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Abstract—In this paper, we consider the general multiple-
target tracking problem in which an unknown number of
targets appears and disappears at random times and the goal
is to find the tracks of targets from noisy observations. We
propose an efficient real-time algorithm that solves the data
association problem and is capable of initiating and terminat-
ing a varying number of tracks. We take the data-oriented,
combinatorial optimization approach to the data association
problem but avoid the enumeration of tracks by applying a
sampling method called Markov chain Monte Carlo (MCMC).
The MCMC data association algorithm can be viewed as a
“deferred logic” method since its decision about forming a
track is based on both current and past observations. At the
same time, it can be viewed as an approximation to the optimal
Bayesian filter. The algorithm shows remarkable performance
compared to the greedy algorithm and the multiple hypothesis
tracker (MHT) under extreme conditions, such as a large
number of targets in a dense environment, low detection

formed from the previous hypotheses. The algorithm returns
a hypothesis with the highest posterior as a solution. MHT is
categorized as a “deferred logic” method [16] in which the
decision about forming a new track or removing an existing
track is delayed until enough observations are collected.
Hence, MHT is capable of initiating and terminating a
varying number of tracks and suitable for autonomous
surveillance applications. The main disadvantage of MHT is
its computational complexity since the number of hypothe-
ses grows exponentially over time. Various heuristics are
developed to overcome this complexity, such as pruning,
gating, clustering,N-scan-back logic, [17], [10] and-
best hypotheses [6] using Murty’s algorithm [12]. But the
heuristics are used at the expense of optimality and the algo
rithm can still suffer in a dense environment. Furthermore,

probabilities, and high false alarm rates. the running time at each step of the algorithm cannot be
| INTRODUCTION bounded easily, making it difficult to deploy in a real-time
_ ) i ] surveillance system.

Multiple-target tracking plays an important role in many A different approach to the data association problem
areas of engineering such as surveillance, computer Vvisiqg, the joint probabilistic data association filter (JPDAF)
and signal processing [1], [5]. Under the most general setup,] JPDAF is a suboptimal single-stage approximation to
a varying number of indistinguishable targets is movingne optimal Bayesian filter. JPDAF is a sequential tracker
continuously in a given region a_nd the positions of moving, \which the associations between the “known’ targets
targets are sampled at random intervals. The measuremegg the latest observations are made sequentially. JPDAF
of the positions are noisy, with detection probability lesgssymes a fixed number of targets and cannot initiate or
than one, and there is a noise background of spurioygrminate tracks since only the current set of observations
position reports, i.e., false alarms. Targets arise at rando@ considered. There are restricted extensions to JPDAF to
in space and time. Each target persists |ndep§ndently foraﬁow the formation of a new track (see [5] and references
random length of time and then ceases to exist. A track {§jthin). Other multiple-target tracking algorithms, such
defined as a path in space-time traveled by a target. Thg the multisensor multitarget mixture reduction (MTMR)
essence of the multiple-target tracking problem is to fingh 4] and the probabilistic multi-hypothesis tracker (PMHT)
tracks from the noisy observations; this requires solutio 9], also assume a fixed number of targets and cannot
to both data association and state estimation problems [18litiate or terminate tracks. Recently, a Bayesian model-
~ The data association problem in multiple-target trackingased approach to track a varying number of targets which
is the problem of finding a partition of observations such.g initiate and terminate tracks was presented in [13].
that each element of a partition is a collection of observa- Sequential trackers are typically more efficient than
tions generated by a single target or clutter [18]. Howevegeferred-logic trackers such as MHT but they are prone
due to the noise in state transitions and observations, W& make erroneous associations since the associations made
cannot expect to find the exact solution. The most success{yl ihe past are not reversible [16]. In addition, the exact
algorithm based on this data-oriented view is the multiplgy|cylation of association probabilities in JPDAF at each
hypothesis tracker (MHT) [17]. In MHT, each hypothesisstage is NP-hard [4] since the related problem of finding
associates past observations with a target and, as a ng permanent of a 0-1 matrix is #P-complete [20]. In
set of observations arrives, a new set of hypotheses [i§ 5 single-stage data association problem is considered
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in polynomial time unlessP = NP. An optimization for k=1,...,K. LetV be the volume ofR. Each object
approach to data association has been applied as a @ises at a random position / att¥, moves independently
integer programming problem [11] and as a multidimenaroundR until t¥ and disappears. At each time, an existing
sional assignment problem [16]. In both cases, one first findarget persists with probability — p, and disppears with
feasible tracks using the gating method and compute throbability p,. The number of objects arising at each time
cost of each feasible track. Then the optimization routinever R has a Poisson distribution with a parametgil/
finds a subset of feasible tracks such that the combinedhere )\, is the birth rate of new objects per unit time,
costs are minimized while satisfying the constraints, i.eper unit volume. The initial position of a new object is
each track has at most one observation at each time and un@iformly distributed overR.
two tracks share the same observation. However, in a densd_et F* : R? — R be the discrete-time dynamics of the
environment, the number of feasible tracks can be large anfbject k, whered is the dimension of the state variable,
the complexity of the algorithm increases dramatically. and letz" € R? be the state of the objeét at time ¢ for

