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Abstract. The optimal control problem for a class of hybrid systems
(switched Lagrangian systems) is studied. Some necessary conditions of
the optimal solutions of such a system are derived based on the as-
sumption that there is a group of symmetries acting uniformly on the
domains of different discrete modes, such that the Lagrangian functions,
the guards, and the reset maps are all invariant under the action. La-
grangian reduction approach is adopted to establish the conservation law
of certain quantities for the optimal solutions. Some examples are pre-
sented. In particular, the problems of optimal collision avoidance (OCA)
and optimal formation switching (OFS) of multiple agents moving on a
Riemannian manifold are studied in some details.

1 Motivation

In this paper we study the optimal control problem of a class of hybrid systems
which we called switched Lagrangian systems. Roughly speaking, a switched La-
grangian system is a hybrid system with a set of discrete modes, and associated
with each discrete mode, a domain which is a manifold (possibly with bound-
ary) together with a Lagrangian function defined on it. The continuous state of
the system evolves within one of the domains, and upon hitting certain subsets
(guards), can trigger a jump in the discrete mode, in which case the continuous
state is reset inside the domain of the new discrete mode according to some
prescribed rules (reset maps). Thus a typical execution of the system can be
partitioned into a number of curves in distinctive domains. The cost of the exe-
cution is then the sum of the costs of these curves, with the cost of each curve
being the integral along it of the corresponding Lagrangian function. Given two
points which might lie in different domains, we try to find the executions that
steer the system from one point to the other with minimal cost.

If there is only one discrete mode, then the problem is a classical variational
problem whose solutions are characterized by the Euler-Lagrangian equations [1]
in any coordinate system of the domain. In particular, if the Lagrangian function
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is quadratic and positive definite on each fiber, it can be used to define a rieman-
nian metric on the domain, and the optimal solutions are geodesics under this
metric [5]. For a general system with multiple discrete modes, these conclusions
still hold for the segments of an optimal solution restricted on each individual
domain. Overall speaking, however, it is usually a very tricky issue to determine
how these individual segments can be pieced together to form an optimal solu-
tion, especially when the guards and the reset maps are complicated. In [11], it
is shown that if all the Lagrangian functions are quadratic and positive definite,
then, under some additional mild assumptions, successive segments must satisfy
at the switching points a necessary condition that is analogous to the Snell Law
in optics, provided that segments of optimal solutions in different domains are
thought of as light rays traveling in heterogeneous media.

In this paper, we try to derive necessary conditions on an optimal solution
that apply both on its segments inside each domain and at its switching points
where discrete jumps occur. We do so under the additional assumption that the
switched Lagrangian system admits a group of symmetries, i.e., there exists a
Lie group G acting uniformly on all of the domains, with respect to which the
Lagrangian functions, the guards, and the reset maps are invariant. By using per-
turbations generated by the group action, we can establish through variational
analysis the conservation law of certain quantities (momentum maps) taking val-
ues in the dual of the Lie algebra of G throughout the duration of the optimal
solution. It should be pointed out that this approach has extensive applications
in geometry and mechanics when the underlying state space is smooth, and is
often presented from the more elegant symplectic point of view in the litera-
ture [1, 12]. What is new in this paper is its reformulation and application in the
context of switched Lagrangian systems, which are nonsmooth in nature. This
nonsmoothness also justifies the Lagrangian point of view adopted here.

The results in this paper will be illustrated through examples. Two important
examples are the Optimal Collision Avoidance (OCA) and the Optimal Forma-
tion Switching (OFS) of multiple agents moving on a Riemannian manifold [10].
In either case, one has to steer a group of agents from a starting configuration to
a destination configuration on the manifold with minimal cost, such that their
joint trajectory satisfies certain separation constraints throughout the process.
We will show how these two problems can be formulated as the optimal control
problems for suitably chosen switched Lagrangian systems, and how the con-
served quantities can be derived for various choices of the Riemannian manifold.

A price we pay for the general applicability of the necessary conditions is
that they in general only partially characterize the optimal solutions, since the
number of symmetries presented in a system is usually much smaller than the
dimensions of the domains, and that the conserved quantities are usually not
integrable. Nonetheless, in certain simple cases, the derived necessary conditions
can indeed help to characterize the optimal solutions completely [10].

In this paper, we only consider holonomic motions of the agents. For non-
holonomic motion planning, see [2, 6]. Some relevant results can also be found
in [4, 13], to name a few.



This paper is organized as following. In Section 2, we define the notions of
switched Lagrangian systems, G-symmetry, and their optimal control problem.
In Section 3, Lagrangian variational approach is adopted to derive a necessary
condition for the optimal solutions. Two important examples of switched La-
grangian systems, the OCA and the OFS problems on Riemannian manifolds,
are introduced in Section 4. In particular, we study the cases when the under-
lying manifold is SOn and the Grassmann manifold. Finally, some concluding
remarks are presented in Section 5.

