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Abstract

In this paper we study the problem of find optimal
feedback control that can keep an agent within an in-
terval for at least a certain amount of expected time
with the least energy. The dynamics of the agent are
subject to the perturbation of random noises, and thus
are given by a stochastic differential equation. By for-
mulating the problem as an optimal control problem,
we propose a solution by using the Maximum Principle
and finding a first integral to the resulting differential
equations. Some numerical simulations are presented
to illustrate the results.

1 Introduction

In many practical applications where safety is the prin-
cipal concern, for example, in traffic systems such as air
traffic management system [4] and automated highway
system [5], the evolution of the state of the agents to be
controlled can often be modeled as a proper dynamical
system subject to the perturbation of random noises,
or more precisely, by a stochastic differential equation,
with the control to the system of the form of state feed-
back control. The system is defined to be safe as long
as its state evolves inside a certain subset of the state
space called the safe region, and whenever this is vi-
olated, some emergency procedures have to be evoked
in order to reset the state within the safe region. Due
to the usually much higher cost of the emergency pro-
cedures, it is preferable to design a feedback control
law of a reasonable cost that can keep the state of the
system within the safe region for as long as possible.
Or equivalently, one wishes to find a feedback control
with the least cost that can keep the system safe long
enough. In this paper we study a simple instance of
such a problem.

As a concrete example, consider the following scenario.
Suppose that there are three consecutive cars driving
in the same direction on a road, numbered 1, 2, and
3 from front to end. The body length of each car is

1This material is based upon work supported by the National
Science Foundation under Grant No. EIA-0122599.
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dx D−d−x

Figure 1: Three cars on a highway.

d. Denote by D the distance between car 1 and car 3
and by x the distance between car 2 and car 3, both
excluding body length. Hence the distance between car
1 and car 2 is D − d− x (see Fig. 1). Suppose that in
a period of time, D remains constant, i.e., car 1 and
car 3 have identical velocities, while x is given by the
equation:

dx(t)
dt

= f [x(t)] + w(t).

Here f is the feedback control law for car 2 that de-
pends on the state x, and w(t) is the white noise mod-
eling random perturbations such as air resistance and
road frictions. Car 2 is safe if its distance from either
car 1 or car 3 is at least ε > 0, i.e., if x ∈ [ε,D− d− ε].
Suppose that at time t = 0 car 2 is at its ideal posi-
tion x(0) = (D − d)/2. Due to the presence of noises,
x(t) will eventually venture outside of the safe region.
Denote by T the first time x(t) escapes from the safe
region, which is a positive random variable. A natural
question arises: among all the feedback control laws f
satisfying the constraint E[T ] > t0 for some threshold
t0, find the one with the minimal cost∫ D−d−ε

ε

f2(x) dx.

The solution to a version of this problem will be dis-
cussed in this paper.

This paper is organized as following. First of all, the
problem under study is defined in its most general form
in Section 2. In Section 3, some properties of its opti-
mal solutions are established, which inspire us to pro-
pose a simplified version of the problem. By formulat-
ing the simplified problem as an optimal control prob-
lem in Section 4, we use the Maximal Principle to find
the equations for the optimal solutions. Due to pres-
ence of the two-point boundary conditions, these equa-
tions are hard to solve directly. However, by finding



a first integral, we can significantly simplify their so-
lution. These results are illustrated through numerical
simulations. Finally, conclusions and possible exten-
sions are discussed in Section 5.

2 Problem Formulation

Given an interval [−a, a] on the real line, consider the
solution Xt to the following stochastic differential equa-
tion (SDE):

dXt = f(Xt)dt + dBt,

where Bt is the standard Brownian motion, and f is
a piecewise Lipschitz continuous function. Denote by
Ta = inf{t ≥ 0 : Xt = a} (respectively, T−a = inf{t ≥
0 : Xt = −a}) the first time Xt hits a (respectively,
−a). Then Ta∧T−a , min{Ta, T−a} is the first time Xt

escapes from the interval [−a, a]. For each x ∈ [−a, a],
define

g(x) = Ex[Ta ∧ T−a],

where Ex means that the expectation is taken under
the initial condition that X0 = x. Thus g(x) is the ex-
pected escaping time from [−a, a] given that Xt starts
from x.

