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Abstract. We address the problem of optimal coordinated motions of multiple agents moving
in the same planar region. The agents’ motions must satisfy a separation constraint throughout the
encounter to be conflict-free. The objective is to determine the conflict-free maneuvers (motions)
with the least combined energy, while taking into account the fact that agents may have different
priorities. A formal classification of conflict-free maneuvers into homotopy types is introduced by
using their braid representation. Various local and global optimality conditions are derived through
variational analysis in the presence of the separation constraint. In the case of two agents, these
optimality conditions allow us to construct the optimal maneuvers geometrically. For the general
multi-agent case, a convex optimization algorithm is proposed to compute within each homotopy
type a solution to the optimization problem restricted to the class of multi-legged maneuvers. Since
the number of types grows explosively with the number of agents, a stochastic algorithm is suggested
as the “type chooser”, thus leading to a randomized optimization algorithm.
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1. Introduction. In this paper, the problem of designing coordinated maneu-
vers for multiple agents moving on a plane is studied. The joint maneuver has to
be chosen so as to guide each agent from its starting position to its target position,
while avoiding conflicts, that is, situations where the Euclidean distance between any
two agents is smaller than some fixed threshold R > 0. Among all the conflict-free
joint maneuvers, we aim at determining the one with the least overall cost. Here the
cost of a single agent’s maneuver is its energy, and the overall cost is a weighted sum
of the maneuver energies of all individual agents, with the weights representing the
priorities of the agents. A precise formulation of the problem is given in Section 3.

This problem is of great interest since it is actually encountered in many different
practical areas. For example, in the air traffic control (ATC) context, aircraft flying
at the same altitude must maintain a minimal horizontal separation R of at least 3
nautical miles (nmi) inside the terminal radar approach control facilities and 5 nmi
in the en-route airspace ([35]). In this case, the energy is closely related to practical
aspects such as travel distance, fuel consumption, passenger comfort, etc. Numer-
ous approaches have been proposed in the literature on aircraft conflict resolution,
including optimal control theory ([5]), semidefinite programming ([10]), sequential
quadratic programming ([29]), game theory ([39, 40]), parallel coordinates represen-
tation ([19]), genetic algorithms ([28]), to name a few. Readers are referred to [15, 23]
for a survey on aircraft conflict resolution. Similar problems have been studied in
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other transportation systems as well, such as [30].
The problem of optimal multi-agent coordinated motions also finds applications

in robotics. For example, for multiple cooperating mobile robots moving in a common
workspace, the requirement that there is no collision among them can be reformulated
as that their joint maneuver is conflict-free, with R being twice the robot radius. The
literature on the general problem of robot motion planning with static or dynamic
obstacles is vast (see e.g. [4, 9, 11, 24, 38], and the survey [18]), and it is impossible
to survey them in this paper. Here we limit our review to those contributions more
relevant to our work. A large portion of the treatments focus on the feasibility and
the algorithmic complexity aspects of the problem. Some of them indeed deal with
multiple robots case using certain optimality criteria. To name a few, [5] studies
the problem of time-optimal cooperative motions of multiple Dubin vehicles moving
at constant speed with bounded curvature, while in [25], each robot minimizes its
own independent cost function by using techniques from multi-objective optimization
and game theory. [7] addresses the problem of optimal motion planning for multiple
nonholonomic manipulators transporting a grasped object.

The distinguishing feature of our approach to coordinated motion planning con-
sists in the interpretation of maneuvers as braids. Besides giving a complete homotopic
classification of conflict-free maneuvers, this also provides us insights on the deriva-
tion of optimality conditions. Although the space-time representation of motions is
not new in the literature (see e.g. [9, 37]), to our knowledge, however, it has never
been used to such an extent in the optimality analysis of coordinated motions.

Due to the many different interpretations of conflict-free maneuvers (not only as
braids, but also as, e.g., solutions to mechanical systems or geodesics in a manifold
with boundary), many of the results in this paper can be derived in more than one
way. For example, some of the local optimality conditions in Section 3 can be derived
by using the symmetry reduction method in [3, 26]. In most cases, we choose our
approaches with an emphasis on their geometric appealing and their relevancy to the
braid point of view. As a result, they may not always be the most elegant and efficient
ones. In addition, although we focus exclusively on the case when the state space is
R

2, extensions to general state spaces are possible ([16]). These possible extensions, as
well as the remaining open issues, will be pointed out in the paper wherever possible.

This paper is organized as follows. In Section 2, we introduce a formal classi-
fication of conflict-free maneuvers into homotopy types by using the notion of pure
braids group. Inspired by the braid representation of conflict-free maneuvers, we de-
fine various transformations of joint maneuvers that preserve the minimum separation
condition. Such transformations are used in the variational analysis in Section 3 to
derive local and global necessary conditions on optimal conflict-free maneuvers. In
particular, the optimal conflict-free maneuvers for the two-agent case are derived in
Section 3.3. Two mechanical interpretations of the problem are given in Section 3.8.

As the number of agents increases, it is difficult in practice to derive analytically
the optimal conflict-free maneuvers. By focusing on those maneuvers specified by a
set of waypoints, we are able to use convex optimization techniques to obtain multi-
legged approximated solutions to the constrained optimization problem within each
homotopy type (Section 4). A stochastic algorithm is proposed in Section 4.4 to
address the problem of selecting the homotopy type, thus leading to a randomized
convex optimization algorithm.

The paper is concluded in Section 5 with some general remarks and the outline
of some possible extensions of this research.
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2. Classification of conflict-free maneuvers. In this section, we introduce a
qualitative classification of conflict-free maneuvers involving multiple agents. Roughly
speaking, two conflict-free maneuvers are classified as of the same “type” if there exists
a continuous conflict-free deformation of one to the other. Hence switching between
different types cannot be done smoothly without causing a conflict.

Consider n agents (numbered from 1 to n) moving in R
2, where each agent, say

agent i, starts at position ai ∈ R
2 at time t0, and ends in position bi ∈ R

2 at time
tf . Let T , [t0, tf ] be the time interval of the encounter. Denote by Pi , {αi ∈
C(T, R2) : αi(t0) = ai, αi(tf ) = bi} the set of maneuvers for agent i consisting of all
the continuous maps from T to R

2 that take the values ai and bi at times t0 and tf ,

respectively. Set P(a,b) ,
∏n

i=1 Pi, where a = (a1, · · · , an) and b = (b1, · · · , bn).
Each element α = (α1, · · · , αn) ∈ P(a,b) is called a joint maneuver (n-maneuver or
simply maneuver when there is no ambiguity) for the n-agent system. The minimum
separation over encounter (MSE) for a joint maneuver α is defined to be the minimum
Euclidean distance between any pair of agents during the whole time interval T , i.e.,

∆(α) , min
1≤i<j≤n

inf
t∈T

‖αi(t) − αj(t)‖.

The set of conflict-free maneuvers is then defined as

P(R, a,b) , {α ∈ P(a,b) : ∆(α) > R},

where R is a positive number representing, for example, the radius of the protection
zone surrounding an aircraft or twice the radius of a circular robot. We assume that
the minimum distance between any pair of starting positions in the n-tuple 〈ai〉ni=1

and any pair of ending positions in the n-tuple 〈bi〉ni=1 is strictly greater than R, so
that P(R, a,b) is nonempty.

We distinguish different maneuvers in P(R, a,b) according to the following equiv-
alence relation.

Definition 2.1 (R-homotopy). Two conflict-free maneuvers in P(R, a,b) are
R-homotopic if there exists a continuous deformation of one to the other in P(R, a,b),
or equivalently, if there exists a continuous deformation of one to the other in P(a,b)
such that the joint maneuvers obtained throughout the deformation are conflict-free.

The objective of this section is to characterize the structure of the equivalence
classes of P(R, a,b) induced by the R-homotopy relation. With this purpose in mind,
we now recall the concept of braids ([6, 32]).

Definition 2.2 (Braids). A braid joining a = (a1, · · · , an) to b = (b1, · · · , bn)
is an n-tuple 〈γi〉ni=1 of continuous curves in R

2 × T ⊂ R
3 satisfying the following

conditions:
• Each point (ai, t0), i = 1, · · · , n, is joined by exactly one curve in 〈γi〉ni=1 to

one of the points (bj , tf ), 1 ≤ j ≤ n;
• The plane t = τ intersects each curve at exactly one point for all τ ∈ T ;
• γi ∩ γj = ∅ whenever i 6= j.

In the following, we shall occasionally use the term n-braid to indicate the number
of curves in the braid. The set of all braids joining a to b is denoted by B(a,b). If i and
j are required to be identical in the first condition of Definition 2.2, the corresponding
braid is called a pure braid. The set of all pure braids joining a to b is denoted by
PB(a,b). An example of a pure 3-braid is shown in the right-hand-side of Fig. 2.1.

There is a simple equivalence relation defined on B(a,b) and hence on PB(a,b)
as well ([32]).
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Fig. 2.1. A 3-maneuver in P(0, a,b) and its braid representation.

Definition 2.3 (String isotopy). Two braids in B(a,b) are said to be string
isotopic if the n curves of one of them can be continuously deformed to those of the
other such that the n curves in R

2 × T obtained throughout the deformation satisfy
all the conditions in Definition 2.2.

The reason for introducing the notion of braids is that there exists a very natural
one-to-one correspondence between joint maneuvers in P(0, a,b) and pure braids in
PB(a,b). To see this, for each joint maneuver α = (α1, · · · , αn) ∈ P(0, a,b), let
α̂i be the curve in R

2 × T joining (ai, t0) to (bi, tf ) defined as the image of the map
t 7→ (αi(t), t), t ∈ T . Then, it is clear from the definition of P(0, a,b) that the n-tuple
〈α̂i〉ni=1 of curves is indeed a pure braid in PB(a,b), which we shall denote by α̂ (see
Fig. 2.1 for a 3-maneuver in P(0, a,b) and its braid representation). The map α 7→ α̂
can be verified to be a bijection between P(0, a,b) and PB(a,b). Furthermore, the
following result is an immediate consequence of the above definitions.

Proposition 2.4 (Equivalence of 0-homotopy and string isotopy). α and β ∈
P(0, a,b) are 0-homotopic if and only if α̂ and β̂ are string isotopic in PB(a,b).

As a result of Proposition 2.4, there is a one-to-one correspondence between the
0-homotopy classes of P(0, a,b) and the (string) isotopy classes of PB(a,b).

We next show that the isotopy classes of braids with identical starting and ending
points, say B(a, a), form a group under a suitable product operation. For each α̂ ∈
B(a,b) and β̂ ∈ B(b, c), define the product γ̂ , α̂·β̂ as the braid γ̂ ∈ B(a, c) obtained

by first concatenating the n curves of α̂ with those of β̂, and then renormalizing the
t axis linearly such that the resultant n curves connect 〈(ai, t0)〉ni=1 to 〈(ci, tf )〉ni=1

via 〈(bi,
t0+tf

2 )〉ni=1. Note that the ending points of α̂ and the starting points of β̂
have to coincide for the product to be well defined. It can be easily checked that
this product operation preserves string isotopy, i.e., if α̂′ is string isotopic to α̂ in
B(a,b) and β̂′ is string isotopic to β̂ in B(b, c), then α̂′ · β̂′ is string isotopic to

α̂ · β̂ in B(a, c). Therefore, it induces a product operation on the isotopy classes of
braids. This induced product operation makes the isotopy classes of B(a, a) into a
group, with the inverse operation being the reflection of the n curves across the plane
t =

t0+tf

2 . We denote this group by Bn. Similarly the isotopy classes of pure braids
PB(a, a) form under the same induced product operation a group, which we denote
by PBn. PBn is a normal subgroup of Bn. Readers are referred to [12] or [32] for a
detailed derivation of the above claims.