2 Switched Lagrangian Systems

First we define the notions of switched Lagrangian systems and their executions.
For the definition of general hybrid systems, see [8].

Definition 1 (Switched Lagrangian Systems). A switched Lagrangian sys-
tem H is specified by the following:

1. A set Γ of discrete modes;
2. For each l ∈ Γ , a domain Ml which is a manifold, possibly with boundary

∂Ml, and a Lagrangian function Ll : TMl → R defined on the tangent
bundle of Ml. We assume that the domains Ml, l ∈ Γ , are disjoint, and
write M = ∪l∈Γ Ml;

3. A set of discrete transitions Ed ⊂ Γ × Γ ;
4. For each (l1, l2) ∈ Ed, a subset D(l1,l2) ⊂ Ml1 , called the guard associ-

ated with the discrete transition (l1, l2), and a continuous transition relation
Ec(l1, l2) ⊂ D(l1,l2)×Ml2 such that for each q1 ∈ D(l1,l2), there exists at least
one q2 ∈ Ml2 with (q1, q2) ∈ Ec(l1, l2). In other words, Ec(l1, l2) specifies a
one-to-many map from D(l1,l2) to Ml2 .

Definition 2 (Hybrid Executions). A hybrid execution (or simply a path)
of H defined on some time interval [t0, t1] can be described as the following:
there is a finite partition of [t0, t1], t0 = τ0 ≤ . . . ≤ τm+1 = t1, m ≥ 0, and a
succession of discrete modes l0, . . . , lm ∈ Γ and arcs γ0, . . . , γm, such that

– (lj , lj+1) ∈ Ed for j = 0, . . . ,m− 1;
– γj : [τj , τj+1] → Mlj is a continuous and piecewise C∞ curve1 in Mlj for

j = 0, . . . ,m;
– For each j = 0, . . . ,m−1, γj(τj+1) ∈ D(lj ,lj+1), and (γj(τj+1), γj+1(τj+1)) ∈

Ec(lj , lj+1).

We will denote such a path by γ, and call γ0, . . . , γm the segments of γ. The cost
of γ is defined by

J(γ) =
m∑

j=0

∫ τj+1

τj

Llj (γ̇j) dt.

1 All curves in this paper are assumed to be continuous and piecewise C∞.



Intuitively speaking, a path is the trajectory of a point moving in M such that
whenever the point is in Ml1 and it reaches a point in a guard, say, q1 ∈ D(l1,l2),
it has the option of jumping to a point q2 in Ml2 according to the continuous
transition relation (q1, q2) ∈ Ec(l1, l2), and continuing its motion in Ml2 , and
so on. We call such a jump a transition, which consists of a discrete transition
l1 → l2 and a continuous transition q1 → q2. Note that during a transition, there
is possibly more than one position the point can jump to due to two reasons:
guards for different discrete transitions may intersect; and for a single discrete
transition, the continuous transition relation is a one-to-many map.

It is allowed in the definition of the path γ that some of τ0, . . . , τm+1 are
identical, implying that more than one transition may occur at the same epoch,
though in a sequential way. This can cause trouble since it is possible that all
the legitimate transitions from a certain point lead to infinite number of jumps
occurring at the same epoch, thus blocking the system from further evolving.
This kind of hybrid systems is usually called blocking. To ensure that the switched
Lagrangian systems studied in this paper are nonblocking, we make the following
(usually stronger) assumption.

Assumption 1 (Connectness) Assume that the switched Lagrangian system
H is connected in the sense that for any two points a, b ∈ M , there exists at least
one path γ connecting them.

The problem of interest to us can be formulated as

Problem 1 (Optimal Control on H) Given a, b ∈ M and a time interval
[t0, t1], find the path (or paths) from a to b defined on [t0, t1] with minimal cost.

Assumption 1 alone can not guarantee the existence of solutions to Problem 1,
which requires some completeness conditions on the space consisting of all the
paths from a to b defined on [t0, t1]. In addition, in the context of hybrid systems,
one needs to ensure that the solutions are not zeno (i.e., exhibiting infinite
number of transitions within a finite time interval). These difficulties are side-
stepped in this paper by the following assumption.

Assumption 2 (Existence of Solutions) Assume that H is chosen such that
solutions to Problem 1 exist.

We focus on a special class of switched Lagrangian systems. Let G be a Lie
group.