It is a standard result in stochastic calculus (see,
e.g., [2]) that g satisfies the following ordinary differen-
tial equation (ODE):

g′′(x) + 2f(x)g′(x) + 2 = 0, ∀x ∈ [−a, a], (1)

with the boundary condition g(−a) = g(a) = 0.
Note that g belongs to C, the family of functions on
[−a, a] with piecewise Lipschitz continuous second or-
der derivative.

Remark 1 For certain special cases, equation (1) can
be solved explicitly [3]. For example, if f ≡ u on
[−a, a], then Xt = Bt + ut is the BM with drift u,
and

g(x) =
(a− x)e2ua + (x + a)e−2ua − 2ae−2ux

u(e2ua − e−2ua)
.

In particular, if f ≡ 0 on [−a, a], then Xt = Bt is the
standard BM. Let u → 0 in the above equation, we have
g(x) = a2− x2. Figure 2 plots g(x) for different values
of u.

We now formulate our problem.

Problem 1 Among all the control functions f for
which the corresponding g satisfies

gmax , max{g(x) : x ∈ [−a, a]} ≥ t0
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Figure 2: Plots of g(x) for µ = −2, 0, 1.
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Figure 3: Feasible region of control function f in
(g(0), J(f)) coordinates.

for some fixed threshold t0 > 0, find the one that min-
imizes the energy

J(f) =
∫ a

−a

f2(x) dx.

In other words, we try to find the minimal energy con-
trol f subject to the constraint that the expected es-
caping time from at least one point in the safe region
[−a, a] is no less than t0.

By Remark 1, if f has the minimum energy J(f) = 0,
i.e., if f ≡ 0, then g(x) = a2 − x2, hence gmax = a2.
As a result, unless t0 > a2, the solution to Problem 1
is always f ≡ 0. Therefore, we shall in the following
assume that t0 ≥ a2.

For each threshold t0, denote by J∗(t0) the energy of



the solution to Problem 1, i.e.,

J∗(t0) = inf{J(f) : f such that gmax ≥ t0}.

Then it is clear that J∗(t0) is an increasing function of
t0. J∗(t0) has the following interpretation. Represent
each control function f as a point on a plane such that
its x coordinate is given by gmax and its y coordinate is
given by J(f). In this coordinate system, the feasible
region of all possible f is plotted as the shaded region
in Fig. 3. The region is bounded from the right by
the graph of the function J∗(t0) for t0 ≥ a2, and from
the left by another curve of no practical interest. The
vertex of the region corresponds to the control function
f ≡ 0.

As a by-product of the above analysis, we have an
equivalent (dual) formulation of the problem as follows.

Problem 2 Among all the control functions f whose
energy is at most J0 > 0, find the one for which the
corresponding gmax is maximized.

The value of gmax for the solution to Problem 2 as a
function of the threshold J0 is exactly the inverse of
the function J∗. We shall focus on Problem 1 only in
the rest of the paper.

3 Some Properties of Optimal Solutions

We first show some useful properties of the optimal
solutions to Problem 1.

Proposition 1 For any control function f , the solu-
tion g to equation (1) is strictly concave. Therefore,
g′′ ≤ 0, and there is a unique x∗ ∈ [−a, a] such that
g(x∗) = gmax.

Proof: We adopt a probabilistic proof using the
definition of g. For any −a ≤ y < x < z ≤ a,

g(x) = Ex[T−a ∧ Ta] = Px(Ty < Tz)g(y)+
Px(Tz < Ty)g(z) + Ex[Ty ∧ Tz],

where Ty and Tz denote the first time Xt hits y and z
respectively. Note that Px(Ty < Tz)+Px(Tz < Ty) = 1
and Ex[Ty ∧ Tz] > 0. Therefore, g is strictly concave.

