

fined by Bi(t) = a;(t) + tj—_tgow, VteT,i=1,...,n.

It is easily verified that 7, 0 7_,, = 7_ 0 T, = id,
where o denotes map composition and id the identity
map. Hence 7, is a bijection. Moreover,

Proposition 1 Suppose that a* € P(R, H;a,b) is an
optimal solution to problem (3). Then [* = T,(a*)
minimizes J,(3) subject to B € P(R, H;a,b + w).

Proof:
T ().

For any 8 € P(R,H;a,b + w), let a =
Then a € P(R, H;a,b), and J,(3) can be

4

expressed as

1 [ . w
J/L(ﬂ) = 5 /t0 ;m”ouz(t) + r— ||2 dt o)
wh (377 pi(bi — a;) + w/2)

Notice that the second term in the last expression is
a constant independent of 5. Denote it by C. From
equation (5) and the optimality of o, it follows that
Ju(B) > Ju (o) + C, V3 € P(R,H;a,b + w), where
equality holds if & = a*, i.e. if § = *. This concludes
the proof. n

The starting and destination positions a and b of an
n-aircraft system are said to be u-aligned if they have
the same p-centroid, ie., if Y0 | pia; = Yoy pibs.
For arbitrary a and b, set b’ = b + w where w
i, pi(a; — b;), then a and b’ are p-aligned.

We next introduce the drift operation on joint
maneuvers, which generates a conflict-free maneuver
when applied to a conflict-free maneuver. This opera-
tor is used in the proof of Proposition 2.

Definition 2 Let v : T — R? be a continuous and
piecewise C' map such that v(to) = y(tf) = 0. Then
the drift operator D., : P(R,H;a,b) — P(R,H;a,b)
is a map such that for any a« € P(R,H;a,b), f =
D,(a) € P(R,H;a,b) is defined by B;(t) = o(t) +
y@),VteT,i=1,...,n.

Using the fact that the p-energy of an optimal
resolution maneuver cannot decrease under the per-
turbation of any drift operation, one can derive the
optimality condition in Proposition 2 below. The proof
starts by considering the p-aligned case, and then pro-
ceeds to the case of arbitrary a and b by using the
conclusion of Proposition 1.

Proposition 2 Assume that o* € P(R, H;a,b) is an
optimal solution to problem (3). Then for allt € T,

Z,uiaj(t) = Z,uiai + ! :tfo (Z pibi — Z [1i0;)
i=1 i=1 i=1 i=1

ty
which in the case of u-aligned a and b reduces to

Do mai(t) =Y pia;
i=1 =1

Proof: We start by considering the case when a and
b are p-aligned. Consider a continuous and piecewise
C! map v : T — R? satisfying y(to) = v(tf) = 0.
For each A € R define 3y = Dy, (a*). Note that 8y €

i=1
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P(R,H;a,b) for all A € R. Then
Ju(Br) = Ju(@”)
1 tf - .ok . 2 *
=5 [ o mllai o + il de - J,(a%)
to  j=1

A2t

2 Ji,

s tr n

BR300 wai ) ar

0 i=1

The difference J,,(6) — J,(a*) is a quadratic function
of X\ which, by the optimalfity of a*, must be nonnega-
tive for all A € R. Hence [, 4(t)" 370, piéi (t) dt = 0
must hold for any choice of 7 such that ~(ty) =
v(ts) = 0. Since a and b are p-aligned, we can choose
() = Yo g (t) — >, pia;. Given that o is
piecewise C', this leads to Y-, p;df () = 0 for almost
all t € T, and hence, by integration, to the desired con-
clusion for the p-aligned case.

For the general case when a and b are not necessar-
ily p-aligned, let w = Y7 | pi(a; —b;). Then 7, maps
a* to * = Ty, (*) which, by Proposition 1, minimizes
Ju(B) over all § € P(R,H;a,b’) with b’ = b + w.
Since a and b’ are p-aligned, we know that

Zmﬂf(t) = ZM% vteT.
=1

i=1

The desired conclusion is then obtained by using the
relation a* = 7_,,(5%). m

Note that the result in Proposition 2 can be restated
by saying that the p-centroid of ™ moves at constant
speed along the straight line joining the p-centroid of
a to the p-centroid of b. This property will allow us to
derive the solution to problem (3) in the two aircraft
case.