The main contribution of this paper is the development of = 1,2,..., K. The objectt moves according to
an efficient real-time algorithm that solves the data associa-
tion problem and is capable of initiating and terminating ~ zfy, = FF(zf) +wf  fort=tF,. . tf -1,
a varying number of tracks. We take the data-oriented, ] . )
combinatorial optimization approach to the data associationere w? € R? are white noise processes. The noisy
problem but avoid the enumeration of tracks by applyin@Pservation of the state of the object is measured with a
a sampling method called Markov chain Monte carldetection probabilitypy which is less than unity. There are
(MCMC). Examples of MCMC are Metropolis-HastingsalS_O false_alz_irm_s and_ the number of false alarms_has a
and Gibbs sampling [7]. The MCMC data associatioff 0isson distribution with a parametekV’) where ) is
(MCMCDA) algorithm can be viewed as a deferred-logiche false alarm rate per unit time, per unit volume. het
method since its decision about forming a track is based dif the number of observations at timeincluding both
both current and past observations. At the same time, it cA9iSy observations and false alarms. ¢te R™ be the
be considered as an approximation to the optimal Bayesidrf observation at time for j = 1,...,n;, wherem is
filter if it is used to approximate the association probabilitie§"e dimensionality of each observation vector. Each object
or expectations such as the average link travel time gEnerates a unique observation at each sampllng time if it
done in [15]. MCMCDA shows remarkable performancdS detected. Le#i? : R? — R™ be the observation model.
compared to the greedy algorithm and MHT under extremEhen the observations are generated as follows:

conditions such as a large number of targets in a dense . Co .
9 g { Hi(zF) +v] if j-th observation is fromx:¥

environment, low detection probabilities, and high false yﬁ = :
Ut otherwise,

alarm rates. The MCMC method has been applied to data
association problems before. In [3], the Gibbs samplin%‘/here v} ¢ R™ are white noise processes amg ~
t

metr':od]c is useg .tto trackba SI??E targetdulsmg rr]neastl::?fnif(R) is a random process for false alarms. Notice that,
ments rom a finite number of linear models, wWhere g, probability 1 — pg, the object is not detected and we

measgrer_nent to model assouatlon_ IS unkr_10yvn. _In [15], &l this a missing observation. We assume that targets are
combination of MCMC and expectation-maximization (EM).

. . . . . “indistinguishable in this paper. But, if observations include
is used to simultaneously track multiple vehicles usin

ts f dall ted dl gaéget type or attribute information, the state variable can
measurements from spatially separated sensors and 1egle, anged to include target type information.

the intrinsic parameters of sensors. Each state of the MarkovUnder the data-oriented approach, the multiple-target

Cha'f‘ n [15]. IS a possible asso_uatlor_w but, unlike our m.Odelracking problem is to partition the observations such that
a uniform prior is used, assuming a fixed number of ObJeCtﬁﬁe posterior is maximized, i.e., the maximum a posteriori

T O e o folonAP) esiae. Under the Bayesian approzch, f we e
We formallv state the (discrpetg-time) eneral multiole-tar eg‘iiven a function defined oft, the collection of all partitions
y 9 P 9%+t observations (see below for its definition), we seek the

tracking problem in Section Il. In Section Il, we presentexpected value of the function given the observations. The

a gerjeral purpose .MCN.ICDA glgolrlthr'n for multmle-targetMAP estimate found under the data-oriented approach may
tracking. The algorithm is applied in simulation to extreme

hot be robust but it is sometimes more convenient when rep-

situations and its performance is compared with the gree%sentin the estimated parameters of varying dimensions
algorithm and MHT in Section IV. 9 P ying '