Definition 3 (G-symmetry). A switched Lagrangian system H is G-symmetric
if it has the following properties:

– G acts on the domain Ml from the left for each l ∈ Γ . We shall denote this
smooth action uniformly by Φ : G×Ml → Ml for all l;

– For each discrete transition (l1, l2) ∈ Ed, the guard D(l1,l2) and the contin-
uous transition relation Ec(l1, l2) are both invariant under the action of G,
i.e., for any g ∈ G, Φ(g,D(l1,l2)) ⊂ D(l1,l2), and (q1, q2) ∈ Ec(l1, l2) if and
only if (Φ(g, q1), Φ(g, q2)) ∈ Ec(l1, l2);
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Fig. 1. An example of an S1-symmetric switched Lagrangian system.

– For each l ∈ Γ , the Lagrangian function Ll is invariant under G, i.e., Ll ◦
dΦg = Ll, ∀g ∈ G. Here Φg : Ml → Ml is the map defined by Φg : q 7→
φ(g, q), ∀q ∈ Ml, and dΦg : TMl → TMl is its tangential map.

Assumption 3 (G-symmetry of H) There is a Lie group G such that the
switched Lagrangian system H is G-symmetric.

We illustrate the above concepts by two simple examples.

Example 1. Shown in Figure 1 is an example of a switched Lagrangian system
that is S1-symmetric. Here Γ = {0, 1}, and the domains of the two discrete
modes are two disjoint surfaces of revolution M0 and M1 in R3, each with a
boundary obtained as the cross section of the surface with a plane perpendicular
to its rotational axis. Let Ed = {(0, 1), (1, 0)}, D(0,1) = ∂M0, D(1,0) = ∂M1.
Define the continuous transition relation Ec(0, 1) as the graph of a map ϕ from
∂M0 to ∂M1 that is invariant under the rotations, i.e., ϕ rotates the circle ∂M0

by a certain angle and “fits” it into ∂M1. Define Ec(1, 0) to be the graph of ϕ−1.
Let M0 be equipped with the riemannian metric inherited from R3, and define
a Lagrangian function L0 on it by L0(v) = 1

2‖v‖
2
q, ∀v ∈ TqM0, where ‖ · ‖q is

the norm on the tangent space TqM0 determined by the riemannian metric. In
the following we shall simply write L0 = 1

2‖ · ‖
2. Similarly L1 = 1

2‖ · ‖
2, where

the norm now corresponds to the riemannian metric on M1 inherited from R3.
The action of S1 = {z ∈ Z : ‖z‖ = 1} on M0 can be defined as: each ejθ ∈ S1

corresponds to a rotation of M0 along its axis by an angle θ. Similarly for the
action of S1 on M1. By properly choosing the directions of rotation in the above
definitions, one can easily check that the resulting system H is S1-symmetric.

Example 2. Consider the following system H. Let Γ = {0, 1}. For each l ∈
Γ , Ml = {l} × (R2 \ {0}) ⊂ R3 is a plane with the origin removed, and the
Lagrangian function Ll is defined in the polar coordinate of Ml ' R2 \ {0} as:



Ll(v) = 1
2vtAl(r)v, for v = (ṙ, θ̇)t ∈ TqMl, q ∈ Ml. Here Al(r) is a 2-by-2

positive definite matrix whose entries are smooth functions of r, and Al(r) →∞
as r → 0. Let Ed = {(0, 1), (1, 0)}, D(0,1) = M0, D(1,0) = M1. Choose Ec(0, 1) =
{((0, x), (1, x)) : x ∈ R2, x 6= 0}, Ec(1, 0) = {((1, x), (0, x)) : x ∈ R2, x 6= 0}.
Therefore, a point moving in H can freely switch between two copies of R2 \ {0}
with different Lagrangian functions. S1 acts on Ml, l ∈ Γ , in the following way.
Each ejθ ∈ S1 corresponds to a rotation counterclockwise of Ml by an angle of
θ. H thus defined can be verified to be S1-symmetric.

3 Conservation Laws

Suppose we are given a switched Lagrangian system H that satisfies the as-
sumptions in the previous section. We shall now derive necessary conditions
that optimal solutions to Problem 1 must satisfy.

Since H is G-symmetric, an important observation is

Proposition 1. If γ is a path of H defined on [t0, t1], then for each C∞ curve
g : [t0, t1] → G, gγ is also a path of H defined on [t0, t1].

To be precise, gγ is defined in the following way. Let τ0, . . . , τm+1 and l0, . . . , lm
be as in the definition of γ, and let γ0, . . . , γm be the corresponding segments of γ.
Then gγ is a sequence of arcs, gγj , Φg(γj) = Φ(g(·), γj(·)), j = 0, . . . ,m, whose
intervals of definition and corresponding discrete modes coincide with those of
γj , j = 0, . . . ,m, respectively. The proof of Proposition 1 is straightforward,
hence omitted.