In the sequel, we shall focus on the p-aligned case,
since in fact by Proposition 1 solving problem (3) for
a and b is equivalent to solving problem (3) for the
p-aligned a and b’ =b+ >0 | pi(a; — b;).

Two aircraft case
Assume that a = (a1,a2) and b = (b1, bs) are u-
aligned and denote by c¢ their common p-centroid, i.e.,
c = pi1ay + pgas = pi1by + pebs. By Proposition 2,
an optimal 2-maneuver o* = (af,a}) € P(R, H;a,b)
satisfies

H2 *
*E(az(t) —c),

ai(t)—c= VteT, (6)

from which it easily follows that the energies of o] and
aj are related by p2J(a;) = p3J(a3). Hence problem
(3) becomes finding among all conflict-free maneuvers
satisfying equation (6) the one that minimizes the en-
ergy of the maneuver for a single aircraft, say, aircraft
1. The separation constraint can be simplified as well,
since by equation (6) it is equivalent to the condition

5

that the curve «oj(-) never enters the cylinder W, of
radius R, = poR and height 2H, = 2usH centered
symmetrically around the p-centroid c.

As a result of these simplifications, problem (3) is
equivalent to:

Minimize J(ay) subject to

a1 EPoq(t) eRI\W,,VtET, (7)

which consists in finding the minimum energy maneu-
vers of aircraft 1 in the presence of the static obstacle
W,,. From the discussion following definition (1) of the
energy of a maneuver, we then know that a solution to
problem (7) is a constant-speed motion along a short-
est curve joining a; to by while avoiding the obstacle
W,,. Under the feasibility assumption, both a; and by
belong to R3\ W,, and such a curve can be computed
efficiently by an algorithm whose description is post-
poned to a later section. Once «j is computed, then
ad can be obtained from «of through equation (6), thus
concluding the treatment of the p-aligned case.

For not necessarily p-aligned a and b, by Propo-
sition 1 an optimal solution a* € P(R,H;a,b) to
problem (3) is given by:

ai(t) =~7(a,b+w)(t) — ttf_—tz?o vteT, (8)
a3(t) = 3 (a,b +w)(t) - e’ |

where (77 (a,b +w),v3(a,b + w)) denotes an optimal
conflict-free maneuver in P(R, H;a,b + w) with w =
t1a1 — p1b1 + poas — pebs (note that a and b + w are
p-aligned).

The optimal solutions depend on the choice of the
priority coeflicients p1 and po. Consider the case when
the priority of aircraft 1 is much larger than that of
aircraft 2 so that ps ~ 0. In the p-aligned case this
implies that a; ~ by, and the radius and height of
the cylinder W, are approximately 0. Therefore 7 is
nearly a zero motion. For not necessarily p-aligned a
and b, from the first equation in (8) it follows that an
optimal maneuver for aircraft 1 is almost a constant-
speed motion along the line segment from a; to b;.
Hence, as expected, aircraft 1 behaves as if there were
no other aircraft flying in the same region, whereas
aircraft 2 is the one assuming the responsibility of
avoiding conflicts.

Some examples of optimal 2-maneuvers

In this section, we present some examples of two-
aircraft encounters, and discuss the influence of various
factors on the corresponding optimal resolution ma-
neuvers. In all the examples, the coordinates of the
aircraft positions are measured in nmi, R = 5 nmi and
H = 0.3292 nmi.

We start by considering a two-aircraft encounter
where a; = (0,20,1), by = (40,20,1), and ay =
(20,0,1), bo = (20,40,1), so that the two straight
lines connecting the starting and destination positions
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(b)

Fig. 1 An optimal resolution maneuver for an or-
thogonal two-aircraft encounter (n = 5 and 1 =
u2 = 0.5): (a) 3D representation; (b) top view.

of each aircraft are on the same horizontal plane and
cross each other at a right angle. These two lines rep-
resent the ideal trajectories of the two aircraft.
Figure 1 shows an optimal maneuver in the case when
the two aircraft have the same priority (u1 = p2 = 0.5)
and n = 5. Starting and destination positions of the
two aircraft are marked with stars and diamonds re-
spectively, whereas the circles represent the aircraft
positions at equally spaced time instants. Hence the
denser the circles, the slowlier the motions. The top
view in (b) shows that the conflict is resolved by ver-
tical deviations from the ideal trajectories.