. GENERAL MULTIPLE-TARGET TRACKING B. Probabilistic Model

A. Problem Let us first specify the dynamic and measurement models.
Let T ¢ Z* be the duration of surveillance. Lek  Here we use the usual linear system model but the method

be the unknown number of objects moving around thean be easily extended to non-linear models coupled with a

surveillance regioriR for some durationt®,¢f]  [1,7] non-linear regression algorithm. If an object is obserked



targets terminated at timeandc; = e; — z;. Let d; be the
number of detections at timeandwv; = e; — z; +a; — d; be

(2] o g e the number of undetected targets. Finally, fet= n; — d;
o (3 o . @ o) ®-.9 be the number of false alarms. It can be shown that the
To posterior ofw is:

(1] 2y o o (5] Tzlu_'

(a) {b)
Fig. 1. (a) An example of observatiori$ (each circle represents an  P(w|Y) = % Hf:l pzt(1 —pz)cfpgt(l — pd)“f)\g‘)\fft

observation and numbers represnt observation times); (b) an example of a [r]—1 _
partitionw of Y Hrew\{m} Hi:l N(T(ﬁi+1)|cxti+1 (T)7 Bti+1 (T))’

times att, 2, . .., g, its dynamic and measurement modelsvhere Z is a normalizing constant and/(-|u, ) is the
can be expressed as: Gaussian density function with mean and covariance
Th, = Altisr — t)a, + Gt — twy, matrix . Now under the data-oriented, combinatorial op-

(1) timization approach, our goal is to find a partition of
observations such thd(w|Y") is maximized.

wherew;, andv,, are white Gaussian noises with zero mean

and covariance€) and R, respectivelyA(-), G(-), andC are IIl. MCMC DATA ASSOCIATION ALGORITHM

matrices with appropriate sizes. The entries of the matrix

A(tiy1—t;) andG(t;41—t;) are determined by the sampling

interval t;,1 — t; for eachi. For clarity, the subsequence

notation for the time index is suppressed for now. ket

Yt, = Cuxy, + vy, fori=1,... k,

In this section, we develop an MCMC sampler to solve
the multiple-target tracking problem. MCMC-based algo-
rithms play a significant role in many fields such as physics,
statistics, economics, and engineering [2]. In some cases,

be the expected value af, giveny,,...,y,_1; P, be the i ) )
covariance ofz; given yi,...,y;_1; @ be the expected MCMC is the c_)nly known_ general algorithm that f|nd§
value of z; given yi,....,y.: and P, be the covariance of @ 900d approximate solution to a complex problem in

polynomial time [9]. MCMC techniques have been applied
to complex probability distribution integration problems,
counting problems such as #P-complete problems, and
combinatorial optimization problems [9], [2]. The MCMC
approach applied to combinatorial optimization problems is
generally known as simulated annealing.

MCMC is a general method to generate samples from a
distribution 7 by constructing a Markov chairm whose
states arev and whose stationary distribution isw). If
we are at statey € ), we proposev’ € ( following the

roposal distribution;(w,w’). The move is accepted with
n acceptance probabilitf(w,w’) where

Ty givenyy, ..., y;.

Lety, ={y] :j=1,...,m¢} andY = Ute{lwa} Yt
Let 2 be a collection of partitions df such that, forw € €,

1) w={m,7m1, -, TK};

2) Us_ym =Y andr Nrj = 0 for i # j;

3) 1y is a set of false alarms;

4) |mpNy| <1fork=1,...,Kandt=1,...,T; and

5) |rx| >1fork=1,..., K.
Here, K is the number of tracks for the given partition
w € Q. We call 7, a track when there is no confusion
although the actual track is the set of estimated stat
from the observations;,. However, we assume there is a
deterministic function that returns a set of estimated states Alw, o) = min (1 ﬁ(w/)q(w/,w)> 3)
given a set of observations, so no distinction is required. We ’ - " m(w)glw,w’) )7
denote byr,(¢) the observation at timéethat is assigned to . )
the trackr,. Notice thatr;,(t) can be empty if it is a missing Otherwise the sampler staysuatso that the detailed balance
observation. The fourth requirement says that a track can Satisfied. If we make sure tha¥! is irreducible and
have at most one observation at each time, but, in the ca8eriodic, then\1 converges to its stationary distribution by
of multiple sensors, we can easily relax this requirement '€ ergedic theorem. Hence, for a given bounded funcfion
allow multiple observations per track. A track is assumed tf'€ average value of over the sampled states converges to
contain at least two observations since we cannot distinguidhr / (w)- Notice that it only requires an ability to compute

a track with a single observation from a false alarm. Afh€ ratior(w’)/x(w) avoiding the need to normalize
example of a partition is shown in Fig. 1. The MCMC data association (MCMCDA) algorithm is