Now if we fix a braid β̂ in PB(b, a), then α̂ 7→ α̂·β̂ defines a map from PB(a,b) to
PB(a, a). Since this map preserves string isotopy, it induces a map from the isotopy
classes of PB(a,b) to the isotopy classes of PB(a, a), i.e., PBn. The induced map is
easily verified to be a bijection. This fact combined with the result in Proposition 2.4
implies that there exists a bijection between the 0-homotopy classes of P(0, a,b) and
the elements of PBn.
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Fig. 2.2. 2-agent encounter. Left: Maneuver 1 - Right: Maneuver 2.
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Fig. 2.3. Two 3-maneuvers with the same turning angle but belonging to different types.

The above conclusions remain valid for the case of an arbitrary R > 0. Hence,
Theorem 2.5 (Classification of conflict-free n-maneuvers). The R-homotopy

classes of conflict-free maneuvers in P(R, a,b) have a one-to-one correspondence with
the elements of the group of pure n-braids PBn.

In Remark 1 of Section 3, we give an alternative interpretation of the above result.
For a discussion on the use of braid groups to classify motions on a graph, see [1].

The group PBn is described by a set of generators together with a set of relations
defined on them ([32, 33]). Therefore, Theorem 2.5 completely characterizes the
structure of the homotopy types of conflict-free maneuvers for n-agent encounters.
On the other hand, the characterization is unsatisfactory in practical terms since
the description of PBn is very complicated. However, when n is small, the result
in Theorem 2.5 may have simple interpretations. Consider for example the 2-agent
encounter shown in Fig. 2.2. Theorem 2.5 says that each maneuver in P(0, a,b) is
0-homotopic to maneuver 1, or maneuver 2, or one of the following two maneuvers:

• Maneuver 1 followed by the motions where agent 2 stays at b2, and agent
1 starts from b1, circles around agent 2 counterclockwise k times for some
integer k ≥ 1 and returns to b1.

• Maneuver 2 followed by the motions where agent 2 stays at b2, agent 1 starts
from b1, circles around agent 2 clockwise k times for some integer k ≥ 1 and
returns to b1.

The angle one agent turns with respect to the other during T plays a decisive role
in determining the homotopy type of the conflict-free 2-maneuvers. Maneuver 1 and
maneuver 2 are representatives of the only two types for which the absolute values of
this angle do not exceed 360◦. We shall call such types fundamental. Then there are
exactly two fundamental types for any 2-agent encounter.

It is tempting to extend this definition to the n-agent case, and conclude that

there are exactly 2
n(n−1)

2 fundamental types of conflict-free maneuvers, since there

are two fundamental types for each of the n(n−1)
2 agent pairs. Unfortunately this is

not the case. Shown in Fig. 2.3 are the plots of two conflict-free maneuvers for a
3-agent encounter that have the same turning angle within the range (−360◦, 360◦)
between any pair of agents, but in fact belong to different types.
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3. Optimal conflict-free maneuvers. In this section, the problem of finding
“optimal” conflict-free maneuvers for multi-agent encounters is formulated and stud-
ied. To ensure that the problem is well defined and admits a solution, we modify
some of the notations introduced in the previous section. In particular, the set of
maneuvers for agent i, Pi, is redefined to be the set of all continuous and piecewise
C2 maps1 from T to R

2 that take the values ai and bi at times t0 and tf , respectively.
The set of joint maneuvers P(a,b) and the MSE ∆(α), α ∈ P(a,b), are defined as in
Section 2, whereas P(R, a,b) is redefined to be the set of all joint maneuvers with a
MSE greater than or equal to R. Note that the results in Section 2 on the qualitative
classification of conflict-free maneuvers still hold for the newly defined P(R, a,b) by
the compactness of T .

3.1. Statement of the problem. Consider a maneuver of a single agent, say
αi ∈ Pi, i ∈ {1, · · · , n}. The energy of αi is defined as

J(αi) =
1

2

∫ tf

t0

||α̇i(t)||2 dt. (3.1)

Let L(αi) be the arc length of the curve αi, i.e., L(αi) =
∫ tf

t0
||α̇i(t)|| dt. Then the

application of Cauchy-Schwartz inequality to equation (3.1) yields ([31]):

J(αi) ≥
1

2

L(αi)
2

(tf − t0)
, (3.2)

where the equality holds if and only if ‖α̇i(t)‖ is constant. This implies that if agent i
is forced to move along some fixed curve and if we ignore the presence of other agents
temporarily, then of all the different parameterizations, the one with a constant speed
has the minimal energy, and the minimal energy is proportional to the square of
the curve length. Therefore, in the presence of static obstacles, the maneuver of
agent i with the least energy between two points is the shortest curve between them
parameterized proportionally to the arc length. In particular, if there are no obstacles,
the energy-minimizing maneuver of agent i is the constant speed motion along the
line segment from ai to bi. It follows from this discussion that the energy-minimizing
maneuvers tend to be straighter and smoother, which has practical implications, for
example, in terms of passenger comfort, brake erosion, fuel consumption, etc.

The µ-energy of a joint maneuver α = (α1, . . . , αn) ∈ P(a,b) is defined as

Jµ(α) ,

n
∑

i=1

µiJ(αi), (3.3)

where µ1, . . . , µn are n positive numbers adding up to 1 (i.e.
∑n

i=1 µi = 1) representing
the priorities of the agents.

Our goal is to find the conflict-free maneuver with the least µ-energy, i.e.,

minimize Jµ(α) subject to α ∈ P(R, a,b). (3.4)

If α is required to belong to a certain type in P(R, a,b), then we get a restricted
version of problem (3.4). All the necessary conditions obtained in this section remain
valid for the restricted problem, with the only exception of Proposition 3.8.

1Piecewise C2 means that there is a finite subdivision of T such that the map is continuously
differentiable till the second order on each (open) subinterval. In the sequel when we use α̇i(t), α̈i(t),
we shall mean at those t where they are well defined, i.e., except at a finite set of time instants t.
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Fig. 3.1. Tilt operation Tw on a 2-maneuver.

Remark 1 (Geodesics in a manifold with boundary). Problem (3.4) can be
formulated in an alternative way. By viewing α = (α1, · · · , αn) ∈ P(a,b) as a curve in
R

2n, and a,b as two points in R
2n, a conflict-free maneuver in P(R, a,b) corresponds

to a curve in R
2n joining a to b and avoiding the obstacle W defined by

W = {(p1, · · · , pn) ∈ R
2n : pi ∈ R

2, 1 ≤ i ≤ n, and ‖pj − pk‖ < R for some j 6= k}.

If the coefficients µi, i = 1, . . . , n, are identical, then the µ-energy of a joint maneuver
is proportional to the energy of the corresponding curve in R

2n. Therefore, problem
(3.4) is equivalent to finding the curve in R

2n \W joining a to b with the least energy,
which is a minimizing geodesic of R

2n \W connecting a to b. Note that R
2n \W is a

manifold with nonsmooth boundary whose fundamental group is isomorphic to PBn

by Theorem 2.5. The general case of arbitrary 〈µi〉ni=1 can be reduced to this special
case by scaling the pi axes of R

2n by a factor of
√

µi, i = 1, · · · , n. The interested
readers are referred to [17] for further details.

The rest of this section is devoted to the solution of problem (3.4), a variational
problem with complicated and nonsmooth constraints. Inspired by the braid represen-
tation introduced in Section 2, we propose various transformations of joint maneuvers
that preserve the MSE, and use these transformations in the variational analysis to
obtain necessary conditions for a maneuver α∗ ∈ P(R, a,b) to be optimal.

3.2. µ-alignment of optimal conflict-free maneuvers. As explained in Sec-
tion 2, each conflict-free maneuver α ∈ P(R, a,b) has a natural braid representation
α̂ ∈ PB(a,b), whose n strings are determined by the images of the maps t 7→ (αi(t), t),
t ∈ T , i = 1, · · · , n. Furthermore, α̂ satisfies the R-separation property in that the
intersection of α̂ with the plane t = τ for any τ ∈ T consists of n points whose
pairwise minimum distance is at least R. All the operations on conflict-free maneu-
vers we shall introduce in the following preserve this separation property in the braid
representation, hence they are indeed transformations of conflict-free maneuvers.

For each w ∈ R
2, denote by b + w the n-tuple (b1 + w, · · · , bn + w).

Definition 3.1 (Tilt operator Tw). The tilt operator Tw : P(R, a,b) →
P(R, a,b + w) is a map such that for any α ∈ P(R, a,b), β = Tw(α) is defined
by

βi(t) = αi(t) +
t − t0
tf − t0

w, t ∈ T, i = 1, · · · , n.

It is easily seen that Tw is MSE-preserving in the sense that α and Tw(α) have the
same MSE. Hence Tw maps P(R, a,b) into P(R, a,b + w). In fact, Tw is a bijection
from P(R, a,b) to P(R, a,b + w) since Tw ◦ T−w = T−w ◦ Tw = id. In the braid

representation, β̂ is obtained by tilting α̂ linearly, hence the name for the operator
Tw. More precisely, in order to get β̂ from α̂, the plane t = t0 is kept invariant (shifted
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by 0), the plane t = tf is shifted by w, and each intermediate plane t = τ , τ ∈ (t0, tf ),
is shifted by an amount determined by the linear interpolation of 0 and w according
to the position of τ in T . Fig. 3.1 illustrates the effect of the Tw operator on the braid
representation of a 2-maneuver.

The importance of introducing Tw lies in the following result.
Proposition 3.2. Suppose that α∗ is a conflict-free maneuver in P(R, a,b) with

the least µ-energy. Fix w ∈ R
2. Then β∗ = Tw(α∗) is a conflict-free maneuver in

P(R, a,b + w) with the least µ-energy.
Proof. For any β ∈ P(R, a,b + w), let α = T−w(β). Then α ∈ P(R, a,b) and

Jµ(β) can be expressed as

Jµ(β)=
1

2

∫ tf

t0

n
∑

i=1

µi‖β̇i(t)‖2 dt =
1

2

∫ tf

t0

n
∑

i=1

µi

∥

∥α̇i(t) +
w

tf − t0

∥

∥

2
dt

=
1

2

∫ tf

t0

n
∑

i=1

µi‖α̇i(t)‖2 dt +

∫ tf

t0

wT

tf − t0

n
∑

i=1

µiα̇i(t) dt +
‖w‖2

2(tf − t0)

= Jµ(α) +
wT [

∑n
i=1 µi(bi − ai) + w/2]

tf − t0
. (3.5)

Note that the second term in the last equation of (3.5) is a constant independent
of β. Denote it by C. It follows by equation (3.5) and the optimality of α∗ that
Jµ(β) ≥ Jµ(α∗) + C, ∀β ∈ P(R, a,b + w), with the equality if α = α∗, i.e. β = β∗.

Consider arbitrary starting and destination positions a and b, and set b′ , b+w
where w =

∑n
i=1 µi(ai − bi). Then a and b′ are µ-aligned in the sense that they have

the same µ-centroid, i.e.,

n
∑

i=1

µiai =

n
∑

i=1

µib
′
i. (3.6)

By Proposition 3.2, solutions to problem (3.4) for general a and b can be obtained
from solutions to problem (3.4) for µ-aligned a and b′ by applying the tilt operator
T−w with w =

∑n
i=1 µi(ai − bi). This is the reason why we shall focus on the special

case of µ-aligned a and b.
The next transformation we shall introduce is the drift operation. Let γ : T → R

2

be a continuous and piecewise C2 map such that γ(t0) = γ(tf ) = 0.
Definition 3.3 (Drift operator Dγ). The drift operator Dγ : P(R, a,b) →

P(R, a,b) is a map such that for any α ∈ P(R, a,b), β = Dγ(α) is defined by

βi(t) = αi(t) + γ(t), t ∈ T, i = 1, · · · , n.