Figure 2 represents optimal resolution maneuvers
for the same two-aircraft orthogonal encounter under
three different sets of aircraft priorities and the same 7
(n =5). Although the optimal maneuvers in all three
cases have the same top view (shown in the right-hand
side of Figure 1), the vertical deviation of aircraft 1
from its ideal trajectory decreases as its priority in-
creases. In other words, aircraft 2 with smaller priority
will assume more responsibility in resolving the con-
flict. In the extreme case when p; = 1 and po = 0,
the optimal resolution maneuver will be such that air-
craft 1 flies along its ideal trajectory, while aircraft 2
assumes all the responsibility of avoiding conflicts with
aircraft 1. These conclusions on the effect of the pri-
ority coefficients on the optimal resolution maneuvers
hold in general for multi-aircraft encounters.

As for the effect of the vertical penalty factor, note
that in Figure 1, where n =5 and p; = pe = 0.5, the
conflict is resolved using only vertical deviations from
the ideal trajectories. In contrast, if 7 is set equal to
15 (1 = p2 = 0.5), the conflict is resolved using only
horizontal deviations (Figure 3). The explanation is
that, in order to obtain the optimal resolution maneu-
vers, we have to scale the z-axis by a factor of . When
7 is large so that the height of the cylindrical obstacle
becomes much larger than its radius, a shortest curve
between two points across the cylinder is more likely
to be a curve around the side of the cylinder rather
than around its top or bottom. Therefore the larger
the vertical penalty factor 1, the more likely it is that
an optimal resolution maneuver will consist of horizon-
tal deviations from the ideal trajectories. In general,

6

(c)
Fig. 2 Optimal resolution maneuvers for the or-
thogonal two-aircraft encounter with 7 =5 and (a)
w1 = 0.5, po = 0.5; (b) p1 =0.7, g2 = 0.35 (c) p1 = 0.9,
w2 = 0.1.

(b)
An optimal resolution maneuver for the

orthogonal two-aircraft encounter with n = 15 (u1 =
w2 = 0.5): (a) 3D representation; (b) top view.

(a)

Fig. 3

for encounters involving two or more aircraft with the
aircraft initial and destination positions all at about
the same altitude, there are two extreme cases: When
n is very large, the problem degenerates into a planar
conflict resolution problem, where only horizontal de-
viations are allowed in resolving the conflict; When 7
is close to 0, then only vertical deviations are used in
the optimal resolution maneuvers and their top view
consists of straight line segments.

Shortest curve between two points in R® avoiding

a cylindrical obstacle

In this section we describe briefly how to compute
a shortest curve in R3 connecting two points while
avoiding a cylindrical obstacle. This is to complete
the solution to problem (3) in the two aircraft case.

Consider a cylinder of radius r and heigh 2h centered
at the origin:

D = {(x,y,2) € R®: 2* +y* <r? and |z| < h}.
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Given two points a and b in R\ D, our objective is to

Find a shortest curve in R®\ D connecting a and b.

(9)
We require the curve to be continuous and piecewise
C! so that its arc length is well defined.

It is obvious that, when a and b are wisible to each
other in the sense that the line segment joining a and
b does not intersect the obstacle D, the shortest curve
between a and b is the straight line segment joining
them, hence the solution to problem (9) is trivial. Sup-
pose now that a and b are not visible to each other.

Curves that are locally distance minimizing are
called geodesics. A shortest curve between two points
is necessarily a geodesic. In this sense, problem (9)
is a special instance of the general problem of finding
distance-minimizing geodesics in manifolds with (non-
smooth) boundary, which is studied to some extent
in?324  In particular,

Proposition 3 A shortest curve in R®\ D connect-
ing a and b can be decomposed into three segments:
a straight line segment from a to a point p € 0D, a
geodesic segment of OD from p to a point q € 0D, and
a straight line segment from q to b. Moreover, the two
line segments are contained entirely in the interior of
R3\ D except for their end points p and q.