Assume that for given a, b ∈ M , γ is an optimal solution to Problem 1 defined
on [t0, t1] connecting a and b. Denote with ce : [t0, t1] → G the constant map
mapping every t ∈ [t0, t1] to the identity e ∈ G. Let g be a proper variation of ce,
i.e., g : (−ε, ε)×[t0, t1] → G is a C∞ map satisfying g(·, t0) = g(·, t1) = g(0, ·) ≡ e
for some small positive number ε. Then for each s ∈ (−ε, ε), gs(·) , g(s, ·) is a
C∞ curve in G both starting and ending at e, hence by Proposition 1 can be
used to define a path γs = gsγ in H that starts from a and ends in b. Note
that γ0 = γ since g0 = ce. Define J(s) = J(γs), s ∈ (−ε, ε). Then a necessary
condition for γ to be optimal is that J achieves its minimum at s = 0, which in
turn implies dJ

ds (0) = 0.
For each (s, t) ∈ (−ε, ε)× [t0, t1], introduce the notations

ġs(t) = ġ(s, t) =
∂g

∂t
(s, t), g′s(t) = g′(s, t) =

∂g

∂s
(s, t),

where we follow the convention in [5] of using dot and prime to indicate differ-
entiations with respect to time t and variation parameter s respectively. Both
ġ(s, t) and g′(s, t) are tangent vectors of G at g(s, t). We pull them back via left
multiplication to the tangent space of G at the identity e. Thus we define

ξs(t) = ξ(s, t) = g(s, t)−1ġ(s, t),

ηs(t) = η(s, t) = g(s, t)−1g′(s, t).



Here to simplify notation we use g(s, t)−1ġ(s, t) to denote dmg(s,t)−1 [ġ(s, t)] (for
any g ∈ G, mg : G → G stands for the left multiplication by g, while dmg is
its tangent map). Similarly for g(s, t)−1g′(s, t). This kind of notational simpli-
fications will be carried out in the following without further explanation. Both
ξ(s, t) and η(s, t) belong to g = TeG, the Lie algebra of G. The fact that g is a
proper variation implies that g′(·, t0) = g′(·, t1) = 0, hence η(·, t0) = η(·, t1) = 0.
Moreover, g(0, ·) = e implies that ġ(0, ·) = 0, hence ξ(0, ·) = 0.

Lemma 1. Let ξ′(s, t) = ∂ξ
∂s (s, t) and η̇(s, t) = ∂η

∂t (s, t). Then

ξ′ = η̇ + [ξ, η] (1)

for all (s, t) ∈ (−ε, ε)× [t0, t1], where [ξ, η] is the Lie bracket of ξ and η.

Proof. A general proof can be found in, for example, [3]. In the case when G is a
matrix Lie group, the proof is particularly simple ([12]): differentiating ξ = g−1ġ
with respect to s and η = g−1g′ with respect to t, we get

ξ′(s, t) = −g−1g′g−1ġ + g−1 ∂2g

∂s∂t
= −ηξ + g−1 ∂2g

∂s∂t
,

η̇(s, t) = −g−1ġg−1g′ + g−1 ∂2g

∂s∂t
= −ξη + g−1 ∂2g

∂s∂t
.

Their difference gives ξ′ − η̇ = ξη − ηξ = [ξ, η].

Define
ω(t) = ξ′0(t) = ξ′(0, t), ∀t ∈ [t0, t1]. (2)

By letting s = 0 in (1), we have ω = η̇0 + [ξ0, η0] = η̇0 since ξ0 = 0. So∫ t1
t0

ω(t) dt = η0(t1) − η0(t0) = 0. Conversely, for each C∞ map ω : [t0, t1] → g

with
∫ t1

t0
ω(t) dt = 0, we can define α(t) =

∫ t

t0
ω(t) dt, which satisfies α(t0) =

α(t1) = 0. By choosing g(s, t) = exp[sα(t)], where exp is the exponential map
of G, one can verify that g is indeed a proper variation of ce such that ω = ξ′0,
where ξ = g−1ġ. Therefore,

Lemma 2. The necessary and sufficient condition for a C∞ map ω : [t0, t1] → g
to be realized as ω = ξ′0 where ξ = g−1ġ for some C∞ proper variation g of ce is∫ t1

t0

ω(t) dt = 0. (3)

Suppose one such g is chosen. For each (s, t) ∈ (−ε, ε) × [t0, t1], and each
segment γj of γ, j = 0, . . . ,m, we have2

Llj [
d

dt
(gsγj)] = Llj [ġsγj + gsγ̇j ] = Llj [gs(ξsγj + γ̇j)] = Llj [ξsγj + γ̇j ], (4)

2 Since γj is only piecewise C∞, this and all equations that follow should be understood
to hold only at those t where γ̇j ’s are well defined.