Proposition 2 Suppose that f is an optimal solution
to Problem 1, and the corresponding g assumes its max-
imum at x∗. Then f ≥ 0 on [−a, x∗] and f ≤ 0 on
[x∗, a].

In other words, the optimal control function f will di-
rect toward x∗ from both side.

To prove this proposition, we need two technical lem-
mas on the monotonicity of solutions to the ODE (1).

Lemma 1 For a fixed control function f and x0 ∈ R,
denote by g(x; g0, u0) the solution to the ODE (1) with
initial condition g(x0) = g0 and g′(x0) = u0. Then for
any fixed x and g0, g(x; g0, u0) is an increasing function
of u0 if x > x0, and a decreasing function of u0 if
x < x0.

Proof: Suppose that for some u0 < v0, x > x0, we
have g1(x) , g(x; g0, u0) > g2(x) , g(x; g0, v0). Then
since g1(x) < g2(x) for x > x0 in a neighborhood of
x0, there exists an y ∈ (x0, x] where g2 − g1 achieve its
maximum over [x0, x]. At y we have g1(y) < g2(y) and
g′1(y) = g′2(y). Now g1(x) and g2(x) − g2(y) + g1(y)
are two solutions to the ODE (1) with identical values
of g(y) and g′(y), but nonetheless differ at x0 and x, a
contradiction to the the uniqueness of solutions to the
ODE (1).

Lemma 2 Suppose that g1 and g2 are the solutions to
the ODE (1) with initial condition g(x0) = g0, g′(x0) =
0, that correspond to the control functions f1 and f2,
respectively, and that f1 ≥ f2 on [x0,∞). Then g1 ≥ g2

on [x0,∞).

The proof of Lemma 2 follows the same line as that of
Lemma 1, hence is omitted.

We now prove Proposition 2. Suppose otherwise that
the optimal solution f is positive on some nontrivial
subinterval I = [x1, x2] of [x∗, a]. Define a new control
function f̂ such that f̂ = −f on I and f̂ = f at every-
where else. Note that f̂ and f have the same energy.
We claim that by adopting f̂ as the control function,
the expected escaping time, ĝ, is higher at x∗, a contra-
diction to our assumption that f is optimal. To prove
this claim, choose x0 = x∗ and g0 = g(x∗) in Lemma 2
to conclude that the solution to equation (1) with ini-
tial condition g(x∗) and g′(x∗) = 0 corresponding to
the new control function f̂ is no larger than g every-
where on [x∗, a]. Piece such a solution on [x∗, a] with
g on [−a, x∗] together to obtain a solution to (1) on
[−a, a] with initial condition g(−a) = 0 and g(a) < 0.
Now Lemma 1 shows that a solution to equation (1)
with initial condition g(−a) = 0 and g(a) = 0 is smaller
than the pieced together solution at any x ∈ (−a, a]. In
other words, the expected escaping time corresponding
to the control function f̂ starting from x∗ is larger than
g(x∗), a contradiction. The other half of the proposi-
tion can be proved similarly.

We conjecture that for optimal solution f to Problem 1,
the corresponding g assumes its maximum at x∗ = 0.
However, a rigorous proof is yet to be found. If this is



indeed the case, then it is clear that there is a version
of f that is odd on [−a, a] which generates an escaping
time of the same value at 0. In fact, starting any opti-
mal solution f , if

∫ 0

−a
f2(x) dx ≤

∫ a

0
f2(x) dx, then by

choosing f̂(x) = f(x) on [−a,−0] and f̂(x) = −f(−x)
on [0, a], we have a control function f̂ for which the
escaping time ĝ satisfies ĝ(x) = g(x) on [−a, 0] and
ĝ(x) = g(−x) on [0, a].