Once a partitions € Q is chosen, the tracks, ..., 7x ¢  described in Algorithm 1. MCMCDA is an MCMC algo-
w and a set of false alarms, € w are completely ithm whose state space 18 described in Section II-B
determined. Hence, for each track, we can estimate ti'd Whose stationary distribution is the posterior (2). The
states of an object independently since each object move&posal distribution for MCMCDA consists of five types
independently from the other objects. For each tragkw, ~©f moves. They are
we apply the Kalman filter to estimate the stateér) and 1) birth/death move pair;
covariancesB, (7), where B;(7) = CP,(7)CT + R is the 2) split‘merge move pair;
conditional observation covariance at timéor the trackr. 3) extension/reduction move pair;

Let e; be the number of targets from time-1 anda; be 4) track update move; and
the number of new targets at timel et z; be the number of  5) track switch move.



Algorithm 1 (MCMC Data Association): ""I-.._‘_.,-""' birth ".a .«-l"'.
Input: Y, nmc, winit (@) _.-.4_ ®----
Output: & o (@] 0o Geath e .L.
) (@ O (b) O
‘f—"  Winit . ;t W < Winit
or n= 0 mmc | " -8
sample m from &x (") o (@] u-'E ﬂp © O .--"'Q
propose «’ based on m and w (described below) '." o = o
sample U from Unif[0, 1] B .mer o B
w—w if U<Aw,w) (c) o o ¢ (d) o o
@ —w if pwlY)/p@lY)>1
end i TS ol B B T L
@ - e
— . o oQ ofTrRa | & 5%
The MCMCDA moves are graphically illustrated in Fig. 2.[() (A

We index each move by an integer such that= 1 for a

u. -3 [ -
birth move,m = 2 for a death move and so on. The move u - dpdate Rt
m is chosen randomly from the distributig (m) where e °. 8. e
K is the number of tracks of the current partition When (g,‘ O @ ‘h)‘ o @

there is no track, we can only propose a birth move, so w
set&(m = 1) = 1 and0 for all other moves. When there '---;.___. o9 | switen l---..___-__,-.--'.
is only a single target, we cannot propose a merge or trag PO _— P
switch move, sc;(m = 4) = & (m = 8) = 0. For other @ o) LN [ O“‘““-O
values of K andm, we assumé&g (m) > 0. The inputs for
MCMCDA are the set of all observations, the number _Fig_. 2. Graphical_illustration of MC_:MCDA moves (associations are
. indicated by dotted lines and hollow circles are false alarms)

of samplesnme, and the initial statevi;. At each step of
the algori’[hm,w is the current state of the Markov Chain.propose a new partitio[v’ in A|go|’|thm 1. We define a
The acceptance probability(w, w’) is defined in (3) where neighborhood tree of observations as
m(w) = P(w|Y) from (2). , 4

In Algorithm 1, we use MCMC to find a solution to a La(y!) = {Ytsa € yera : |9l — ytiall < d -0}
combinatorial optimization problem. So it can be considereg), 7 — 1,....d,j=1,...,n,andt =1,...,T — 1. Here
as simulated annealing at a constant temperature. No burnnin | is the usual Euclidean distance. This neighborhood
samples are used since we are simply looking for a partitidfee groups temporally separated observations based on their
which maximizes the posterior. In addition, the memoryjisiances. The parameter allows missing observations.
requirement of the algorithm is at its bare minimum. Insteaghe yse of this neighborhood tree makes the algorithm
of keeping al{w(n)};, ™S, we can simply keep the partition mgre scalable since distant observations will be considered
with the maximum posteriot. If the algorithm is used for separately and makes the computations of the proposal
an integration problem to estimakey.|y) f(w) for some gistribution easier. It is similar to the clustering technique
bounded functiory, e.g., average link travel times, we will yseq in MHT butZ, is fixed for a given set of observations.
need burn-in samples and need to maintain the sufficient\\,e now describe each move of the sampler in detail.
statistics for the desired expectation. First, let¢(d) be a distribution of a random variabfetaking