where the last equality follows by the G-invariance of Llj . Here ġsγj denotes
dΦγj (ġs), where dΦγj is the differential of the map Φγj : G → Mlj that maps
each g ∈ G to Φ(g, γj), and gsγ̇j denotes dΦgs(γ̇j). Both ġsγj and gsγ̇j are
tangent vectors in Tgsγj Mlj . The cost of γs = gsγ is then

J(s) =
m∑

j=0

∫ τj+1

τj

Llj [ξsγj + γ̇j ] dt. (5)

For a vector space V , denote with (·, ·) : V ∗×V → R the natural pairing between
V and its dual V ∗, i.e., (f, v) = f(v),∀f ∈ V ∗, v ∈ V . Differentiating (5) with
respect to s at s = 0, and using the fact that ξ0 = 0 and ξ′0 = ω, we have

J ′(0) =
m∑

j=0

∫ τj+1

τj

((dLlj )γ̇j
, dΦγj (ω)) dt =

m∑
j=0

∫ τj+1

τj

((dΦγj )∗(dLlj )γ̇j
, ω) dt.

(6)

Here (dLlj )γ̇j is in fact the differential at γ̇j of the restriction of Llj on the fiber
Tγj Mlj . We identify the tangent space at γ̇j of Tγj Mlj with Tγj Mlj itself, so
dΦγj (ω) ∈ Tγj

Mlj and (dLlj )γ̇j
∈ T ∗γj

Mlj . In addition, (dΦγj )∗ : T ∗γj
Mlj → g∗ is

the dual of dΦγj : g → Tγj
Mlj defined by

((dΦγj )∗f, v) = (f, dΦγj (v)), ∀f ∈ T ∗γj
Mlj , v ∈ g. (7)

From (6) and Lemma 2, the condition that J ′(0) = 0 for all g is equivalent
to that

m∑
j=0

∫ τj+1

τj

((dΦγj )∗(dLlj )γ̇j , ω) dt = 0, (8)

for all C∞ map ω : [t0, t1] → g such that
∫ t1

t0
ω dt = 0. Since (dΦγj )∗(dLlj )γ̇j

is
piecewise continuous (though not necessarily continuous) in g∗, (8) implies that
(dΦγj )∗(dLlj )γ̇j

is constant for all t and all j whenever γ̇j ’s are well defined, for
otherwise one can always choose an ω with

∫ t1
t0

ω dt = 0 such that (8) fails to
hold. Therefore,

Theorem 1 (Noether). Suppose γ is an optimal solution to Problem 1, and
let γ0, . . . , γm be its segments. Then there exists a constant ν0 ∈ g∗ such that

(dΦγj )∗(dLlj )γ̇j = ν0, ∀t ∈ [τj , τj+1], j = 0, . . . ,m. (9)

A simple way of writing equation (9) is (dΦγ)∗dLγ̇ ≡ ν0.
If for each l ∈ Γ , there is a riemannian metric 〈·, ·〉l on Ml such that Ll =

1
2‖ · ‖

2
l , then under the canonical identification of Tγj

Mlj with T ∗γj
Mlj via the

metric 〈·, ·〉l, (dLlj )γ̇j is identified with γ̇j , and equation (9) becomes

(dΦγj )∗γ̇j = ν0, ∀t ∈ [τj , τj+1], j = 0, . . . ,m, (10)

where (dΦγj )∗ : Tγj
Mlj → g∗ now is defined by

((dΦγj )∗u, v) = 〈u, dΦγj (v)〉lj , ∀u ∈ Tγj
Mlj , v ∈ g. (11)



Example 3. Consider Example 1 with a, b as shown in Figure 1. Then an optimal
solution γ from a to b consists of two segments γ0 ⊂ M0 and γ1 ⊂ M1. It can
be shown that for γ0, the conserved quantity ν0 is the component of the angular
momentum (γ0 − c0) × γ̇0 ∈ R3 along the rotational axis of M0. Here c0 is an
arbitrary point on the rotational axis. Similarly we can obtain the conserved
quantity for γ1. Theorem 1 states that these two quantities are identical.

4 OCA and OFS Problems

In this section, we will describe very briefly two related classes of switched La-
grangian systems. For more details, see [9, 10].

Let M be a C∞ Riemannian manifold3. Denote with 〈·, ·〉 the riemannian
metric and with ‖ · ‖ the associated norm on TM . The arc length of a curve
α : [t0, t1] → M is defined as

∫ t1
t0
‖α̇(t)‖ dt. The distance between two arbi-

trary points q1 and q2 in M , which we denote as dM (q1, q2), is by definition the
infimum of the arc length of all the curves connecting q1 and q2. A geodesic
in M is a locally distance-minimizing curve. In this paper, we always assume
that M is connected and complete, and that all the geodesics are parameterized
proportionally to arc length.