In the braid representation, β̂ is obtained from α̂ by drifting each plane t = τ , τ ∈ T ,
by an offset γ(τ) ∈ R

2. It can be verified that Dγ is MSE-preserving and a bijection
of P(R, a,b) onto itself since Dγ ◦D−γ = D−γ ◦Dγ = id. By using the drift operator,
we can prove the following result.

Proposition 3.4. Suppose that a and b are µ-aligned and α∗ ∈ P(R, a,b) is an
optimal solution to problem (3.4). Then

n
∑

i=1

µiα
∗
i (t) =

n
∑

i=1

µiai =
n

∑

i=1

µibi, ∀t ∈ T.
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Proof. For each λ ∈ R define βλ , Dλγ(α∗). Note that βλ ∈ P(R, a,b) and
β0 = α∗. Moreover,

Jµ(βλ) =
1

2

∫ tf

t0

n
∑

i=1

µi‖α̇∗
i (t) + λγ̇(t)‖2 dt

= Jµ(α∗) +
λ2

2

∫ tf

t0

‖γ̇(t)‖2 dt + λ

∫ tf

t0

γ̇(t)T

n
∑

i=1

µiα̇
∗
i (t) dt .

The difference Jµ(βλ)− Jµ(α∗) is a quadratic function of λ, which, by the optimality

of α∗, must be nonnegative for all λ. Hence we have
∫ tf

t0
γ̇(t)T

∑n
i=1 µiα̇

∗
i (t) dt = 0,

which must hold for any choice of γ such that γ(t0) = γ(tf ) = 0. Since a and b are
µ-aligned, we can choose γ(t) =

∑n
i=1 µiα

∗
i (t)−

∑n
i=1 µiai. Given that α∗ is piecewise

C2, this leads to
∑n

i=1 µiα̇
∗
i (t) = 0 for almost all t ∈ T , and hence, by integration, to

the desired conclusion.

We can now use Proposition 3.2 to get the formulation of Proposition 3.4 for
arbitrary a and b.

Corollary 3.5. Suppose that α∗ ∈ P(R, a,b) is an optimal solution to prob-
lem (3.4). Then

n
∑

i=1

µiα
∗
i (t) =

n
∑

i=1

µiai +
t − t0
tf − t0

(

n
∑

i=1

µibi −
n

∑

i=1

µiai), ∀t ∈ T.

In other words, the µ-centroid of 〈α∗
i (t)〉ni=1 moves from the µ-centroid of a at time

t0 to the µ-centroid of b at time tf with constant velocity.

Remark 2. The results in Proposition 3.2, Proposition 3.4 and Corollary 3.5
for conflict-free maneuvers in R

2 are still valid when the underlying space is R
k with

k > 2. These can be proved by following exactly the same procedure as in the R
2 case.

Remark 3. A geometric interpretation of Corollary 3.5 can be given in the case
when the µi’s are identical. Let W be the obstacle in R

2n defined as in Remark 1. An
important observation is that W is cylindrical in the direction of the 2-dimensional
subspace N spanned by vectors (1, 0, 1, 0, · · · , 1, 0)T and (0, 1, 0, 1, · · · , 0, 1)T in R

2n,
in the sense that for any x ∈ R

2n, x ∈ W if and only if x + N ⊂ W . Let V be the
orthogonal complement of N in R

2n. Then a and b are µ-aligned if and only if a and
b are on the same V -slice in R

2n, i.e., if and only if a − b ∈ V . The conclusions
of Proposition 3.2 and Corollary 3.5 say that for a and b that are not necessarily µ-
aligned, the shortest geodesic in R

2n\W from a to b can be decomposed into two parts:
its projection onto N , which is a constant speed motion along the straight line from
πN (a) to πN (b), where πN : R

2n → N denotes the orthogonal projection map onto N ;
and its projection onto V , which is the shortest geodesic in V ∩W c connecting πV (a)
and πV (b), where πV : R

2n → V denotes the orthogonal projection map onto V . Since
V is of dimension 2n− 2, this effectively reduces the dimension of the problem by 2.

3.3. Optimal conflict-free maneuvers for two agents. We now show that
the solution to problem (3.4) in the case when there are only two agents follows
directly from Corollary 3.5.

Assume that a = (a1, a2) and b = (b1, b2) are µ-aligned, and denote by c their
common µ-centroid. If α∗ = (α∗

1, α
∗
2) ∈ P(R, a,b) is an optimal solution to problem

(3.4), then, by Proposition 3.4, the µ-centroid of α∗
1(t) and α∗

2(t) is equal to c for any
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Fig. 3.2. Optimal 2-maneuver and its braid representation.

t ∈ T , or equivalently,

α∗
1(t) − c = −µ2

µ1
(α∗

2(t) − c), ∀t ∈ T. (3.7)

From equation (3.7), it then follows that the energies of α∗
1 and α∗

2 are related by
µ2

1J(α∗
1) = µ2

2J(α∗
2), and that the separation constraint ‖α∗

1(t)−α∗
2(t)‖ ≥ R is equiv-

alent to ‖α∗
1(t) − c‖ ≥ µ2R. Therefore, problem (3.4) can be reduced to

minimize J(α1) subject to α1 ∈ P1 and α1 : T → Bc(c, µ2R), (3.8)

where Bc(c, µ2R) denotes the complement in R
2 of the open disk of radius µ2R cen-

tered at c. Thus the problem becomes finding the minimum energy maneuver for a
single agent in the presence of the static obstacle B(c, µ2R).

By assumption, both a1 and b1 belong to Bc(c, µ2R) since otherwise the problem
is infeasible. From the discussion at the beginning of Section 3.1, we know that the
optimal solution to problem (3.8) is a constant speed motion along the shortest curve
joining a1 to b1 while avoiding the obstacle B(c, µ2R). Let ∂B be the boundary
of the disk B(c, µ2R). The geometric construction of the shortest curve within a
given fundamental type is shown in Fig. 3.2. The curve is composed of three pieces:
first from a1 to p1 ∈ ∂B along a straight line tangent to ∂B, then from p1 to q1

along ∂B, and finally from q1 to b1 along another straight line tangent to ∂B. Here
choosing a fundamental type is equivalent to choosing a side of the cylinder in the
braid representation. The globally optimal solution α∗

1 is the one of the two locally
optimal solutions with shorter arc length (or any one of them if they have the same
length). α∗

2 is then obtained from α∗
1 by equation (3.7). This is for the µ-aligned case.

Denote by γ∗
i (a,b), i = 1, 2, the obtained optimal maneuvers. For the general case

when a and b are not necessarily µ-aligned, we have by Proposition 3.2
Theorem 3.6 (Optimal conflict-free 2-maneuver). If n = 2, then the optimal

solution α∗ ∈ P(R, a,b) to problem (3.4) is given by:

{

α∗
1(t) = γ∗

1 (a,b + w)(t) − t−t0
tf−t0

w

α∗
2(t) = γ∗

2 (a,b + w)(t) − t−t0
tf−t0

w
, ∀t ∈ T, (3.9)

where w = µ1a1 − µ1b1 + µ2a2 − µ2b2.
Consider the case when the priority of agent 1 is much higher than that of agent

2, which can be modeled by µ2 ' 0. In the µ-aligned case, this implies a1 ' b1 ' c,
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Fig. 3.4. Twist operation Rθ on a 2-maneuver.

and that the radius of the disk B(c, µ2R) is about 0. Therefore, γ∗
1 is nearly a zero

motion. For general a and b, it follows from Theorem 3.6 that the optimal maneuver
for agent 1 is almost a constant speed motion along the line segment from a1 to b1.
Hence, as expected, agent 2 is the one assuming most of the responsibility of avoiding
conflicts.

Shown in Fig. 3.3 are the plots of optimal conflict-free maneuvers for a typical 2-
agent encounter with two different sets of priorities. The circles represent the positions
of the two agents at evenly distributed time instants. The plots show that, in the case
when a and b are not µ-aligned, the speeds of the agents in the optimal maneuvers
are not constant. As the priority of agent 1 increases, however, its optimal maneuver
gets closer to the constant speed motion along the straight line connecting a1 to b1.

3.4. Twist optimality. Another MSE-preserving operator can be introduced
as follows. Suppose that θ : T → R is a continuous and piecewise C2 map satisfying
θ(t0) = 0, θ(tf ) = 2kπ for some k ∈ Z.

Definition 3.7 (Twist operator Rθ). The twist operator Rθ : P(R, a,b) →
P(R, a,b) is a map such that for any α ∈ P(R, a,b), β = Rθ(α) is defined by

βi(t) = Tθ(t)αi(t), t ∈ T, i = 1, · · · , n,

where Tθ(t) is the matrix corresponding to a rotation of θ(t) counterclockwise:

Tθ(t) =

(

cos[θ(t)] − sin[θ(t)]
sin[θ(t)] cos[θ(t)]

)

.

The constraints on θ(t0) and θ(tf ) ensure that Rθ(α) and α have the same starting
and ending positions. It is easy to see that Rθ is MSE-preserving and hence has its
image in P(R, a,b). Fig. 3.4 shows the effect of Rθ (k = 0) on the braid representation
of a 2-maneuver, which motivates the name “twist operator” for it.

By considering the perturbed maneuvers generated by Rθ, we have
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Proposition 3.8. Suppose that α∗ ∈ P(R, a,b) is an optimal solution to prob-
lem (3.4). Fix s ∈ R

2. Then

1

2

n
∑

i=1

µi(α
∗
i (t) − s)T T−π

2
α̇∗

i (t) = C, ∀t ∈ T, (3.10)

where C is a constant belonging to [−π
z
, π

z
], with z , 2

∫ tf

t0

[
∑n

i=1 µi‖α∗
i (t)−s‖2

]−1
dt.

Proof. See Appendix A.
If k 6= 0, then the operator Rθ changes the homotopy type of conflict-free ma-

neuvers in P(R, a,b), thus enabling us to compare the performance of conflict-free
maneuvers of different types. In this sense, the result in Proposition 3.8 is global. We
illustrate this statement by the following example.

Example 1. Assume that n = 2 and µ1 = µ2 = 1
2 . Let t0 = 0 and tf = τ

for some τ ∈ (0, 2π). Set a1 = R
2 (1, 0)T , b1 = R

2 (cos τ, sin τ)T , a2 = −a1 and
b2 = −b1. Consider the conflict-free maneuvers α and β in P(R, a,b) defined by
α1(t) = R

2 (cos t, sin t)T , α2(t) = −α1(t), and β1(t) = R
2 (cos( τ−2π

τ
t), sin( τ−2π

τ
t))T ,

β2(t) = −β1(t), for all t ∈ [0, τ ]. The two agents under maneuver α (β) rotate around
the origin at constant angular velocity counterclockwise (clockwise) during [0, τ ]. Note
that β can be obtained from α by applying the twist operator Rθ with θ(t) = −2πt/τ
satisfying θ(τ) = −2π, and that α and β belong to different types. Since a and b are
µ-aligned, the results in Section 3.3 imply that α and β are the optimal solutions to
problem (3.4) restricted to the two fundamental types. The global optimal solution is
the one of them with smaller arc length, which can be easily seen to be α if τ ∈ (0, π)
and β if τ ∈ (π, 2π). This conclusion can also be reached directly by an application
of Proposition 3.8. In fact, if we choose s = 0 and compute C and z defined in
Proposition 3.8 with α in the place of α∗, we get C = R2/8 and z = 8τ/R2, and the
inequality |C| ≤ π/z becomes τ ≤ π, which implies that α is not globally optimal for
τ ∈ (π, 2π). If we compute C and z with β in the place of α∗, we get C = R2(τ−2π)/8τ
and z = 8τ/R2, and the inequality |C| ≤ π/z becomes τ ≥ π. Hence β is not globally
optimal for τ ∈ (0, π).