Inspired by the above discussions, we propose a re-
stricted version of Problem 1 as follows.

Problem 3 Among all the control functions f that
satisfy gmax ≥ t0 and that are odd on [−a, a], find the
one with minimal energy.

Because of the restriction, f is odd and g is even on
[−a, a]. Hence we need only to design the functions f
and g on [−a, 0], and then extend them to the whole
interval [−a, a] by their respective symmetries. The
equation that g satisfies is now given by

g′′(x) + 2f(x)g′(x) + 2 = 0, x ∈ [−a, 0], (2)

with initial condition g(−a) = 0, g(0) = t0, g′(0) = 0.
Here we use the obvious fact that the optimal solution
f satisfies g(0) = t0.

4 Solution Using Optimal Control Theory

Define y1(x) = g(x), y2(x) = g′(x). Then equation (2)
implies

y′1 = y2, (3)
y′2 = −2fy2 − 2, (4)

for x ∈ [−a, 0]. The boundary conditions are y1(−a) =
0, y1(0) = t0, and y2(0) = 0. The above equations spec-
ify the dynamics of a control system whose states are
(y1, y2) and whose input is f . The cost of the system
is

∫ 0

−a
f2(x) dx = 1

2J(f). So Problem 1 is equivalent to

Problem 4 Solve the following optimal control prob-
lem:

Minimize
∫ 0

−a

f2(x) dx

subject to

{
y′1 = y2,

y′2 = −2fy2 − 2,
∀x ∈ [−a, 0],

y1(−a) = 0, y1(0) = t0, y2(0) = 0.

Define the Hamiltonian

H(y1, y2, λ1, λ2, u) = λ1y2 + λ2(−2fy2 − 2) + f2

= λ1y2 − 2λ2(fy2 + 1) + f2.

Then the optimal control f satisfies [1]:

λ′1 = −∂H

∂y1
= 0, (5)

λ′2 = −∂H

∂y2
= 2fλ2 − λ1, (6)

and
∂H

∂f
= 2f − 2λ2y2 = 0, (7)

with the boundary conditions

y1(−a) = 0, y1(0) = t0, y2(0) = 0, λ2(−a) = 0.

By (5), λ1 is constant on [−a, 0]. From (7) we have

f = λ2y2. (8)

Substituting this into (4) and (6), we obtain

y′2 = −2λ2y
2
2 − 2, (9)

λ′2 = 2λ2
2y2 − λ1, (10)

whose boundary conditions are y2(0) = 0 and λ2(−a) =
0.

We now try to solve the above dynamic equations. Us-
ing equations (9) and (10), we have

(λ2y2)′ = λ′2y2 + λ2y
′
2

= (2λ2
2y2 − λ1)y2 − λ2(2λ2y

2
2 + 2)

= −(λ1y2 + 2λ2),

and

(2λ2 − λ1y2)′ = 2λ′2 − λ1y
′
2

= 2(2λ2
2y2 − λ1) + λ1(2λ2y

2
2 + 2)

= 2λ2y2(λ1y2 + 2λ2).

Therefore,

(2λ2 − λ1y2)′ = −2(λ2y2)(λ2y2)′ = −(λ2
2y

2
2)′.

Integrating, we have a first integral

2λ2 − λ1y2 = −λ2
2y

2
2 + C, ∀x ∈ [−a, 0], (11)

for some constant C. The initial conditions y2(0) = 0
and λ2(−a) = 0 imply that

C = 2λ2(0) = −λ1y2(−a).