Let L : TM → R be a smooth nonnegative function that is convex on each
fiber. As an example one can take L = 1

2‖ · ‖
2. For each curve α : [t0, t1] → M ,

its cost is defined as J(α) =
∫ t1

t0
L[α̇(t)] dt.

Consider an (ordered) k-tuple of points of M , 〈qi〉ki=1 = (q1, . . . , qk). We say
that 〈qi〉ki=1 satisfies the r-separation condition for some positive r if and only
if dM (qi, qj) ≥ r for all i 6= j. Let 〈ai〉ki=1 and 〈bi〉ki=1 be two k-tuples of points
of M , each of which satisfies the r-separation condition. 〈ai〉ki=1 is called the
starting position and 〈bi〉ki=1 the destination position. Let h = (h1, . . . , hk) be a
k-tuple of curves in M defined on [t0, t1] such that hi(t0) = ai, hi(t1) = bi, for
i = 1, . . . , k. h is said to be collision-free if the k-tuple 〈hi(t)〉ki=1 satisfies the
r-separation condition for each t ∈ [t0, t1].

Problem 2 (OCA) Among all collision-free h = 〈hi〉ki=1 that start from 〈ai〉ki=1

at time t0 and end at 〈bi〉ki=1 at time t1, find the one (or ones) minimizing

J(h) =
k∑

i=1

λiJ(hi). (12)

Here 〈λi〉ki=1 is a k-tuple of positive numbers.

To introduce the second problem we need some notions. Let 〈qi〉ki=1 be a k-
tuple of points of M satisfying the r-separation condition. Then a graph (V,E)
can be constructed as following: the set of vertices is V = {1, . . . , k}; the set

3 M here should not be confused with M in Section 2, where it is used to denote the
union of the domains of H.
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Fig. 2. Formation adjacency graph (k = 3, M = R2).

E of edges is such that an edge eij between vertex i and vertex j exists if and
only if dM (qi, qj) = r. (V,E) is called the formation pattern of 〈qi〉ki=1. Let
h = 〈hi〉ki=1 be a collision-free k-tuple of curves in M defined on [t0, t1]. Then
for each t ∈ [t0, t1], the formation pattern of h at time t is defined to be the
formation pattern of 〈hi(t)〉ki=1.

Depending on M , r, and k, not all graphs with k vertices can be realized
as the formation pattern of some 〈qi〉ki=1. Two possible formation patterns are
called adjacent if one is a strict subgraph of the other. This adjacency relation
can be used to define a graph Gadj called the formation adjacency graph, whose
set of vertices is the set of all possible formation patterns, and whose set of edges
is such that an edge exists between two formation patterns if and only if they
are adjacent. Figure 2 shows Gadj in the case M = R2 and k = 3, where the
attachments of the “ground” symbol to vertices 2, . . . , 8 signal their adjacency
with vertex 1.

Now we are ready to define the OFS problem.

Problem 3 (OFS) Let G′
adj be a connected subgraph of Gadj such that the

formation patterns of 〈ai〉ki=1 and 〈bi〉ki=1 are both vertices of G′
adj. Among all

collision-free h that start from 〈ai〉ki=1, end in 〈bi〉ki=1, and satisfy the additional
constraint that the formation pattern of h at any time t ∈ [t0, t1] belongs to the
vertices of G′

adj, find the one (or ones) minimizing the cost (12).

For some choices of G′
adj , the OFS problem may not have a solution for all

〈ai〉ki=1 and 〈bi〉ki=1. This difficulty is removed if we assume that G′
adj is closed,



i.e., for each formation pattern (V,E) belonging to the vertices of G′
adj , any

formation pattern (V ′, E′) containing (V,E) as a subgraph is also a vertex of
G′

adj . In the example shown in Figure 2, one can choose G′
adj to be the subgraph

obtained by removing vertices 1, 2, 3, 4 and all the edges connected to them,
thus imposing the constraint that all three agents, each of which is of radius r

2 ,
have to “contact” one another either directly or indirectly via the third agent at
any time in the joint trajectory. As another example, G′

adj can be taken to the
subgraph of Gadj consisting of vertices 2, 5, 7, 8, and all the edges among them.
So agent 1 and agent 2 are required to be bound together at all time, and the
OFS problem becomes the optimal collision avoidance between agent 3 and this
two-agent subsystem.