If the shortest curve between a and b is viewed as
a path traveled from a to b, then Proposition 3 says
that the curve will enter and exit dD exactly once, at
positions p and g respectively. We then call p and ¢
entry point and exit point, respectively. As a result
of Proposition 3, solving problem (9) is equivalent to
determining the entry point p, the exit point ¢, and the
distance-minimizing geodesic segment on 9D between
p and ¢. In certain cases, some or all of the three
segments in Proposition 3 can degenerate into points.

Notice that D is a subset of the cylinder @) defined
by Q = {(z,y,2) € R®: 2% +y? < r?}. We can then
distinguish three cases:

Case 1. Both a and b are outside of @), and at least
one of them has z-coordinate in [—h, h;

Case 2. Both a and b are outside of ), and none of
them has z-coordinate in [—h, hl;

Case 3. At least one of @ and b belongs to @,

In each one of these cases a solution to problem
(9) can assume only a finite number of qualitatively
different configurations (see Figure 4). Within each
admissible configuration, one can reduce problem (9)
to a simple optimization problem over a compact re-
gion of R! or at most R?, and solve it numerically
using softwares such as MATLAB. The (global) opti-
mum is obtained by choosing among the so-obtained
curves the one with the smallest length. For further
details, see? .

7

Optimal two-legged maneuvers

The approach adopted in the previous section to
compute optimal resolution maneuvers in the two air-
craft case cannot be easily generalized to the multiple
aircraft case since there are too many configurations
to be considered. Therefore, in this section we sim-
plify the problem by considering two-legged maneuvers
specified by a set of waypoints.

Reformulation of the problem

Consider an n-aircraft system with starting posi-
tion a = (ai,...,a,) and destination position b =
(bi,...,by). Fix an epoch t. € T such that ty <
t. < ty. For each aircraft i, i = 1,...,n, choose
a waypoint ¢; € R3. A two-legged maneuver with
waypoint ¢; for aircraft ¢ is a maneuver consisting of
two stages: first from a; at time tg to ¢; at time ¢,
and then from ¢; at time ¢. to b; at time ¢y, moving
at constant velocity in both stages. Denote by P; >
the set of all two-legged maneuvers for aircraft ¢, and
with Py(a,b) = [[;", Pi2 the set of all two-legged
joint maneuvers for the n-aircraft system. Denote by
Py(R, H;a,b) the subset of Py(a,b) consisting of all
those elements of Py(a,b) that are conflict-free. We
assume that the epoch t. is fixed, so that each ma-
neuver in Py(a,b) (and hence in Py(R, H;a,b)) is
uniquely specified by its waypoints (c1,...,¢p).

Now we try to solve the following problem:

Minimize J,(a) subject to a € Po(R, H;a,b). (10)

One of the reasons why it makes sense studying prob-
lem (10) instead of the general problem (3) is related to
the ATM practice: it is far simpler for the central con-
troller to transmit the aircraft trajectory information
in the form of waypoints and time to reach them rather
than continuous trajectories. From a methodological
point of view, since each maneuver in Py(R, H;a,b)
is parameterized by a vector of waypoints (c1,...,¢y),
then problem (10) is a finite dimensional optimization
problem, which is much easier to deal with than the
variational problem (3).

In the two-legged case, both the cost function and
the constraints in problem (10) can be simplified, and
a (suboptimal) solution can be computed. We start by
considering the cost function, and postpone the discus-
sion on the constraints to later on.

Let a be a two-legged joint maneuver in Py(a, b)
with waypoints (c1,...,¢,). Then « is specified by

() = a; + (¢ — ;) =g, to <t<t. )
i bi-‘r(ci—bi)%, tc<t§tf’

for i =1,...,n. It is easy to verify that the p-energy
of a with n =1 is given by

tr—to
(tr —teo)(te — to

Ju(e)

) Y willei =P +0, (12)
i=1
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where C' is a constant and

w (tf — tc)ai —+ (tc — to)bl .
¢ = ’ v =

ty —to

1,... (13)

are the optimal waypoints when minimizing J,(«)
without the conflict-free constraint. As a result of (12),
problem (10) is equivalent to

Minimize Z willes — ¢ (14)
i=1
for all & € Po(R, H;a,b) with waypoints (c1,...,¢n).