Note that by choosing different s ∈ R
2, Proposition 3.8 provides a family of

inequalities of the form −π
z
≤ C ≤ π

z
that an optimal solution α∗ to problem (3.4)

must satisfy, where C and z are functions of s and α∗. In the case when a and b are
µ-aligned, by Proposition 3.4, we have

∑n
i=1 µis

T T−π
2
α̇∗

i (t) ≡ 0. Hence the inequality
becomes

∣

∣

∣

∣

1

2

n
∑

i=1

µiα
∗
i (t)

T T−π
2
α̇∗

i (t)

∣

∣

∣

∣

≤ π

2

{
∫ tf

t0

[

n
∑

i=1

µi‖α∗
i (t) − s‖2

]−1
dt

}−1

.

The most restrictive bound is obtained by setting s equal to the common µ-centroid
of a and b, which minimizes the right-hand-side of the above equation. Moreover,
one can derive further optimality conditions by applying Proposition 3.8 to Tw(α∗)
for any w ∈ R

2, since by Proposition 3.2 Tw(α∗) is optimal in P(R, a,b + w).

3.5. Analysis by partial operators. Further optimality conditions can be
derived by considering those transformations that change the maneuvers of only a
subset of the n agents (partial operators).

Let α be an arbitrary conflict-free maneuver in P(R, a,b). At each time t ∈ T , we
can construct an undirected graph Gα(t) as follows: Gα(t) has n vertices, numbered
from 1 to n, corresponding to the n agents, and an edge connects vertices i and j if
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Fig. 3.5. Slide operation L12

h
on braids.

and only if ‖αi(t) − αj(t)‖ = R. If there does exist an edge between vertex i and
vertex j in Gα(t), we say that agent i and agent j contact at time t. Gα(t) is then
called the contact graph of α at time t.

We start from a very special case. Assume that α is a conflict-free maneuver
in P(R, a,b) such that during the whole encounter the distance of agent 1 from
any of the other agents is strictly greater than R except possibly from agent 2, i.e.,
‖α1(t)− αi(t)‖ > R, ∀t ∈ T , i = 3, · · · , n. We shall introduce operators that leave αi

unchanged for i = 2, 3, · · · , n and perturb α1 slightly, so that the perturbed α1 has
the same minimum distance from α2 in the time interval T . If such a perturbation is
small enough, then the perturbed α1 does not cause a conflict between agent 1 and
any of the agents with index i ≥ 3, given that their original minimum distance in the
time interval T was strictly greater than R.

Let h : T → T be a reparameterization of T , i.e., a bijection such that both h
and h−1 are continuous and piecewise C2, and h(t0) = t0 and h(tf ) = tf .

Definition 3.9 (Partial slide operator L12
h ). The partial slide operator L12

h :
P(R, a,b) → P(a,b) is a map such that for any α ∈ P(R, a,b), β = L12

h (α) is
defined by:

{

β1(t) = α1[h(t)] − α2[h(t)] + α2(t), t ∈ T,

βi(t) = αi(t), t ∈ T, i = 2, · · · , n.
(3.11)

Note that inft∈T ‖β1(t) − β2(t)‖ = inft∈T ‖α1(t) − α2(t)‖, and that for h sufficiently
close to the identity map, the minimum distance in the time interval T between β1

and βi is greater than R for i ≥ 3 by our assumption on α. These two conditions
together imply that β ∈ P(R, a,b).

Fig. 3.5 shows how β is constructed geometrically. First, the operator Dᾱ2−α2 is
performed on (α1, α2) to “straighten” the string corresponding to α2, where ᾱ2 denotes
the constant velocity motion along the straight line between a2 and b2. Next, the
operator Ta2−b2 is applied to the resulting 2-maneuver to get a 2-maneuver γ = (γ1, γ2)
with γ1 = α1 − α2 + a2 and γ2 ≡ a2. Then, γ is reparameterized by h to obtain
η = (η1, η2) with η1 = (α1 ◦ h) − (α2 ◦ h) + a2 and η2 ≡ a2. Finally, the reverse
procedures of the second and first steps are applied subsequently to obtain (β1, β2)

from η. Roughly speaking, β̂ is obtained by “sliding” α̂1 along α̂2, hence the name
“slide operator” for L12

h . Note that the superscript and the subscript in L12
h indicate

respectively the two strings the operator works on and the reparameterization used.
By using the partial slide operator to generate the perturbation in the variational

analysis, we get (see [12] for the detailed proof):
Proposition 3.10. Suppose that α∗ ∈ P(R, a,b) is an optimal solution to prob-

lem (3.4), and that there exists a subinterval (t′0, t
′
f ) ⊂ T such that ‖α∗

1(t) − α∗
i (t)‖ >R,

i = 3, · · · , n, for all t ∈ (t′0, t
′
f ). Then α∗ satisfies

α̈∗
1(t)

T (α̇∗
1(t) − α̇∗

2(t)) ≡ 0, ∀t ∈ (t′0, t
′
f ). (3.12)
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Instead of sliding α1 along α2, we can rotate it. Let θ : T → R be a continuous
and piecewise C2 map with θ(t0) = θ(tf ) = 0.

Definition 3.11 (Partial rotation operator R12
θ ). The partial rotation operator

R12
θ : P(R, a,b) → P(a,b) is a map such that for any α ∈ P(R, a,b), β = R12

θ (α) is
defined by:

{

β1(t) = Tθ(t)[α1(t) − α2(t)] + α2(t), t ∈ T,

βi(t) = αi(t), t ∈ T, i = 2, · · · , n.

In the braid representation, β̂ is obtained by rotating the string α̂1 around the
string α̂2. If θ is close enough to the zero map, β = R12

θ (α) ∈ P(R, a,b). Similarly
to the proof of Proposition 3.10, by using the partial rotation operator, we get ([12]):

Proposition 3.12. Under the hypotheses of Proposition 3.10, α∗ satisfies

α̈∗
1(t)

T Tπ
2
(α∗

1(t) − α∗
2(t)) ≡ 0, ∀t ∈ (t′0, t

′
f ). (3.13)

It can be verified that the optimal solution for the two agents case obtained in
Theorem 3.6 indeed satisfies both conditions (3.12) and (3.13). Moreover, if one of the
two agents has a predetermined maneuver throughout T , equations (3.12) and (3.13)
will govern the motion of the other agent. Note also that if in addition ‖α∗

1 −α∗
2‖ = R

on (t′0, t
′
f ), then these two equations are equivalent, since in this case ‖α∗

1−α∗
2‖2 ≡ R2

implies that (α̇∗
1 − α̇∗

2)
T (α∗

1 − α∗
2) ≡ 0, i.e., α̇∗

1 − α̇∗
2 and Tπ

2
(α∗

1 − α∗
2) have the same

direction. The intuitive understanding is that, in the braid representation, the slide
and rotation operations of a string on the surface of a cylinder lead to the same
orthogonal perturbation.

The above idea can be carried out even further. Suppose that the contact graph of
an optimal maneuver α∗ ∈ P(R, a,b) remains constant on some subinterval (t′0, t

′
f ) ⊂

T . We can perturb α∗ by sliding (rotating) slightly the maneuvers of a subset of the n
agents with respect to that of agent i in the time subinterval (t′0, t

′
f ). To ensure that

the perturbed joint maneuver belongs to P(R, a,b), any agent in this subset should
have a minimum distance strictly greater than R from any of the agents not belonging
to the subset, except possibly from agent i, in the time interval (t′0, t

′
f ). Since α∗ is

optimal, its µ-energy cannot be decreased by such a perturbation. By using the same
arguments leading to Proposition 3.10 and Proposition 3.12, we then have ([12])

Proposition 3.13. Suppose that α∗ ∈ P(R, a,b) is an optimal solution to prob-
lem (3.4), and that its contact graph remains constant on some subinterval (t′0, t

′
f ) ⊂

T . Pick any agent, say, agent i, and let I ⊂ {1, 2, · · · , n} \ {i} be a subset of the
remaining agents that corresponds to a maximal connected component of the graph
obtained by removing node i and all the edges connected with it from the contact
graph during (t′0, t

′
f ). Then for all t ∈ (t′0, t

′
f ),

∑

j∈I
µj α̈

∗
j (t)

T (α̇∗
j (t) − α̇∗

i (t)) ≡ 0,

∑

j∈I
µj α̈

∗
j (t)

T Tπ
2
(α∗

j (t) − α∗
i (t)) ≡ 0.

(3.14)

Note that (3.12) and (3.13) are special cases of (3.14) when i = 2 and I = {1}.
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Proposition 3.13 is the most comprehensive optimality condition we have obtained
so far. Next, in Section 3.6 we will show by a simple example how it can be used
(together with the global optimality conditions) to determine the optimal maneuver
with a particular contact graph. This example will also serve as a counterexample to
the conjecture that for each multi-agent encounter, there is a unique optimal conflict-
free maneuver within each homotopy type, which is true for n = 2 by Theorem 3.6.

Remark 4. All the optimality conditions we have obtained so far admit mechan-
ical interpretations, as will be shown in Section 3.8. However, it should be pointed
out that in general they cannot completely characterize the optimal maneuver with an
arbitrary contact graph. A complete set of local optimality conditions can be derived
by considering all possible local perturbations of maneuvers that preserve the contact
graph, or in the light of Remark 1, by writing down the geodesics equation in a suitable
Riemannian manifold.

3.6. An interesting example. Consider three agents with equal priorities µ1 =
µ2 = µ3 = 1

3 and R = 1. Suppose that α∗ is an optimal conflict-free maneuver for
some starting position a = (a1, a2, a3) and destination position b = (b1, b2, b3) that
are µ-aligned with common µ-centroid at the origin, and that on some subinterval of
T (which we may assume without loss of generality to be T itself), its contact graph
Gα∗(t) is constant with edges between vertices 1 and 3 and between vertices 2 and 3,
but no edges between vertices 1 and 2. Then, by Corollary 3.5 and Proposition 3.13,
α∗ = (α∗

1, α
∗
2, α

∗
3) must satisfy for t ∈ T



















∑3
i=1 α∗

i (t) = 0,

α̈∗
1(t)

T Tπ
2
(α∗

1(t) − α∗
3(t)) = 0,

α̈∗
2(t)

T Tπ
2
(α∗

2(t) − α∗
3(t)) = 0,

‖α∗
1(t) − α∗

3(t)‖ = ‖α∗
2(t) − α∗

3(t)‖ = 1.

(3.15)

We now show that equation (3.15) is equivalent to the geodesics equation of
a suitable Riemannian manifold (a differential manifold together with a smoothly
varying positive definite quadratic form on its tangent bundle [8]). Hence, for any set
of initial conditions α∗

i (t0), α̇
∗
i (t0), i = 1, 2, 3, it has a unique solution for t belonging

to a neighborhood of t0. First, notice that α∗ as a curve in R
6 lies in the submanifold

Q of R
6 determined by the first and the last equations of (3.15), namely the set

of all those points (x1, y1, x2, y2, x3, y3) in R
6 such that

∑3
i=1 xi =

∑3
i=1 yi = 0,

(x1 − x3)
2 + (y1 − y3)

2 = 1 and (x2 − x3)
2 + (y2 − y3)

2 = 1. Q is a compact two-
dimensional submanifold of R

6 and admits a global coordinate (θ1, θ2) defined by

θ1 = arctan
y1 − y3

x1 − x3
, θ2 = arctan

y2 − y3

x2 − x3
.