The OFS (hence OCA) problem can be naturally described as a switched
Lagrangian system H. Its discrete modes correspond to the vertices of G′

adj ,
i.e., the allowed formation patterns. For each such formation pattern (V,E), the
corresponding domain is the subset of M (k) = M × . . .×M consisting of points
(q1, . . . , qk) such that dM (qi, qj) = r if eij ∈ E and dM (qi, qj) ≥ r otherwise, and
the Lagrangian function is given by

∑k
i=1 λiL ◦dPi, where dPi is the differential

of the projection Pi of M (k) onto its i-th component. The set Ed of discrete
transitions is exactly the set of edges of G′

adj . For each discrete transition, its
guard is the intersection of the domain of the source discrete mode with that
of the target discrete mode, its continuous transition relation is given by the
graph of the identity map. One anomaly of this definition is that the domains of
different discrete modes may intersect each other. But this can be removed by
introducing an additional index dimension, as is the case in Example 2.

We make the following two assumptions:

1. Φ : G×M → M is a C∞ left action of a Lie group G on M by isometries.
2. The function L is G-invariant.

As before, for each g ∈ G, define Φg : M → M to be the map q 7→ gq, ∀q ∈
M . Similarly, for each q ∈ M define Φq : G → M to be the map g 7→ gq,
∀g ∈ G. Therefore, for each g ∈ G, the first assumption implies that Φg is
an isometry of M , while the second assumption implies that L ◦ dΦg = L. A
very important observation is that, under these two assumptions, the switched
Lagrangian system H is G-symmetric. Therefore, by Theorem 1 we have

Theorem 2. Suppose h = 〈hi〉ki=1 is an optimal solution to the OCA (or OFS)
problem. Then there exists a constant ν0 ∈ g∗ such that

ν ,
k∑

i=1

λi(dΦhi)∗dLḣi
≡ ν0 (13)

for all t ∈ [t0, t1] where ḣi’s are well defined.

Example 4 (G = SOn, M = Sn−1). Let M = Sn−1 = {(x1, . . . , xn)t ∈ Rn :
x2

1 + . . . + x2
n = 1} be the unit (n− 1)-sphere, and let G = SOn = {Q ∈ Rn×n :

QtQ = I,detQ = 1} be the group of orientation-preserving n-by-n orthogonal



matrices. G acts on M by left matrix multiplication. For each q ∈ Sn−1, the
tangent space TqSn−1 = {v ∈ Rn : vtq = 0} is equipped with the standard
metric 〈u, v〉 = utv, ∀u, v ∈ TqSn−1, which is invariant under the action of SOn.
The Lie algebra of SOn, son, is the set of all n-by-n skew-symmetric matrices,
i.e., son = {X ∈ Rn×n : X + Xt = 0}, where the Lie bracket is given by
[X, Y ] = XY −Y X, ∀X, Y ∈ son. Choose L = 1

2‖ · ‖
2. Suppose that h = 〈hi〉ki=1

is a k-tuple of curves on Sn−1 that solves the OCA (or OFS) problem. At any
time t ∈ [t0, t1], let u ∈ Thi

Sn−1 and v ∈ son be arbitrary. Then

〈u, dΦhiv〉 = 〈u, vhi〉 = utvhi = tr(utvhi) = tr(hiu
tv) = 〈uht

i, v〉F ,

where 〈·, ·〉F is the Frobenius inner product on Rn×n defined by 〈X, Y 〉F =
tr(XtY ) for any two n-by-n matrices X and Y . Since v is skew-symmetric, it is
easily checked that 〈uht

i, v〉F = 1
2 〈uht

i − hiu
t, v〉F . Therefore

((dΦhi)∗u, v) = 〈u, dΦhiv〉 =
1
2
〈uht

i − hiu
t, v〉F , ∀v ∈ son. (14)

Note that uht
i − hiu

t is skew-symmetric, hence belongs to son. We use the re-
striction of 1

2 〈·, ·〉F to establish a metric on son, hence identifying so∗n with son.
Then equation (14) can be written as

(dΦhi)∗u = uht
i − hiu

t.

Hence the conservation law (13) becomes

k∑
i=1

λi(ḣih
t
i − hiḣ

t
i) ≡ ν0 ∈ son, (15)

If we write each hi in coordinates as hi = (hi,1, . . . , hi,n)t ∈ Sn−1 ⊂ Rn, then (15)
is equivalent to

∑k
i=1 λi(ḣij1hij2 − hij1 ḣij2) ≡ Cj1j2 , ∀t ∈ [t0, t1], 1 ≤ j1 < j2 ≤

n, where Cj1j2 ’s are constants in R. In particular, if n = 2 (M = S2, G = SO3),
then equation (15) can be written compactly as

∑k
i=1 λi(hi× ḣi) ≡ Ω0 for some

Ω0 ∈ R3, where × is the vector product. This is exactly the conservation of total
angular momentum.