In order to make the algorithm more efficient, we makejalues from{1,2,...,d}. We assume the current state of
two additional assumptions: (1) the maximal directionathe chain isw = w° Uw! € Q, wherew? = {0} and
speed of any target iR is less thaw; and (2) the number of ;1 — {7, ... 7x}. The proposed partition is denoted by
consecutive missing observations of any track is lessdhan ,/ — /0 U o'! € ). Note the abuse of notation below with
The first assumption is reasonable in a surveillance scenafifjexing of time, i.e., when we say(t;), t; means the time

since, in many cases, the maximal speed of a vehicle i which a target corresponding to the tracks observed
generally known based on its type and terrain condition$.times.

The second assumption is a user-defined parameter. Let ]
pa(s) = 1 — (1 — pg)® be the probability the object is A- Birth and Death Moves (Fig. 2, < b)
observed at least once out efsampling times. Then, for  For a birth move, we increase the number of tracks from
given pg, we setd > log(1 — far)/log(1 — pg) to detect K to K’ = K +1 and select; uniformly at random (u.a.r.)
a track with probability larger thapy. For example, given from {1,...,7 — 1} as an appearance time of a new track.
pd = .7 andpg = .99, a track is detected with probability Let 7%/ be the track of this new object. Then we choose
larger than.99 for d > 4. We will now assume that these d; from the distribution¢. Let L) = {y{ : Lq, (vi,) #
two new conditions are added to the definitiortbfo each 4! ¢ 7.(t1),j = 1,...,n,k = 1,...,K}. L} is
elementw € () satisfies these two additional assumptions.a set of observations & such that, for anyy € L} ,

We now introduce a data structure which is used tg does not belong to other tracks apdhas at least one




descendant ir.4, (y). We chooserg(t;) u.a.r. fromL} .

Proof: The birth and death moves are sufficient to

If L}il is empty, the move is rejected since the move idllustrate the irreducibility of the chain. Sinfe< p,, pq < 1
not reversible. Once the initial observation is chosen, wandXp, Ar > 0, P(w|Y") > 0 for all w € €. Take an arbitrary

then choose the subsequent observations for the track
Fori =2,3,..., we choosel; from ¢ and choosex(t;)
u.a.r. frodel (TK/ (ti_l))\{’rk(ti_l +dz) k=1,..., K}
unless this set is empty. But, fer= 3,4,..., the process
of adding observations tog. terminates with probability
v, where0 < v < 1. If |7x/| < 1, the move is rejected. We
then propose this modified partition wheré = w!U{rx}
andw’® = {79\ 7x}. For a death move, we simply chodse
u.a.r. from{1,..., K} and delete thé&-th track and propose
a new partition where/! = w!\ {7} andw’® = {roU7}.

B. Split and Merge Moves (Fig. 2,< d)

For a split move, we select;(¢,.) u.a.r. from{r(¢;) :
|7k| > 4,i=2,...,|7x] —2,k=1,...,K}. Then we split
the track 7, into 75, and 7, such thatrs, = {7s(¢;) :
t=1,...,r}andr, = {7:(t;) : i =r+1,..., |75}
The modified track partition becomeg! = (w! \ {rs}) U
{75, } U{7s,} and the false alarm partition’ is updated
accordingly. For a merge move, we consider the set

M {(Tk'l (tf)77—k2(tl)) : Tkz(tl) € Ltl—tf(Tkl(tf))7
f = |Tk’1| for ky 7é kg,l < kl,kg < K}

We select a paifrs, (t¢), 75, (t1)) u.a.r. fromM. The tracks
are combined into a single track = 7,, U 75,. Then we
propose a new partition wheag! = (w!\ ({75, }U{7s, }))U
{7} andw’® with appropriate rearrangements.

C. Extension and Reduction Moves (Fig.c2~ f)

In a track extension move, we select a traci.a.r. from
K available tracks iw. We reassign observations foafter
the disappearance tintg| as done in the track birth move.
For a track reduction move, we select a track.a.r. from
K available tracks inv andr u.a.r. from{2,..., |r| —1}.
We shorten the track to {7(t1),...,7(t.)} by removing
the observations assigned toafter the timet,., ;.