Now λ2 and y2 can be solved from (11) as

λ2 =
−2± 2

√
1 + y2

2(λ1y2 + C)
2y2

2

,

y2 =
λ1 ±

√
λ2

1 − 4λ2
2(2λ2 − C)

2λ2
2

,
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Figure 4: Plot of Φ[y2(−a)] for a = 1.

which, after substitution into (9) and (10), yield

y′2 = ±2
√

1 + y2
2(λ1y2 + C),

λ′2 = ±
√

λ2
1 − 4λ2

2(2λ2 − C),

By Proposition 1, the sign in the first equation can be
easily determined as:

y′2 = −2
√

1 + y2
2(λ1y2 + C)

= −2
√

1 + λ1y2
2 [y2 − y2(−a)], (12)

with boundary conditions y2(0) = 0. Write equation
(12) as

dy2/
√

1 + λ1y2
2 [y2 − y2(−a)] = −2dx,

and integrating from x = −a to x = 0, we have

Ψ(λ1, y2(−a))

,
∫ y2(−a)

0

dy2√
1 + λ1y2

2 [y2 − y2(−a)]
= 2a, (13)

which defines λ1 as an implicit function of y2(−a) ∈
[2a,∞). In fact, for each fixed y2(−a) ≥ 2a, since
y2
2 [y2−y2(−a)] < 0 for 0 < y2 < y2(−a), Ψ(λ1, y2(−a))

is strictly increasing with λ1. Note that Ψ(0, y2(−a)) =
y2(−a) ≥ 2a, and limλ1→−∞Ψ(λ1, y2(−a)) = 0 ≤ 2a.
So there exists a unique λ1 ≤ 0, denoted as ϕ[y2(−a)],
such that

Ψ(ϕ[y2(−a)], y2(−a)) = 2a.

From the above discussion, if y2(−a) ≥ 2a, then the so-
lution y2 to equation (12) satisfies the boundary condi-
tion y2(0) = 0 if and only if we choose λ1 = ϕ[y2(−a)].

To determine y2(0), note that y1 satisfies y′1 = y2,
y1(−a) = 0, y1(0) = t0. Therefore, if we define

Φ[y2(−a)] =
∫ 0

−a

y2(x) dx,
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Figure 5: Plots of optimal f and g when a = 1, with t0 = 2
(first two rows),t0 = 3 (middle two rows), and
t0 = 6 (last two rows).

where y2 is the solution to equation (12) with initial
condition y2(−a) ≥ 2a and with λ1 = ϕ[y2(−a)], then

Φ[y2(−a)] = y1(0)− y1(−a) = t0. (14)

From experiments, Φ[y2(−a)] is strictly increasing for
y2(−a) ≥ 2a. See Figure 4 for a plot of Φ[y2(−a)]
when a = 1. Therefore we can find a y2(−a) such
that Φ[y2(−a)] = t0 if t0 ≥ a2. Using this y2(−a) and
λ1 = ϕ[y2(−a)], the solution to Problem 4 can be found
by integrating the following differential equations:

y′1 = y2, y1(−a) = 0,

y′2 = −2
√

1 + λ1y2
2 [y2 − y2(−a)].

Note that other boundary conditions y1(0) = t0 and
y2(0) = 0 are automatically satisfied by our choice of
y2(0) and λ1. Hence the difficulty of solving the two-



point boundary problem specified by (9) and (10) is
avoided.

Figure 5 plots the optimal f and g computed as above
when a = 1 for t0 = 1, 3, 6 respectively. The first two
rows are the optimal f and g for t0 = 1, the middle two
rows for t0 = 3, and the last two rows for t = 6. As
expected, as t0 increases, the optimal feedback control
law f becomes more aggressive. An interesting fact is
that the optimal f is nearly zero around the center of
the interval, while much of the effort is spent near 1/4
and 3/4 positions of the interval.

5 Conclusion

In this paper the problem of optimal sojourn time con-
trol for an agent moving in an interval is studied. Using
tools from optimal control theory, and by finding a first
integral to the resulting equations, we propose a solu-
tion to the problem under the symmetric assumption.

As future directions, we are currently trying to prove
the conjecture that solutions to the symmetric version
of the problem are also solutions to the general prob-
lem. It is also interesting to see if our approach can be
extended to the higher dimensional case, for example,
when the safe region is a disk in Rn.
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