(θ1, θ2) takes values in the rectangle [0, 2π] × [0, 2π] with opposite edges identified,
i.e. the 2-torus T

2. In order to satisfy our assumption that the distance between
agent 1 and agent 2 is greater than R during T , α∗ must lie in an open subset Q0

of Q consisting of all those points (x1, y1, x2, y2, x3, y3) in Q such that (x1 − x2)
2 +

(y1 − y2)
2 > 1. In the (θ1, θ2) coordinate, Q0 corresponds to an open subset T

2
0

of T
2 obtained by removing from T

2 the shaded region shown in Fig. 3.6. Hence
topologically Q0 is homeomorphic to S1×(0, 1), an untwisted ribbon whose boundary
consists of two disjoint circles.
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Fig. 3.6. T
2

0
as a subset of T

2 in the (θ1, θ2) coordinate.

Each (θ1, θ2) ∈ T
2 determines a unique point f(θ1, θ2) in Q by

f(θ1, θ2) =
1

3
(2 cos θ1 − cos θ2, 2 sin θ1 − sin θ2,− cos θ1 + 2 cos θ2,

− sin θ1 + 2 sin θ2,− cos θ1 − cos θ2,− sin θ1 − sin θ2)
T ,

(3.16)

which is an embedding of T
2 (respectively, T

2
0) into R

6 whose image is Q (respectively,
Q0).

By using f as the coordinate map, it can be verified that in the (θ1, θ2) coordinate,
equation (3.15) is reduced to the following second order ODE:

{

2θ̈1 − cos(θ1 − θ2)θ̈2 = sin(θ1 − θ2)(θ̇2)
2

2θ̈2 − cos(θ1 − θ2)θ̈1 = − sin(θ1 − θ2)(θ̇1)
2.

(3.17)

Equation (3.17) is the geodesics equation of T
2 with a suitably chosen metric g.

In fact, let R
6 be equipped with the standard Riemannian metric. Q as a submanifold

inherits from R
6 a metric by restriction. Let g be the corresponding metric on T

2

obtained by pulling back the metric on Q via f , so that f becomes an isometry. Then,
it can be proved (see Appendix B) that (3.17) is indeed the equation for geodesics of
T

2 under the metric g. As a result, each solution α∗ of equation (3.15) is a geodesic
of Q, which is not surprising by Remark 1. Since T

2 (hence Q) is compact, a solution
to equation (3.15) is defined for all duration of time, provided that it stays inside Q0.
Equation (3.17) can be solved by two integrals, see [13] for details.

Deeper optimality conditions of conflict-free maneuvers can be obtained in this
interpretation. For example, it is computed in Appendix B that at each point
(θ1, θ2) ∈ T

2 the sectional curvature of the tangent plane spanned by the basis ∂
∂θ1

and ∂
∂θ2

at that point is

K(θ1, θ2) =
−9 cos(θ1 − θ2)

[4 − cos2(θ1 − θ2)]2
. (3.18)

Now consider the curve θ in T
2 defined by θ(t) = (θ1(t), θ2(t)) = (t, π + t) for

t ∈ [0, τ ], where τ is positive. θ is a trivial solution to (3.17), hence a geodesic of T
2

that is contained completely in T
2
0. θ determines a 3-maneuver α∗ = f ◦ θ, i.e.

α∗
1(t) = (cos t, sin t)T , α∗

2(t) = (− cos t,− sin t)T , α∗
3(t) = (0, 0)T , t ∈ [0, τ ]. (3.19)

In the motions specified by α∗, agent 3 stays at the origin, while agent 1 and agent
2 are at unit distance from agent 3 but on the opposite side of it so that three of
them are always collinear, and both agent 1 and agent 2 rotate at the same constant
angular velocity around agent 3. α∗ thus defined is a solution to equation (3.15).
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An application of Proposition 3.8 implies that α∗ is no longer optimal if τ > π, for
otherwise a better maneuver can be obtained by rotating agent 1 and agent 2 the
opposite way around agent 3. The following proposition improves this result.

Proposition 3.14. Maneuver α∗ defined by (3.19) is not optimal if τ >
√

2
2 π.

Proof. Since f is an isometry, we need only to prove that the geodesic θ is no
longer distance-minimizing between its end points θ(0) = (0, π) and θ(τ) = (τ, π + τ)

once τ > τ0 =
√

2
2 π. To this end, it suffices to prove that θ(τ0) is a conjugate point

of θ(0) along θ, in other words, there exists a nontrivial Jacobi field X along θ that
vanishes at both θ(0) and θ(τ0) ([20]).

Define two vector fields along θ by W1 = ∂
∂θ1

+ ∂
∂θ2

and W2 = ∂
∂θ1

− ∂
∂θ2

. Then,
it is easy to verify that W1 and W2 are orthogonal, and that W1 coincides with the
velocity field θ̇ of the geodesic θ. Moreover, using the Christoff symbols calculated in
Appendix B, we conclude that ∇θ̇W2 ≡ 0; hence, W2 is parallel along θ.

A Jacobi field X along θ and orthogonal to θ̇ is necessarily of the form X(t) =
h(t)W2(t) for some function h defined on [0, τ ], and satisfies the Jacobi equation
∇θ̇∇θ̇X + R(θ̇, X)θ̇ = 0, where R is the curvature tensor of T

2. Since ∇θ̇∇θ̇X =

ḧW2 and R(θ̇, X)θ̇ are both orthogonal to θ̇, the Jacobi equation is equivalent to
〈ḧW2, W2〉+ 〈R(θ̇, hW2)θ̇, W2〉 = 0. By (3.18), the sectional curvature K of T

2 along

θ is constant 1. Using the relation 〈R(θ̇, hW2)θ̇, W2〉 = hK[〈θ̇, θ̇〉〈W2, W2〉−〈θ̇, W2〉2],
we have ḧ + 2h = 0. A solution of h vanishing at 0 is h(t) = sin(

√
2t), so X(t) =

sin(
√

2t)W2(t) is an Jacobi field along θ vanishing at t = 0 and t =
√

2
2 π = τ0.

Therefore, θ(τ0) is a conjugate point of θ(0) along θ.

A more intuitive way of obtaining the conclusion of Proposition 3.14 is through
variational analysis of α∗ using perturbations of the following form. Recall that
θ(t) = (θ1(t), θ2(t)) = (t, π + t), t ∈ T = [0, τ ] is the curve in T

2
0 that α∗ corresponds

to. Let ξ1 : T × (−ε, ε) → R be a proper variation of the map θ1 : T → R, i.e. ξ1 is
a smooth map such that ξ1(t, 0) = θ1(t), ξ1(0, s) = θ1(0), ξ1(τ, s) = θ1(τ) for t ∈ T
and s ∈ (−ε, ε), where ε is a small positive number. Let ξ2 : T × (−ε, ε) → R be
a proper variation of the map θ2 : T → R. Consider joint maneuvers βs defined in
(θ1, θ2) coordinate by (ξ1(·, s), ξ2(·, s)) for s ∈ (−ε, ε), which all start from α∗(0) and

end in α∗(τ). In the braid representation, β̂s is obtained from α̂∗ by rotating the
strings α̂∗

1 and α̂∗
2 by certain angles with respect to the string α̂∗

3 and then re-align
the three strings to the origin. βs is conflict-free if the variations ξ1 and ξ2 are small
enough. Then, a necessary condition for α∗ to be optimal is that the µ-energy of βs

is minimized at s = 0 for all possible ξ1 and ξ2. After a lengthy calculation, this will
lead to the conclusion of Proposition 3.14.

If we consider only conflict-free maneuvers with this particular contact graph,

then it is proved in [17] that, after τ passes the critical value
√

2
2 π, the optimal

conflict-free maneuver from α∗(0) to α∗(τ) bifurcates from α∗ into two conflict-free
maneuvers with identical energy. Shown in the first row of Fig. 3.7 are the plots

of α∗ for some τ >
√

2
2 π. The middle column is its plot in (θ1, θ2) coordinate, and

the right column is its braid representation. In the second and third rows, we plot
by numerical simulations the two bifurcated optimal conflict-free maneuvers with this
contact graph, which in (θ1, θ2) coordinate are mirror image of each other with respect
to the line θ1−θ2 = π

2 . For more details on the above claims and the general problem
of conjugate points in manifolds with boundary, see [17].

One can also consider n ≥ 3 agents with equal priorities, which are originally in a
straight line with distance between successive agents being R, and which rotate at a
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Fig. 3.7. Bifurcation of minimizing geodesics in T
2. Left column: 3-maneuvers; Middle column:

(θ1, θ2) phase plots; Right column: braids.

constant angular velocity around their centroid. This defines a geodesic in a certain
submanifold of R

2n as we have discussed before. The maximal angle they can rotate
before the first conjugate point of this geodesic is encountered in the submanifold is
denoted by τ∗

n . It can be expected that τ∗
n decreases with n. We conjecture that

τ∗
n = π/

√

n(n−1)
2 − 1. The case n = 3 is proved in Proposition 3.14. The cases

n = 4, 5, 6, 7 are verified symbolically using MAPLE.

It is worthwhile at this point to summarize the optimality conditions we have
derived so far. All of them, with the exception of Proposition 3.8 and Proposition 3.14,
are local in the sense that they can be obtained by using spike-like perturbations in
the variational analysis, which only change maneuvers in a neighborhood of a fixed
time epoch. Proposition 3.14 is semi-global in that its conclusion can only be reached
by perturbations that change maneuvers throughout a subinterval of the encounter
with positive length. Proposition 3.8 is the only global one, in the sense that it enables
us to compare the performance of maneuvers belonging to different homotopy types.

3.7. Regularity of optimal conflict-free maneuvers. The regularity of op-
timal conflict-free maneuvers is a tricky issue. For example, it is unknown whether for
each optimal α∗, there exists a finite subdivision of T , t0 < t1 < · · · < tm = tf , such
that the contact graph Gα∗(t) remains constant during each subinterval (tk, tk+1),
and contiguous subintervals correspond to different contact graphs. It is proved in [2]



Optimal Coordinated Motion for Multiple Agents 19

that, in a Euclidean space under the presence of open obstacles with locally analytic
boundary, a geodesic can have, in any segment of finite arc length, only a finite num-
ber of switch points where it switches from an interior segment to a segment on the
boundary of an obstacle or vice versa. Unfortunately, this result does not apply in
our case, since the obstacle W as defined in Remark 1 has nonsmooth boundary.

On the other hand, it can be proved that an optimal α∗ is always C1, i.e. there
is no sharp turns in the optimal conflict-free maneuvers. In fact, this follows from
a general result proved in [13], which states that if a manifold M with (nonsmooth)
boundary is a subset of R

k obtained by removing from R
k a finite union of open convex

subsets, each of which has a smooth boundary, then any geodesic of M is of class C1.
Note that the convex subsets are not required to be disjoint for this conclusion. In

our case, by Remark 1, the obstacle is the union of n(n−1)
2 convex cylinders in R

2n.

3.8. Two mechanical analogies. We now give two mechanical analogies of the
above results. It should be pointed out that they serve only as analogies to gain more
insights into the results obtained, and are not rigorous proofs themselves.