D. Track Update Move (Fig. 25 < h)

In a track update move, we select a tracki.a.r. from
K available tracks inw. Then we pickr u.a.r. from
{1,2,...,|7|} and reassign observations fogfter the time
t, as done in the track birth move.

E. Track Switch Move (Fig. 2, < j)

partition w € Q, sayw = {79, 71,...,7x }. Now consider
the partitionw’ € 2, such thats’ = {7}, i.e.,w’ assigns all
observations as false alarms. Sincés arbitrary, the chain
is irreducible if the chain can move fro@i to w and fromw
to w’. For the move fromv’ to w, considerk consecutive
birth moves:wy = w',w1 = {7\ n}, 1}, .. ,wx =
{r\{UE 7}, 7, .., Tk} = w. Sincew € €, all tracks
T, are legal, i.e.7; satisfies the constraints described in Sec-
tion II-B and, fori = 1,..., || —1, 7 (ti+1) € La(7(t:))
for1 <d=t;41 —t; <d. Thus,w, € Q for all k. Because
¢(d) > 0 and all tracksr;, are legal, the probability of
proposing T, at wi_; by the birth move is positive and
q(wg,wr+1) > 0. For the move fromw to «’, consider
K consecutive death movesy = w,wg_1,...,wy = w'.
The probability of removing the track, atw, by the death
move is positive and(wy+1,w) > 0. SinceP(wi|Y) > 0
for all %, the chain can move from’ to w and fromw to
w’. Hence, the chain is irreducible. ]
The Markov chain designed by Algorithm 1 is irreducible
(Theorem 1) and aperiodic since there is always a positive
probability of staying at the current state in the track
update move. In addition, the transitions described in Algo-
rithm 1 satisfy the detailed balance condition since it uses
the Metropolis-Hastings kernel (3). Hence, by the ergodic
theorem, the chain converges to its stationary distribution.
Notice that the other moves are designed to improve the
performance of the algorithm.

IV. SIMULATION RESULTS

For the simulations we consider surveillance over a
rectangular region on a plarig, = [0, L] x [0, L] C R2. The
state vector ist = [z,y, 4,97 where(z,y) is a position
on R along the usuak andy axes andi,y) is a velocity
vector. The linear system model (1) is used wheris an
interval between observations and

106 0 LR 1 077
|10 1 0 ¢ | o & |10 1
A =110 0 1 o |CO= s 319 oo
00 0 1 0o & 0 0

The covariance matrices afg = diag(100, 100) and R =
diag(25, 25).
The complexity of multiple-target tracking problems can

For a track switch move, we select a pair of observade measured by several metrics: (1) the intensity of the false

tions (7%, (tp), Tk, (t4)) from two different tracks such that,
Ty (tp+1) € La(Ti,(tg)) and 7, (tg+1) € Lar (7w (tp)),
whered = t,11 —ty, d =t —t, and0 < d,d’ < d.
Then we let

Tky = {T’fl (tl)v s Thy (tp)7 Tko (tq+1); sy Tho (t\TkQ\)}

Thky = {T’fz (tl)v s Tho (tq)a Tk (tp-‘rl)a s Thy (t\Tkl \)}

Theorem 1:Suppose tha < pz, ps < 1 and Ay, Ar > 0.
If ¢(d) >0, foralld e {1,...,d}, then the Markov chain
designed by Algorithm 1 is irreducible.

alarm rate); (2) the detection probabilitpy; and (3) the

density of tracks. The problem gets more challenging with
increasing)s, decreasingy, increasingk’, and increasing