Example 5 (Grassmann Manifold). Let On be the set of orthogonal n-by-n ma-
trices equipped with the standard metric inherited from Rn×n, which can be
shown to be bi-invariant. Let p be an integer such that 1 ≤ p ≤ n. Define Hp to

be the subgroup of On consisting of all those matrices of the form
[
Qp 0
0 Qn−p

]
,

where Qp and Qn−p are p-by-p and (n − p)-by-(n − p) orthogonal matrices re-
spectively. Let Gn,p = {QHp : Q ∈ On} be the set of all left cosets of Hp in On.
Alternatively, Gn,p is the set of all equivalence classes of the equivalence relation
∼ defined on On by: ∀P,Q ∈ On, P ∼ Q if and only if P = QA for some A ∈ Hp.
Elements in Gn,p are denoted by [[Q]] = QHp = {QA : A ∈ Hp}, ∀Q ∈ On,
and correspond in a one-to-one way to the set of all p-dimensional subspaces of



Rn. As a quotient space of On, Gn,p admits a natural differential structure, and
is called the Grassmann manifold. At each Q ∈ On, the tangent space of On

can be decomposed as the direct sum of two parts: the vertical space vertQOn

and the horizontal space horQOn. vertQOn is the tangent space of QHp at Q,

which consists of all those matrices of the form Q

[
Y 0
0 Z

]
for some p-by-p skew

symmetric matrix Y and some (n − p)-by-(n − p) skew symmetric matrix Z;
horQOn is the orthogonal complement in TQOn of vertQOn, and consists of all

those matrices of the form Q

[
0 −Xt

X 0

]
for some (n− p)-by-p matrix X. Define

a metric on horQOn by

〈Q
[

0 −Xt
1

X1 0

]
, Q

[
0 −Xt

2

X2 0

]
〉 =

1
2
〈Q

[
0 −Xt

1

X1 0

]
, Q

[
0 −Xt

2

X2 0

]
〉F = tr(Xt

1X2),

(16)
for all X1, X2 ∈ R(n−p)×p. An important observation is that horQOn provides
a representation of the tangent space of Gn,p at [[Q]], and the metric defined in

(16) is independent of the choice of Q in [[Q]], as long as one equates Q

[
0 −Xt

X 0

]
in horQOn with Q

[
0 −Xt

X 0

]
A in horQAOn for arbitrary A ∈ Hp. Note that here

we use the fact that the metric on On is bi-invariant. Therefore, (16) induces a
metric on Gn,p, which is easily verified to be invariant with respect to the action
of On. Under this metric, the distance between [[Q1]] and [[Q2]], Q1, Q2 ∈ On,
can be calculated as

√∑p
i=1 θ2

i , where cos θi, i = 1, . . . , p, are the singular values

of the p-by-p matrix
[
Ip 0

]
Qt

1Q2

[
Ip

0

]
. Here Ip is the p-by-p identity matrix ([7]).

Suppose L = 1
2‖ · ‖

2. Let h = 〈hi〉ki=1 be a k-tuple of curves in Gn,p which
is a solution to the OCA (or OFS) problem. For each i = 1, . . . , k, let qi be a
lifting of hi in On, i.e. qi is a curve in On such that [[qi(t)]] = hi(t), ∀t ∈ [t0, t1].
In other words, qi(t) is an orthogonal matrix in On whose first p columns span
the subspace hi(t) ∈ Gn,p. Also implicit in this definition is that qi is continuous
and piecewise C∞. At any time t ∈ [t0, t1], from the previous paragraph we can
identify Thi

Gn,p with horqi
On. So for any u ∈ Thi

Gn,p ⊂ Tqi
On and v ∈ on,

〈u, dΦhiv〉Thi
Gn,p

= 〈u, Pqi
(vqi)〉horqi

On
= 〈u, vqi〉Tqi

On
= 〈uq−1

i , v〉on
.

Here for clarity we indicate in the subscript the associated tangent space of
each inner product. Pqi

is defined as the orthogonal projection of Tqi
On onto

the subspace horqi
On. More specifically, each w ∈ Tqi

On can be written as

qi

[
Y −Xt

X Z

]
for some p-by-p skew symmetric matrix Y , (n− p)-by-(n− p) skew

symmetric matrix Z, and (n − p)-by-p matrix X, then Pqi
(w) = qi

[
0 −Xt

X 0

]
.

As a result, we see that (dΦhi)∗u = uq−1
i = uqt

i , ∀u ∈ Thi
Gn,p. Finally, notice



that ḣi = Pqi
(q̇i). Therefore, the conserved quantity is

ν0 =
k∑

i=1

λiPqi
(q̇i)qt

i ∈ on. (17)

5 Conclusions

We study the optimal control problem of switched Lagrangian systems with a
group of symmetries. Necessary conditions are given for the optimal solutions.
In particular, we show that the OCA and the OFS problems for multiple agents
moving on a Riemannian manifold are special occasions of such a problem. Sev-
eral examples are presented to illustrate the results.
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