First, consider the following experiment. Instead of n agents, we have n particles
of mass µ1, . . . , µn on a horizontal plane with no external forces acting on them. At
time t0, they are at the initial positions a1, . . . , an with certain initial velocities. Each
particle i moves with constant velocity until the distance between it and some other
particle j becomes R. Then a rigid rod of zero mass is introduced between particle i
and particle j to prevent their distance from further decreasing, and the two particles
move together with the rod at velocities determined by the law of conservation of
momentum and angular momentum. We refer to the above process where a rigid rod
is introduced between two particles as a (two-particle) join. There are two types of
joins: tangential and non-tangential. A join is tangential if the time derivative of the
distance between the two particles at the time of join is zero, otherwise the join is
non-tangential. It is evident that some kinetic energy is lost for a non-tangential join
since there is a collision between the two particles along the direction of the rod. As
time goes on, more particles can join to form larger groups. In addition to joins, a
group of particles connected by rods can split at any time, in the sense that some
or all of the rods disappear instantly at that time. So when a split occurs, neither
the positions nor the velocities of the particles change, but the group separates into
several independent subgroups.

It is claimed that by appropriately choosing the initial velocities, time and order
of the joins and splits, one can get from such an experiment the optimal maneuver
α∗. In fact, during any time interval I in which there are neither joins nor splits,
the system of particles naturally corresponds to a contact graph with edges between
vertices representing rods between particles. Moreover, if I is sufficiently small, the
motions of the particles correspond to the optimal conflict-free maneuver associated
with such a contact graph. To see this, recall that by the principle of least action
([3]), the motion of the interconnected particles system is an extremal of the action
integral

∫

I
(E − U) dt. Here E = 1

2

∑n
i=1 µiv

2
i represents the kinetic energy, and U

is the potential, which is zero by our assumption on the absence of external forces.
So, for sufficiently small time interval I , the motions of the interconnected particles
minimize 1

2

∑n
i=1 µi

∫

I
v2

i dt; hence they specify precisely the optimal maneuver over I
by definition. Equation (3.15) determines, for example, the motions of three particles
connected by two rigid rods with zero masses. For discussions on the general problem
of kinematically coupled structures composed of rigid and flexible bodies, see [22] and
other references in the same book.
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Fig. 3.8. Examples of elastic (enlarged) braids in equilibrium positions. Left: unstable; Center
and right: stable.

In this mechanical interpretation, the conclusion of Proposition 3.2 is simply the
invariance of the motions of a mechanical system with respect to changes of inertial
coordinates. Since the total momentum and the total angular momentum of the
system are conserved in each time interval with constant configuration (contact graph)
and do not change during joins or splits, they are constant during the whole time
interval T , which are the conclusions of Corollary 3.5 and Proposition 3.8, respectively.
Proposition 3.8 further imposes an upper bound on the total angular momentum,
implying that the whole system cannot spin “too fast”. In addition, the assertion in
Section 3.7 that α∗ is C1 implies that all the joins should be tangential; hence there is
no kinetic energy lost during joints and splits and the total kinetic energy 1

2

∑n
i=1 µiv

2
i

is also conserved, as it is shown in [12] by using a reparameterization operator.

In mechanics, there is a systematic way of using symmetry on the configuration
space to reduce the degree of freedom ([3, 26]). In our case, the symmetry is SE2, the
group of rigid motions in R

2, acting on R
2. Hence the analysis leading to Corollary 3.5

and Proposition 3.8 (except the bound in Proposition 3.8) is simply the application of
the symmetry reduction method uniformly to all the configuration spaces of a system
with time-varying configurations. Compared with more advanced techniques such as
those based on the Hamiltonian, symplectic, and Poisson viewpoints, our approach,
which is Lagrangian in nature, deals with the nonsmoothness of the boundary con-
straints directly, thus avoiding the trouble of solving for each smooth component of
the boundary constraints individually before piecing them together properly to get the
final solution. In [16], the corresponding method is generalized to an arbitrary Rie-
mannian manifold with a group of isometries. For application of Lagrangian reduction
to holonomic and nonholonomic mechanical systems, see [21].

A major drawback of the above mechanical model is that it is local, hence little
insights can be obtained about the global optimality conditions. In this sense, the
second model we are going to present is more “faithful”, and once again demonstrates
the advantage of adopting the braid point of view. As we have shown in Section 2,
each conflict-free maneuver α of the n agents corresponds to an n-braid α̂, whose
intersection with any horizontal plane t = τ (τ ∈ T ) consists of n points satisfying
the R-separation property. Therefore, if we enlarge the radius of strings in α̂ to R/2,
or more precisely, if we think of each of the n strings in α̂ as consisting of an infinite
number of horizontal disks of radius R/2 and height 0 mounting vertically, with each
disk confined to move in a fixed horizontal plane t = t1 for some t1 ∈ T , then the
condition that α is conflict-free is equivalent to that the n enlarged strings in α̂ do
not overlap. Examples of such enlarged braids are shown in Fig. 3.8 for the three
conflict-free maneuvers in Fig. 3.7.

Assume that, for each i = 1, . . . , n, the enlarged string α̂i in α̂ is elastic with
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elasticity coefficient µi, and has smooth surface so that any two strings can slide
along each other without friction. Under these assumptions, the elastic energy of
this n-string system is proportional to the µ-energy of the corresponding conflict-
free maneuver. If we fix the strings in α̂ at both the bottom (t = t0) and the top
(t = tf ) horizontal planes and leave free the remaining parts, then for certain choices
of α this elastic n-string system will be in an equilibrium (stationary) position. The
optimal conflict-free maneuvers have minimal energy, hence necessarily correspond to
equilibrium positions.

Suppose that α̂ is in an equilibrium position. Pick any disk in α̂ that belongs
to the string α̂i and lies on the horizontal plane t = t1 for some i = 1, . . . , n and
t0 < t1 < tf . Denote this disk by Di(t1). Then Di(t1) is subject to two types
of forces: forces enacted by disks in the same string that are immediately above
and below Di(t1), i.e. Di(t

+
1 ) and Di(t

−
1 ); and forces enacted by disks in the same

horizontal plane t = t1 but belonging to different strings, i.e. Dj(t1) with j 6= i.
Since Di(t1) is confined to move on the plane t = t1, we are concerned with only the
projection of the forces onto this plane. The contribution of the forces of the first
type is easily seen to be proportional to µiα̈i(t1). As for the forces of the second type,
say, the force enacted by disk Dj(t1) (j 6= i) that contacts Di(t1), by our assumption
of no frictions, this force is directed from the center of Dj(t1) to the center of Di(t1),
i.e. from (αj(t1), t1) to (αi(t1), t1). Now the conclusion of Proposition 3.13 can be
explained as follows. Let I be a subset of {1, . . . , n} \ {i} that corresponds to a
maximal connected component of the graph obtained by removing node i and all
the edges connected with it from the contact graph of α at time t1. Since α̂ is in
an equilibrium position, the subsystem DI(t1) consisting of disks Dj(t1) for j ∈ I
is stationary. So the total moment (torque) of external forces acting on DI(t1) is
zero, which is exactly the conclusion of Proposition 3.13. Note that here we choose
(αi(t1), t1) as the origin and use the fact that torque of forces enacted by Di(t1) on
disks in DI(t1) is zero by our above analysis.

Other optimality conditions can also be explained in this model. For example,
the conclusion of Corollary 3.5 is, after differentiation with respect to t twice, simply
that on any horizontal plane t = t1, t0 < t1 < tf , the combined external forces acting
on the subsystem consisting of disks Di(t1), i = 1, . . . , n, is zero. For the example
in Section 3.6, the semi-global conclusion of Proposition 3.14 can be intuitively un-
derstood as that, after a rotation of more than π√

2
, the cumulative force of the two

neighboring strings on the central one exceeds the critical value so that the equilib-
rium position of α̂∗ becomes unstable. Any slight perturbation will then render the
system to settle in one of the two bifurcated positions with minimal elastic energy
(see Fig. 3.8), provided that there exists very small but nonzero air frictions to avoid
persistent oscillation.

4. Optimal multi-legged conflict-free maneuvers. Due to the difficulty in
computing analytically the optimal conflict-free maneuver when the number n of
agents is greater than two, we now restrict our attention to those maneuvers specified
by a set of waypoints, which might well be the only feasible form of joint maneuvers
that a central controller can specify to the participating agents in practice.

To be precise, consider n agents with starting position a = (a1, · · · , an) and
destination position b = (b1, · · · , bn). Assume that a set of epochs {tj}m

j=0, t0 < t1 <
· · · < tm−1 < tm = tf , where m is a positive integer, has been fixed. For each agent
i, choose a set of waypoints {ci,j}m

j=0 in R
2 such that ci,0 = ai and ci,m = bi. Then,

an m-legged maneuver of agent i is a maneuver consisting of m stages, where at each
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stage j ∈ {0, 1, · · · , m − 1}, agent i starts from ci,j at time tj and reaches ci,j+1 at
time tj+1 with constant velocity. Denote by Pm

i the set of all m-legged maneuvers
of agent i, and by Pm(a,b) =

∏n
i=1 Pm

i the set of all m-legged joint maneuvers. In
the braid representation, an m-legged joint maneuver corresponds to n strings, each
one consisting of m line segments pieced together. The set of m-legged conflict-free
maneuvers consists of all elements of Pm(a,b) with MSE at least R and is denoted
by Pm(R, a,b).

In this section, we shall try to solve the following version of problem (3.4):

minimize Jµ(α) subject to α ∈ Pm(R, a,b). (4.1)

By using similar arguments, one can show that some of the optimality conditions
in Section 3, such as Corollary 3.5, still apply for solutions to problem (4.1). In
general, a solution to problem (4.1) is only suboptimal for problem (3.4).

4.1. Optimal 2-legged conflict-free maneuver for two agents. We start
from the simplest case when n = 2 and m = 2. Consider two agents with starting
position a = (a1, a2) and destination position b = (b1, b2). Let α = (α1, α2) be a
2-legged conflict-free maneuver in P2(R, a,b) with three waypoints ci,j , j = 0, 1, 2,
for each agent i = 1, 2. Since ci,0 = ai and ci,2 = bi are fixed for each agent i, the
middle waypoints ci,1 will be denoted by ci to simplify the notations. Let tc ∈ (t0, tf )
be the epoch corresponding to the middle waypoints. Then, the motions of the two
agents are described by

αi(t) =

{

ai + (ci − ai)
t−t0
tc−t0

, t0 ≤ t ≤ tc

bi + (ci − bi)
t−tf

tc−tf
, tc ≤ t ≤ tf

, i = 1, 2.

After some calculations, the µ-energy of a maneuver α ∈ P2(a,b) as the function of
c1 and c2 can be expressed as follows

Jµ(α) =
tf − t0

(tf − tc)(tc − t0)
[µ1‖c1 − cu

1‖2 + µ2‖c2 − cu
2‖2] + C , (4.2)

where C is a constant and cu
i , i = 1, 2, are defined by

cu
i =

(tf − tc)ai + (tc − t0)bi

tf − t0
, i = 1, 2. (4.3)

Note that cu
1 and cu

2 are the optimal waypoints when minimizing Jµ(α) without the
MSE constraint. In the braid representation, cu

1 and cu
2 correspond to the intersections

of the plane t = tc with the lines joining (ai, t0) to (bi, tf ), for i = 1 and 2, respectively.
The MSE constraint can be simplified as well. The minimal distance dl between

the two agents during the time interval [t0, tc] is given by

dl =











‖c1 − c2‖, if λ < −‖c1 − c2 − a1 + a2‖2

√

‖a1 − a2‖2 − λ2/‖c1 − c2 − a1 + a2‖2, if − ‖c1 − c2 − a1 + a2‖2 ≤ λ ≤ 0

‖a1 − a2‖, if λ > 0,

where λ , (a1 − a2)
T (c1 − c2 − a1 + a2). Note that dl is a function of the relative

positions a1 − a2 and c1 − c2 only and is independent of the epoch tc. We then use
dl(a1 − a2, c1 − c2) to denote it explicitly. Similarly, the minimum distance between
the two agents during the time interval [tc, tf ] is dl(c1 − c2, b1 − b2).
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Fig. 4.1. The four configurations of the feasible set A for c1 − c2.