density of tracks. The number of tracks itself may not
make the problem more difficult if they are scattered apart.
The difficulty arises when there are many tracks that are
moving closely and crossing each other; this is when the
ambiguity of data association is greater. Hence, we only
consider situations in which tracks move very closely so we
can control the density of tracks by the number of tracks.
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We study the performance of the MCMCDA algorithm
against the greedy algorithm and MHT by varying the
parameters listed above. The greedy algorithm is a batc
mode nearest neighbor multiple-target tracking algorithn
The algorithm first marks all observations as false alarm:
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NCA (left), ICAR (middle), and the estimation error in the number of tracks (right) as functions of a number of tracks
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and then picks two unmarked observations at different time
to estimate an initial state. Then it forms a canditate track t
picking unmarked observations which are the nearest to tl
predicted states for subsequent time steps. The candid 500
track is validated as a track and observations associat
to the candidate track are marked if the marginal of th a2
candidate track exceeds a threshold. The process is repec '
until no more track can be found. 05 3
Based on our model described above, we have genera
different scenarios. In particular, in all cases, except for
the online tracking, half of the new objects appear from _
the left bottom quadrant oR and the other half appear NCA measures the ratio between the number_of correct
from the right bottom quadrant. The actual initial positiongSSociations and the number of associations in the true
are chosen randomly from each quadrant. They all mo\;g:lrutlc_)n_whne ICAR measures the number of incorrect
diagonally so each group of tracks crosses the other gro@§sociations per correct association. We measure the per-
in the middle of R. Also targets move very close to eachformance of each algorithm by NCA, ICAR, the estimation
other and there are also crossovers within each group. TREOF in the number of tracksiw®| — |w||, and the running
situations we have used for simulations below include ver§jme of the algorithm.
extreme cases and, in our opinion, such complex situationsBoth MCMCDA and greedy algorithms are written in
have not appeared in the multiple-target tracking literature§:++ with Matlab interfaces. We have used the C++ imple-
Since the number of targets is not fixed, it is difficult toMentation of MHT from [6]*, which implements pruning,
compare algorithms using a standard criterion such as t§&ting, clustering,N-scan-back logic and-best hypothe-
residual mean square error. Hence, we introduce two ne¥S: The parameters for MHT are fine-tuned so that it
metrics to measure the effectiveness of each data associaffyeS Similar performance when there are 10 targets: the
algorithm. Letw* be the true partition with which the test Maximum number of hypotheses in a group is 1000, the
case was generated. For € Q, we represent the set of Maximum track tree depth is 5, and the maximum Maha-
all associations in as SAw) (7, t0,) ¢ 0 = lanobis distance is 5.9. All simulations are run on a PC with
1,...,|7| — 1,7 € w}, wheret] is the time at which the & 2.6-GHz Intel processor.
track 7 is observedi times. Let CAw) = {(7,t,s) €
SAw) : 7(t) = 7*(t), 7(s) = 7*(s), 7" € w*} be the set of
correct associations in relative tow*. The two new metrics  In this experiment, we varys from 5 to 100 (the actual
we will be using are the normalized correct associationgalues of K are 5, 10, 20, 30, 40, 50, 75 and 100). The
(NCA) and incorrect-to-correct association ratio (ICAR): other parameters are held fixeR: = [0, 1000] x [0, 1000],
T = 10, 4V = 1, v = 130 unit lengths per unit time.

Running time (sec)

40 60 80
Number of tracks (K)

100

Fig. 4. Average running time vs. number of tracks

A. Experiment | (Number of Tracks)

NCA(w) CA(W)] (4) The main focus of this experiment is to test the accuracy
|SA(w*)] of MCMCDA against other algorithms so the tracks are
ICAR(w) = [SAWI—[CAW)] (5)

Ihttp://www.ee.ucl.ac.uk/ “icox/

[CAw)|



TABLE |
PERFORMANCE OFONLINE MCMCDA TRACKER
RUNNING TIMES (RT) IN SECONDS

detected at all times, however, we hqve pet= .9 for
the prior calculation. We have also sét= 1. Since all
tracks are observed, the number of observations increases

as the number of tracks increases. For each valu€,ofie Number of samples
randomly generated five tests. The results for MCMCDA 1,000 5,000

are the average values over 10 repeated runs and the initial | NgSA 'Cng Al Ngé* 'clASR il
state is initialized with the greedy algorithm and 10,000 500 94 06 09 o7 | 05 | 41
samples are used. The average NCAs, ICARs and the 300 | .92 07 | 11| 97 05 | 55

estimation error in the numbers of tracks for three different

algorithms are shown in Fig. 3. The running times of Although, in theory, MHT gives an optimal solution in
three algorithms are shown in Fig. 4 (the running timéhe sense of MAP, it performs poorly when the detection
of MCMCDA includes the initialization step). Although probability is low or the false alarm rate is high due to
the maximum number of hypotheses of 1000 per grouffi€ heuristics such as pruning antscan-back techniques
is a large number, with increasing numbers of tracks, thésed to reduce the complexity. The heuristics are required
performance of MHT deteriorates due to pruning. But botiparts of MHT in practice. Without the pruning afd-scan-
greedy and MCMCDA keep good performance, althoughack logic, the problem complexity grows exponentially fast
the greedy algorithm detects a less number of tracks f@ven for a small problem. In practice, MHT with heuristics
large K. In addition, the running times of both greedy andvorks well when a few number hypotheses carry most