Note that the cost function to be optimized is
quadratic in the optimization variables (c1, ..., ¢p).

Constraints on the waypoints

The condition that the two-legged joint maneuver
a € Py(a,b) with waypoints (c1,...,¢,) is conflict-
free can be expressed in terms of constraints on
(c1y...,¢n). These constraints are in general noncon-
vex. We now study how they can be simplified and
approximated by appropriate linear constraints.

Since a € Po(R, H;a,b) is equivalent to the condi-
tion that there is no conflict between any aircraft pair,
we focus on aircraft 1 and 2, and temporarily ignore
the presence of other aircraft. The following result
can be proven (the interested reader is referred to®°
for details).

Proposition 4 The condition that there is no conflict
between aircraft 1 and aircraft 2 in o € Pa(a,b) is
equivalent to the condition that the waypoints c; and
co satisfy: ¢y — co is visible to both a1 — as and by — by
in R3 in the presence of the open cylindrical obstacle
W of radius R and height 2H centered at the origin.

Set Aa = ay — ag, Ab = by — by, and Ac = ¢ — co.
By Proposition 4, the feasible region of Ac consists
of those points in R3 visible to both Aa and Ab in
the presence of the obstacle W. Such a region has a
complex shape and, in particular, is not convex. Hence
problem (14) is in essence a nonconvex optimization
problem, which is not only difficult to solve, but may
also admit multiple solutions. It is then natural to look
for some convex approximation of the feasible region.

8

5y

(b)

Fig. 4 Possible configurations for the solutions in (a) case 1; (b) case 2; (c) case 3.

()

In a safety-critical context such as in ATM systems,
it is necessary that the approximated region is strictly
contained in the original feasible region (inner approz-
imation) so as to ensure absolute safety. On the other
hand, the approximation should be as tight as possible
so that the computed solutions are close to be optimal.
The approximation scheme introduced below satisfies
these requirements. Moreover, since it only uses the
fact that W is convex, it can be easily generalized to
the case when the protection zone has an arbitrary
convex shape, not necessarily cylindrical.

In the following we assume that both Aa and Ab
belong to the interior of R® \ W, which is satisfied
in all situations in practice. We then distinguish two
different cases depending on whether Aa and Ab are
visible to each other in the presence of the obstacle W.

Aa and Ab are visible to each other. Suppose that
the line segment joining Aa and Ab does not intersect
W. In this case there is no conflict between aircraft 1
and aircraft 2 if they both fly at constant speed along
their ideal trajectories, which are the two-legged joint
maneuver with waypoints ¢} and ¢4 defined in (13).
Notice that Ac* = ¢} — ¢4 is on the line segment be-
tween Aa and Ab, hence outside of W. From this it
follows that the approximated feasible region of Ac
should include Ac* and as much region in R? as pos-
sible, provided it is visible to both Aa and Ab. One
such choice is described next.

Let Ly, be the line segment between Aa and Ab
(end points included), and let W be the closure of
W, which is a closed cylinder. Since both L,; and W
are compact and convex subsets of R3, there exists a
point u in Ly, and a point v in W such that ||u—ov]|| =
inf{||z — y|| : € Lap,y € W}. If u # v, then through
point v there is a unique plane P orthogonal to the
straight line between u and v. P divides R? into two
closed half spaces which intersect each other at P. The
definition of u and v together with the convexity of
Lo and W implies that Lgp is contained in one half
space, while W is contained in the other half space. We
denote by P the closed half space containing Lgp. If
u = v, then u (hence v) is located on OW. In this
case we can choose any tangent plane to 0W at u that
separates Lo, and W, and define P+ to be the side
of it containing L,;. Note that here we use the term
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“tangent planes” of W in its generalized sense, i.e.,
those planes which intersect OW and have W on one
side of them exclusively. In the special case when u = v
and u is on the sharp edges of OW, there might be a
family of such tangent planes, and we can choose any
one of them in defining P, provided it separates Lq;
and W.

The closed half space Pt thus obtained satisfies the
condition that it contains Ac* and that all its points
are visible to both Aa and Ab. Therefore we can use
PT as the approximated feasible region of Ac. This in
essence imposes a single linear constraint on ¢; and co
in the form n” (¢; —ca —v) > 0 for some vector n € R3.