For α to be a conflict-free maneuver, both dl(a1 − a2, c1 − c2) and dl(c1 − c2, b1 −
b2) have to be at least R, yielding two constraints on c1 − c2. Depending on the
relative position of a1 − a2 and b1 − b2, the feasible set A for c1 − c2 has four possible
configurations, which are numbered from 1 to 4 and represented by shaded regions
in Fig. 4.1. Notice that A consists of two connected components in configuration 1
and 3, which correspond to the two fundamental types of the conflict-free maneuvers.
In configurations 2 and 4, however, only one fundamental type can be achieved by
2-legged maneuvers.

Remark 5. The feasible set A for c1 − c2 can be characterized as the subset of
R

2 consisting of all those points that are “visible” to both a1 − a2 and b1 − b2 in the
presence of the open disk B(0, R) as obstacle. In fact, by applying an appropriate tilt
operator Tw that preserves the MSE and c1 − c2, one can assume that c2 = a2, i.e.,
agent 2 stays at a2 during [t0, tc]. Thus the MSE constraint during [t0, tc] is equivalent
to the constraint that the line segment from a1 to c1 does not intersect B(a2, R), or
alternatively, the line segment from a1 − a2 to c1 − c2 does not intersect B(0, R).
Similar arguments apply to the second stage of α.

As a result of the above simplifications, problem (4.1) is reduced to

minimize µ1‖c1 − cu
1‖2 + µ2‖c2 − cu

2‖2 subject to c1 − c2 ∈ A. (4.4)

Theorem 4.1. Define q , cu
1 − cu

2 =
tf−tc

tf−t0
(a1 − a2) + tc−t0

tf−t0
(b1 − b2). Let p be a

point in A at minimum distance from q. An optimal solution to problem (4.4) is then
given by

c∗1 = µ1c
u
1 + µ2c

u
2 + µ2p, c∗2 = µ1c

u
1 + µ2c

u
2 − µ1p.

Moreover, if problem (4.4) is restricted to one of the two fundamental types of conflict-
free maneuvers that is achievable by 2-legged maneuvers, then c∗1 and c∗2 are unique.

Proof. Set ∆c = c1 − c2. Then we have

min{µ1‖c1 − cu
1‖2 + µ2‖c2 − cu

2‖2 : c1, c2 such that ∆c ∈ A}
= min

∆c∈A
min
c2

{µ1‖c2 + ∆c − cu
1‖2 + µ2‖c2 − cu

2‖2}

= min
∆c∈A

min
c2

{‖c2 − µ1(c
u
1 − ∆c) − µ2c

u
2‖2 + µ1µ2‖cu

1 − cu
2 − ∆c‖2}

= min
∆c∈A

µ1µ2‖q − ∆c‖2

= µ1µ2‖q − p‖2,
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Fig. 4.2. 2-legged optimal conflict-free maneuvers for 2-agent encounters (µ1 = µ2 = 0.5, R = 30).

where the last two equalities follow by choosing c2 = µ1(c
u
1 −∆c) +µ2c

u
2 and ∆c = p.

Together they imply the desired expressions of c∗1 and c∗2. The uniqueness of c∗1 and
c∗2 given a particular fundamental type is a consequence of the fact that p is unique,
since either the connected component of A corresponding to that type is convex, or q
is contained in it since it lies on the line segment connecting a1 − a2 to b1 − b2.

Note that in configuration 2, 3, and 4, p = q since q lies on the line segment
connecting a1 − a2 and b1 − b2 that is contained entirely in A. Hence c∗1 and c∗2 are
equal to cu

1 and cu
2 , respectively. In configuration 1, the set A is the union of two

disjoint convex sets, so there might be up to two points in A nearest to q, with two
being the case when there is an exact collision for the unconstrained optimal joint
maneuver. In this case, we can choose either of the two points as p.

Fig. 4.2 shows the optimal 2-legged conflict-free maneuvers for some typical 2-
agent encounters when the agents have equal priorities. In each plot, the starting
points are marked with stars and the ending points with diamonds. The circles are
the waypoints specified by Theorem 4.1.

4.2. Optimal 2-legged conflict-free maneuver for multiple agents. Con-
sider the case m = 2 and n ≥ 3. Roughly speaking, the nature of problem (4.1)
is mainly combinatorial in that the major task is to choose the type of conflict-free
maneuvers in which one can find the optimal solution. In this section, we deal only
with the problem of finding the optimal conflict-free maneuver within a given type.
We postpone to Section 4.4 the discussion on how to choose the maneuver type.

Fix tc ∈ (t0, tf ) and denote by Aij the feasible set for ci − cj when only the agent
pair (i, j) is present. Aij is computed as set A in the last subsection with ai, bi, aj , bj

in the place of a1, b1, a2, b2. Suppose that we have chosen a type of conflict-free
maneuvers. Then, the problem is to find the waypoints c1, · · · , cn that

minimize

n
∑

i=1

µi‖ci − cu
i ‖2 subject to ci − cj ∈ A±

ij , 1 ≤ i < j ≤ n, (4.5)

where cu
i is defined as in (4.3) for i = 1, · · · , n, and A±

ij denotes the connected com-
ponent of the set Aij matching the desired type. Note that only a finite subset of
types of conflict-free maneuvers can be represented in this way, and we assume that
the given type belongs to this subset.

Notice that in all but the first configuration shown in Fig. 4.1 representing Aij
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Fig. 4.3. Globally optimal 2-legged conflict-free 3-maneuvers (µ1 = µ2 = 0.5, R = 20).

for i = 1 and j = 2, one of the connected components of Aij is nonconvex, posing
great challenge for the efficient solution of problem (4.5). Therefore, in configuration
2, 3, and 4, we linearize the nonconvex component of Aij by using a half space inner
approximation, as it is shown in Fig. 4.1 by the black lines tangential to the boundary
of B(0, R). The choice of the black line may not be unique, and one should ensure that
the inner approximated feasible region of ci − cj contains the unconstrained optimal
value cu

i − cu
j .

Remark 6. Problem 4.5 is a linearly constrained convex optimization problem
in the special case when any pair of agents is in the first configuration, i.e., when the
unconstrained optimal joint maneuver will cause a conflict between any pair of agents.
Therefore, our linear approximation scheme is tight for the most critical encounters.

After the linearization, if necessary, we have a linearly constrained quadratic
optimization problem that can be solved efficiently. In the case when the number
of agents is relatively small, we can afford the luxury of running the optimization
algorithm for each type achievable by 2-legged maneuvers so as to find the globally
optimal 2-legged conflict-free maneuver. Simulation results using MATLAB are shown
in Fig. 4.3 for two 3-agent encounters. In both cases, each pair of agents is in the
first configuration, so linearizations are not necessary and the obtained maneuvers are
actually the globally optimal 2-legged conflict-free maneuvers.

4.3. Optimal m-legged conflict-free maneuver for multiple agents. The
algorithm described in Section 4.2 can be used in an iterative way in the general case
when the number m of legs is greater than two. Fix a set of epochs t0 < t1 < . . . <
tm−1 < tm = tf . A necessary condition for a set of waypoints ci,j , i = 1, . . . , n,
j = 0, . . . , m, with ci,0 = ai, ci,m = bi to be an optimal solution to problem (4.1) is
that

ci,j = c∗i ((c1,j−1, . . . , cn,j−1), (c1,j+1, . . . , cn,j+1), tj−1, tj , tj+1) (4.6)

for 1 ≤ j ≤ m − 1. Here c∗i ((c1,j−1, . . . , cn,j−1), (c1,j+1, . . . , cn,j+1), tj−1, tj , tj+1) de-
notes the waypoint of agent i for the optimal 2-legged maneuver when the starting and
destination positions of the agents are (c1,j−1, . . . , cn,j−1) and (c1,j+1, . . . , cn,j+1), and
the starting, middle and ending epochs are tj−1, tj , tj+1, respectively. This condition
inspires the following algorithm.

Algorithm 1.

1. Pick any feasible set of waypoints c
(0)
i,j , 1 ≤ i ≤ n, 0 ≤ j ≤ m, such that
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Fig. 4.4. Simulation results of Algorithm 1 for two and three agents encounters (R = 30).

c
(0)
i,0 = ai, c

(0)
i,m = bi for 1 ≤ i ≤ n and such that the MSE constraint is

satisfied over T .
2. For j = 1, . . . , m − 1 compute for i = 1, . . . , n

c
(k+1)
i,j = c∗i ((c

(k)
1,j−1, . . . , c

(k)
n,j−1), (c

(k)
1,j+1, . . . , c

(k)
n,j+1), tj−1, tj , tj+1).

3. Repeat procedure 2 with k := k + 1 until the decrease in µ-energy is below
some threshold ε.

It is easily seen that the µ-energy of the conflict-free maneuvers obtained by
Algorithm 1 is nonincreasing as a function of the iteration number k, and is strictly
decreasing whenever condition (4.6) is not satisfied. Therefore, the iteration procedure
converges asymptotically to a conflict-free maneuver satisfying condition (4.6). A
convergence analysis of Algorithm 1 is yet to be achieved. Besides the issue of local
minima suggested by the example in Section 3.6, the situation is further complicated
by the fact that the convex optimization procedure introduced in Section 4.2 only
yields an approximation of c∗i . Another open issue is the suboptimality of optimal
m-legged maneuvers in Pm(R, a,b) with respect to optimal solutions in P(R, a,b).
Although in theory the performance gap decreases to zero as m → ∞, in practice, it
is not easy to quantify the performance degradation for a finite m.

In Fig. 4.4, some simulation results for Algorithm 1 when the agents have identical
priorities and R = 30 are shown. The epochs are chosen to evenly divide [t0, tf ], and
the corresponding waypoints are marked with small circles. In the plots, whenever
two agents are at distance R, their positions are joined by a line segment. Note that
the result shown in the left figure is a good approximation to the optimal maneuvers
plotted in Fig. 3.3.

4.4. Randomized optimization. In [12, 34], a decentralized algorithm for
multi-agent conflict resolution is proposed in the context of air traffic control. By
modeling the agent motion as a Brownian motion with drift, the probability of conflict
between two agents is estimated and then used to generate repulsive forces between
the agents, inspired by the potential and vortex field methodology for path planning
([27, 36]). Compared with traditional potential field methods that use only the posi-
tions of the agents, this algorithm considers also their headings and speeds, and hence
generates maneuvers with less abrupt turns.

Although the stochastic algorithm can be run in real time regardless of the number
n of agents involved, one of its drawbacks is that absolute safety cannot be guaranteed
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Fig. 4.5. 16-maneuvers generated by stochastic (left) and convex optimization algorithm (right).

with probability one. On the other hand, the convex optimization algorithm we
propose in this paper can ensure absolute safety, but it cannot handle the explosively
increasing number of types when n is large. We then suggest a solution that combines
the positive features of these two algorithms, hence it both guarantees safety and
is computationally feasible. The proposed algorithm uses the stochastic algorithm
as the random “type chooser”. More specifically, for a given multi-agent encounter,
first the stochastic algorithm is run to generate a joint maneuver corresponding to a
particular type, and then the convex optimization algorithm is utilized to obtain an
approximation of the optimal multi-legged maneuver within the type selected by the
stochastic algorithm.