MCMCDA are significantly less than that of MHT. of the weight. When the detection probability is low or
_ the false alarm rate is high, there are many hypotheses
B. Experiment Il (False Alarms) with low weights and there is no small set of dominating

Now the settings are the same as Experiment | but weypotheses, so MHT cannot perform well. In addition, when
vary the false alarm rates while the number of tracks ithe detection probability is high, MHT again suffers from
fixed at K = 10. The test cases for this experiment ared large number of observations. Another noticeable benefit
prepared as follows. We first generated five different rando®f the MCMCDA algorithm is that its running time can
scenarios each with 10 tracks. Then, we applied differefde regulated by the number of samples and the number of
false alarm rates to generate test cases. The false alarm r&egervations but the running time of MHT depends on the
are varied from\¢V = 1to )V = 100 with an increment of complexity of the problem instance and is not predictable
10. 10,000 samples are used for MCMCDA and the result§ advance.
for MCMCDA are the average values over 10 repeate . .
runs. The average NCAs, ICARs and the estimation errc&' Online MCMCDA Multiple-Target Tracker
in the numbers of tracks for three different algorithms at The extension of MCMCDA to an online, real-time
different false alarm rates are shown in Fig. 5. It shows thacking is a trivial task. We implement a sliding window
remarkable performance of MCMCDA at high false alarndf size ws using Algorithm 1. At each time step, we
rates while the other two algorithms perform poorly. Theuse the previous estimate to initialize MCMCDA and run
greedy algorithm scores higher in NCA than MCMCDAMCMCDA on the observations belonging to the current
but poorly in ICAR. In addition, it reports spurious trackswindow. A total of three test cases are generated: (case
at high false alarm rates. Notice that MHT does not maké) 100 tracks, (case 2) 200 tracks and (case 3) 300 tracks.
any correct associations at high false alarm ratgg,> 80, The surveillance duration is increased To= 1000 and

s0 ICARs for MHT at\:V > 80 are not reported. the surveillance region is no® = [0, 10000] x [0, 10000].
) ) - The other parameters arg;V = 10, pg = .9, d = 3,
C. Experiment IIl (Detection Probability) 7 = 230 and ws = 10. The objects appear and disappear

In this experiment we vary the detection probabilityat random in time and space so the number of tracks
pq from .3 to .9 with an increment of .1 while keeping changes in time. These test cases represent instances of
the other parameters as the previous experiments excépe general (discrete-time) multiple-target tracking problem.
K =10, ¥V =1, T = 15 andd = 5. Now the tracks The average NCAs and ICARs over the sliding window
are not observed all the time. For each valuepgf five and the average execution time per simulation time are
test cases are randomly generated and the average NCaBpwn in Table I. Notice that MCMCDA achieves excellent
ICARs and the estimation error in the numbers of trackgerformance in all cases with less than one second of
are shown in Fig. 6. For MCMCDA, we present two casesgxecution time.
MCMC(15K) with 15,000 samples and MCMC(150K) with
150,000 samples. It shows that MCMCDA outperforms the V. CONCLUSIONS
other algorithms at low detection probabilities. At high The general (discrete-time) multiple-target tracking prob-
detection probabilities, MHT scores higher than MCMCDAlem is described and an MCMCDA algorithm is proposed.
but it reports a higher number of tracks, meaning that ©ur MCMCDA tracker, a data association algorithm ca-
fragments tracks. pable of initiating and terminating a varying number of
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tracks, is flexible and can easily incorporate any domairs]
specific knowledge to make it more efficient. Instead of

searching over the whole solution space, the MCMC aIgoI9

rithm randomly searches over the space where the posterior
is concentrated. Our simulation results show remarkable
performance of the MCMCDA algorithm under extremeyq,
conditions such as a large number of targets in a dense

environment, low detection probabilities, and high fals

alarm rates. We have shown that the algorithm can

11
1]

extended as an online, real-time algorithm with excellent

performance.
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