The points v and v can be computed by using stan-
dard optimization algorithms.

Aa and Ab are not visible to each other. Let p and
q be the entry point and the exit point of a shortest
curve in R3\ W from Aa to Ab as defined after Propo-
sition 3.

Since Aa is in the interior of R\ W by assumption,
p is located on the contour of W with respect to a
viewer situated at Aa. Among all the planes that are
tangent to OW at p, let P, be the one which passes
through Aa. The choice of P, is unique unless p
is on the sharp edges of OW and Aa has the same
z-coordinate as p. In the latter case, we can choose
an arbitrary tangent plane. Let PS be the closed
half space determined by the side of P, that does
not contain W. Points in P} are visible to Aa.
In a similar way we can define Pb+ based on the
tangent plane to OW at ¢ that passes through Ab.
Points in Pb+ are visible to Ab. Therefore points in
Pt £ PN Pl are visible to both Aa and Ab, and
can be used as the approximated feasible set for Ac.
This translates into two linear constraints on ¢; and cs.

In summary, given Aa and Ab, one or two linear
inequalities can be used to approximate the constraint
that Ac is visible to both Aa and Ab in the presence
of obstacle W. Such a linear approximation should be
carried out for all aircraft pairs, thus leading to the
following approximated version of problem (14):

n

> pille: — ef?,

1<i<j<n =1

min
ci—Cj GP;JT,

(15)

where P;jf is the linear approximation of the feasible
set for ¢; — c¢; computed based on a; — a; and b; — b;
as described above. Problem (15) is a linearly con-
strained quadratic programming problem, which can

be efficiently solved by many software packages.

Some examples of multi-aircraft encounters

Consider a three-aircraft encounter where a; =
(0,50,4), by = (100,50,4), az = (50,0,4), by =
(50,100,4), a3 = (100,100,5), and b3 = (0,0, 3), i.e.,
aircraft 1 and aircraft 2 are flying at the same altitude

9

with cross-path angle of 90°, whereas aircraft 3 dives
across that altitude and has a path angle of 135° with
both aircraft 1 and aircraft 2. All the three aircraft
have identical priority and ¢t. = (to+ty)/2. We choose
R = 10 nmi to make the resolution maneuvers more
evident in the plots.

Figure 5 shows the solutions to problem (15) corre-
sponding to two different values of 7. Specifically,
plotted in (a) is the snapshot at a time instant near ¢,
of the two-legged joint maneuver solving problem (15)
for n = 5. Its top view is shown in (b). The cylin-
ders with radius R/2 and height H in (a) represent
half the size of the protection zones surrounding each
aircraft, so that two aircraft are in a conflict situa-
tion if and only if the corresponding cylinders intersect
each other. Similarly, (c¢) and (d) represent a snapshot
of the solution to problem (15) with n = 50. As in
the two-aircraft case, larger value of n will force the
aircraft to adopt horizontal maneuvers to resolve the
conflict.

Figure 6 shows the simulation results for a four-
aircraft encounter with a; = (0,100,4), by =
(100,0,4), as = (20,80,4), bo = (80,20,4), a3 =
(95,95,4), b3 = (0,0,4), ag = (70,65,4), and by =
(20,25,4). The four aircraft are divided into two
groups, each consisting of two aircraft one overtaking
the other, with the path angle between the two groups
being 90°. We choose R = 10 nmi, H = 0.3292 nmi,
and t. = (to + ty)/2. All aircraft have equal prior-
ity. A snap shot of the solution to problem (15) at a
time instant near ¢. is represented in (a) and (b) for
n =5, and in (c¢) and (d) for n = 50. (c) and (d)
can be thought of as the restricted solution to prob-
lem (10) when the motion of each aircraft is required
to be contained in the plane at altitude 4.

Further constraints on the waypoints

So far we have assumed that the two-legged maneu-
ver obtained by solving the optimization problem (15)
is flyable. In practice, this is generally not the case
because of the abrupt turn and the change of speed
when an aircraft passes through its waypoint. In the
following we shall propose practical constraints on the
waypoints to alleviate such drawbacks, at least to a
certain extent. In order for the optimization problem
to be computationally tractable, it is important that
the introduced constraints are convex.