Simulation results for a 16-agent symmetric encounter are shown in Fig. 4.5, in
which 16 agents with identical priorities pass approximatively through a common
point at angles evenly distributed in [0, 2π] and R = 30. The one on the left is the
joint maneuver generated by the stochastic algorithm, whereas the one on the right is
the optimal 2-legged conflict-free maneuver within this type generated by the convex
optimization algorithm.

Remark 7. When the number of agents is small, say, n = 2, 3, experiments show
that the stochastic algorithm tends to choose with higher probability those types with
lower µ-energy. However, when n is large such as in the previous example, it is hard to
evaluate the performance of the randomized algorithm, since currently no theoretical
result exists that can exhaust the explosively increasing number of resolution types and
find the optimal one (or ones). Much more work is needed in this respect.

5. Conclusions and future directions. In this paper, the problem of opti-
mal coordinated motion planning for multiple agents moving on a plane is studied.
After a classification of the homotopy types of conflict-free maneuvers, a weighted
energy is proposed as the cost function to select the optimal one. Various local and
global optimality conditions are derived. For two-agent encounters, analytical solu-
tions are obtained both for the optimal continuous and piecewise-C2 maneuvers and
the optimal 2-legged maneuvers. For the general multi-agent case, a randomized con-
vex optimization algorithm is proposed to find the optimal multi-legged maneuvers
numerically.

To completely characterize the optimal conflict-free maneuvers, many issues re-
main to be solved. The results in this paper could serve as a good starting point.
Possible directions of future research include the analysis of the proposed numerical
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algorithm in terms of its performance and its robustness with respect to uncertainty
on the agents’ positions and velocities, and the study of more realistic (and more com-
plicated) models for the agent dynamics than the kinematic one adopted in this paper.
Some contribution in this direction can be found in [15], which focuses exclusively on
air traffic management systems.

Acknowledgment: The first author would like to thank Alan Weinstein for his
insightful comments and discussions on the results of this paper.

Appendix A. Proof of Proposition 3.8.

Consider first the case when s = 0. For each α ∈ P(R, a,b), let β = R0
θ(α). Then

β̇i(t) = Tθ(t)α̇i(t) +
d

dt
Tθ(t)αi(t) = Tθ(t)α̇i(t) + θ̇(t)Tπ

2 +θ(t)αi(t), i = 1, · · · , n .

Since Tθ(t) and Tπ
2 +θ(t) are orthonormal matrices and T T

π
2 +θ(t) = T−π

2 −θ(t), we have

‖β̇i(t)‖2 = ‖α̇i(t)‖2 + ‖αi(t)‖2|θ̇(t)|2 + 2θ̇(t)αT
i (t)T−π

2
α̇i(t), i = 1, · · · , n .

Integrating and summing over i, we can write the cost difference ∆Jµ(θ) as

∆Jµ(θ) = Jµ(β) − Jµ(α) =

∫ tf

t0

[f(t)|θ̇(t)|2 + 2g(t)θ̇(t)] dt , (A.1)

where f and g are functions defined by

f(t) ,
1

2

n
∑

i=1

µi‖αi(t)‖2, g(t) ,
1

2

n
∑

i=1

µiα
T
i (t)T−π

2
α̇i(t), ∀t ∈ T . (A.2)

Note that we use the notation ∆Jµ(θ) to indicate that it is a function of θ. We next
compute the optimal twist θ∗ such that ∆Jµ(θ) is minimized. θ is subject to the

constraint that θ(t0) = 0, θ(tf ) = 2kπ for some fixed k ∈ Z. For θ̇, this translates into
∫ tf

t0
θ̇(t) dt = 2kπ. We can then write the Lagrangian function for this problem as

L(θ, λ) , ∆Jµ(θ) + λ

[
∫ tf

t0

θ̇(t) dt − 2kπ

]

=

∫ tf

t0

{

f(t)
[

θ̇(t) +
g(t) + λ

2

f(t)

]2 − [g(t) + λ
2 ]2

f(t)

}

dt − 2λkπ .

Thus θ̇∗(t) = −[g(t) + λ∗/2]/f(t) where, since
∫ tf

t0
θ̇(t) dt = 2kπ, λ∗ is given by:

λ∗ = −2

[
∫ tf

t0

g(t)

f(t)
dt + 2kπ

]/
∫ tf

t0

1

f(t)
dt.

Then, we have the following expression for θ̇∗(t)

θ̇∗(t) = − g(t)

f(t)
+

[
∫ tf

t0

g(t)

f(t)
dt + 2kπ

]/[

f(t)

∫ tf

t0

1

f(t)
dt

]

.

Substituting this into equation (A.1), we get the minimal ∆Jµ(θ):

∆Jµ(θ∗) =

[
∫ tf

t0

g(t)

f(t)
dt + 2kπ

]2/∫ tf

t0

1

f(t)
dt −

∫ tf

t0

g2(t)

f(t)
dt .
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If α = α∗ is an optimal maneuver, then ∆Jµ(θ∗) ≥ 0. Hence,

[
∫ tf

t0

g(t)

f(t)
dt + 2kπ

]2

≥
∫ tf

t0

1

f(t)
dt ·

∫ tf

t0

g2(t)

f(t)
dt . (A.3)

In the case when k = 0, the equality holds in equation (A.3) since the lower bound
∆Jµ(θ∗) ≥ 0 can be strictly achieved by choosing θ∗(t) ≡ 0. Therefore,

[
∫ tf

t0

g(t)

f(t)
dt

]2

=

∫ tf

t0

1

f(t)
dt ·

∫ tf

t0

g2(t)

f(t)
dt .

Applying the Cauchy-Schwartz inequality to functions 1/
√

f(t) and g(t)/
√

f(t), we

have that the above equality holds if and only if g(t)/
√

f(t) = C/
√

f(t) for some
constant C, i.e., if and only if g(t) ≡ C. In this case, equation (A.3) degenerates into:

(Cz + 2kπ)2 ≥ C2z2, ∀k ∈ Z ,

where z =
∫ tf

t0
1/f(t) dt, or equivalently, kπCz + k2π2 ≥ 0 for all k ∈ Z. This is

possible if and only if −π ≤ Cz ≤ π, thus completing the proof for the case s = 0.
The general case when s 6= 0 can be reduced to the above case by first noticing that

the optimality of α∗ in P(R, a,b) implies the optimality of α∗−s = (α∗
1−s, · · · , α∗

n−s)
in P(R, a − s,b − s), and then applying the results proved for the case s = 0 to the
optimal maneuver α∗ − s.

Appendix B. Geometry of T
2 under metric g.

In Section 3.6, we define a Riemannian metric g on the 2-torus T
2. Here we will

derive some useful quantities characterizing its geometry.
At each point (θ1, θ2) ∈ T

2, a basis ∂
∂θ1

and ∂
∂θ2

of the tangent space of T
2 is

mapped by the differential of the coordinate map f defined in (3.16) to

{

df( ∂
∂θ1

) = 1
3 (−2 sin θ1, 2 cos θ1, sin θ1,− cos θ1, sin θ1,− cos θ1, )

T ,

df( ∂
∂θ2

) = 1
3 (sin θ2,− cos θ2,−2 sin θ2, 2 cos θ2, sin θ2,− cos θ2)

T ,
(B.1)

which is a basis of the tangent space of Q at f(θ1, θ2). Here we have identified the
tangent space of R

6 at f(θ1, θ2) with R
6 itself, and the tangent space of Q at f(θ1, θ2)

becomes a subspace of R
6. The standard metric of R

6 induces by f isometrically the
metric g on T

2 of the form:

g =

[

g11 g12

g21 g22

]

=
1

3

[

2 − cos(θ1 − θ2)
− cos(θ1 − θ2) 2

]

, (B.2)

where gij , 〈 ∂
∂θi

, ∂
∂θj

〉 for i = 1, 2, j = 1, 2. The inverse of g can be written as

g−1 =

[

g11 g12

g21 g22

]

=
3

4 − cos2(θ1 − θ2)

[

2 cos(θ1 − θ2)
cos(θ1 − θ2) 2

]

The covariant derivative ∇ of T
2 with respect to the Levi-Civita connection is

defined by ([8])

∇ ∂
∂θi

∂

∂θj

=

2
∑

m=1

Γm
ij

∂

∂θm

, ∀1 ≤ i, j ≤ 2,
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where Γm
ij , 1 ≤ i, j, m ≤ 2, are the Christoff symbols that can be computed by

Γm
ij =

1

2

2
∑

k=1

{∂gjk

∂ξi

+
∂gki

∂ξj

− ∂gij

∂ξk

}gkm, 1 ≤ i, j, m ≤ 2.

It is easy to verify that

Γ1
11 = −Γ2

22 =
sin(θ1 − θ2) cos(θ1 − θ2)

4 − cos2(θ1 − θ2)
, Γ2

11 = −Γ1
22 =

2 sin(θ1 − θ2)

4 − cos2(θ1 − θ2)
,

and Γm
12 = Γm

21 = 0 for m = 1, 2. The equations for geodesics in T
2 are ξ̈k +

∑

i,j Γk
ij ξ̇iξ̇j = 0, k = 1, 2, which yield

[4 − cos2(θ1 − θ2)]θ̈1 = − sin(θ1 − θ2) cos(θ1 − θ2)(θ̇1)
2 + 2 sin(θ1 − θ2)(θ̇2)

2

[4 − cos2(θ1 − θ2)]θ̈2 = −2 sin(θ1 − θ2)(θ̇1)
2 + sin(θ1 − θ2) cos(θ1 − θ2)(θ̇2)

2.

The above equation are readily seen to be equivalent to equation (3.17).
Next, we will compute the curvature of T

2. Let R be the curvature tensor of T
2.

Let Rijkl be its value in basis ∂
∂θ1

, ∂
∂θ2

defined by ([8])

Rijkl , 〈R(
∂

∂θi

,
∂

∂θj

)
∂

∂θk

,
∂

∂θl

〉

= 〈(∇ ∂
∂θj

∇ ∂
∂θi

−∇ ∂
∂θi

∇ ∂
∂θj

+ ∇[ ∂
∂θi

, ∂
∂θj

])
∂

∂θk

,
∂

∂θl

〉,

for all 1 ≤ i, j, k, l ≤ 2. Then Rijkl =
∑2

s=1 Rs
ijkgsl, where Rs

ijk can be computed by

Rs
ijk =

2
∑

m=1

Γm
ikΓs

jm −
2

∑

m=1

Γm
jkΓs

im +
∂

∂θj

Γs
ik − ∂

∂θi

Γs
jk.

In our case, calculation shows that

R1
121 = R2

122 =
−3 cos2(θ1 − θ2)

[4 − cos2(θ1 − θ2)]2
, R2

121 = R1
122 =

−6 cos(θ1 − θ2)

[4 − cos2(θ1 − θ2)]2
,

and Rs
21k = −Rs

12k, Rs
11k = Rs

22k = 0 for all 1 ≤ k, s ≤ 2. Hence,

R1212 =
− cos(θ1 − θ2)

4 − cos2(θ1 − θ2)
.

Therefore, the sectional curvature of T
2 is

K =
R1212

g11g22 − g2
12

=
−9 cos(θ1 − θ2)

[4 − cos2(θ1 − θ2)]2
. (B.3)

K depends only on θ1 − θ2 since the map (θ1, θ2) 7→ (θ1 + ξ, θ2 + ξ) mod 2π is an
isometry of T

2 for each ξ. In the special case when θ1 − θ2 = π, we have K = 1. For
further analysis, see [17].
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