We start by considering the speed constraint. Sup-
pose that the speed of each aircraft during both stages
of its maneuver cannot exceed a certain threshold
Umaz- Recall that t. is the time epoch corresponding
to the middle waypoints. Then the speed constraint
for aircraft ¢ can be expressed as:

||ai - Cl” S U’maw(tc - tO)a

16
b — il < vman(ts — to). (16)

Note that constraint (16) implies that ¢; must be-
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(b)

Fig. 5

Two-legged resolution maneuvers for a three-aircraft encounter (u1 = p2 = ps = 1/3): (a) 3D

representation and (b) top view when n = 5; (c) 3D representation and (d) top view when 7 = 50.

(b)

(a)
Fig. 6 Two-legged resolution maneuvers for a four-aircraft encounter (u1 = p2 = us = pa = 1/4): (a) 3D
representation and (b) top view when n = 5; (c) 3D representation and (d) top view when 7 = 50.

long to the intersection of two spheres, one centered
at a; and the other centered at b;. Hence the speed
constraint is convex. Different v,,,, can be used for
aircraft with different capabilities.

A further practical constraint is that on the turning
angle. Here, we consider a simplified version of this
constraint. More precisely, we project each aircraft
maneuver onto the zy, yz, and zz planes, and require
that each projection satisfies the condition that the
angle between the two segments composing it does not
exceed a certain threshold 6,,,4.

Note that both the speed and turning angle con-
straints can be expressed using a second order cone
constraint of the form

| As 4 b|| < &s +d, (17)
for some matrix fl, vectors I;, ¢, and constant d of
suitable dimensions, where s denotes the optimization
variable. Therefore, the optimization problem (15) to-
gether with the speed and the simplified turning angle
constraints becomes a Second Order Cone Program-
ming (SOCP) problem, which can be solved by using
softwares such as SOCP?5. Note that as before, the
vertical discount factor n can be incorporated into
these two constraints.

Figure 7 shows the effect of the speed and turning
angle constraints on a five-aircraft encounter. Here we
choose g = 0 min, ¢ty = 10 min, ¢, = 5 min, n = 50,
R = 5 nmi, and we assign the same priority to all
the aircraft. The solution to problem (15) without
any additional constraint is shown in (a), the solution
with the speed constraint of v,q, = 7.102 nmi/min is
shown in (b), whereas the solution with the turning
angle constraint 60,,,, = 7/10 on the zy plane pro-

10

(@)

jection is reported in (c). As expected, the aircraft
which experiments the largest speed and turning an-
gle in case (a) (the one starting from the top left corner
and ending in the bottom right corner) tends to have a
straighter motion under the additional constraints on
either the speed or the turning angle.

Further adjustments can be introduced to improve
the flyability of the generated maneuvers. For ex-
ample, one can consider multi-legged maneuvers and
adopt an iterative procedure to get an approximated
optimal solution for the multi-legged version of the
conflict resolution problem. Furthermore, to avoid
sharp turns at time ¢y, one can choose the starting
epoch to be tg + A for some positive A, and use the
time interval [to, to + A] as buffer for possible heading
adjustments.

Conclusions

In this paper we study the problem of designing
optimal conflict-free maneuvers for multi-aircraft en-
counters. An algorithm is proposed for solving the
resultant constrained optimization problem in the two
aircraft case. When more than two aircraft are in-
volved, we consider two-legged maneuvers defined by a
set of waypoints. The original optimization problem is
then reduced to a finite dimensional convex optimiza-
tion problem with linearly approximated conflict-free
constraints on the waypoints. Path flyability is taken
into account by introducing maximum speed and turn-
ing angle constraints.

Still, much work needs to be done for the implemen-
tation of an optimal resolution algorithm that proves
to be effective in most practical situations.
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(a)

(b)

Fig. 7 Two-legged resolution maneuvers for a five-aircraft encounter (u1 = p2 = us = pa = 1/4, n = 50):
(a) no additional constraint; (b) speed constraint with vy, = 7.102 nmi/min; (c) turning angle constraint

with Opas = 7/10.
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