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Abstract—Joint probabilistic data association (JPDA) is a powerful  of a simple sampling algorithm for JPDA, called the Markov
tool for solving data association problems. However, the exact compu- chain Monte Carlo data association (MCMCDA) algorithm. We
tation of association probabilities {3;1} in JPDA is NP-hard, where  ghow that MCMCDA finds an approximate solution to JPDA in

B is the probability that j-th observation is from k-th track. Hence, ol
wje cannot expect to compute association probabilities in JPDA exactly polynomial time. Fore > 0 and0 < 7 < .5, we prove that the

in polynomial time unless P = N P. In this paper, we present a simple  algorithm finds “good” estim261tes ¥, with probability atl|933t
Markov chain Monte Carlo data association (MCMCDA) algorithm 1 —1 in time complexityO (e 2logn ' N(N log N +log(e 1)),

that finds gn approximate solution to %PDAhm PP'VUOhm'a!c.t'g“e- FOE where N is the number of observations (the precise definition of
e >0and 0 < n < .5 we prove that the algorithm finds goo “good” estimates is given in Section V).

estimates of 3;;, with probability at least 1 — n In time complexity | . .

P T 1 . n [11], a general-purpose MCMCDA algorithm is developed
?é;ewé?%gs. N(Nlog N+ log(e™"))), where N is the number of to track an unknown number of targets. It has been shown that

MCMCDA is computationally efficient compared to the multiple

I. INTRODUCTION hypothesis t(rjacker (MHhT) [12]I and outgerfo;ms MHT unger
o . . I~ treme conditions, such as a large number of targets in a dense

The data association problem arises in many applications su ﬁvironment, low detection probgbilities, and higﬁ false alarm
as computer vision, surveillance, clustering, and mobile robot tes [11]. The MCMCDA algorithm has been extended to sensor
In computer vision, the data association problem is known as t tworks. in a hierarchical gmanner to be scalable and it has

correspondence problem in which the objective is to determi ; : At

which pobservatiolr01 belongs to which featJure [1], [2]- In targe een tshown that N]'(C-:V'CDA 'Z robust agalrt]st S; nl_sor Ioctah]gatlon
. o o b e = 9= error, transmission failures and communication delags,out-of-

tracking, it is the problem of determining which observation 'Ssequence measurements [13]. The MCMCDA algorithm presented

generated by which target or clutter. in this / h .
8 e o . paper can be considered as a special case of the algorithm
Joint probabilistic data association (JPDA) is developed to solv, resented in [11] for tracking a known number of targets.

the data association problem arises in multiple-target tracking [ “The remainder of this paper is structured as follows. We

JPDA is a suboptimal single-scan approximation to the optim h ; ; ; :
Bayesian filter, in which the associations between the “knowrié;mmanze JPDA in Section Il and describe the MCMC method in

tracks and thdatest observations are made sequentially. At eac egtfga:lléigg%m?mggﬁ gg%ﬁgtwg]slﬁoe\;ﬁsiﬁné%c(j:tligns\id\ll(\)lg ;\I/s o

time step, instead of finding a single best association betwe esent gn experiment co%firmin our results in Sectionl Vi

latest observations and known tracks, JPDA enumerates all pos- P 9 :

sible associations between observations and tracks and computes

association probabilitie$3;. }, whereg;; is the probability that . . JO'_N_T FROBABIUST!C _DATA ASSOCIATION .

j-th observation is fronk-th track. Given an association, the state Joint probabilistic data association (JPDA) has been traditionally

of a target is estimated by a filtering algorithm and this conditionaised with the Kalman filter, assuming linear dynamic and mea-

expectation of state is weighted by the association probabilitgurement models and a Gaussian noise model [3], and the Kalman

Then the state of a target is estimated by summing over tH#ter is used in this paper for demonstration purpose. However,

weighted conditional expectations. It has proved very effectivdPDA has been applied with a nonlinear filtering algorithm such

in a cluttered environment compared with the nearest neighb@s a particle filter [14]. We note that the proposed algorithm is

approach which finds a single best association [3]. applicable for both linear and nonlinear filters and our results can
However, the exact calculation of association probabilitie§e easily generalized to the nonlinear case. .

{B;1} in JPDA is NP-hard [4] since the related problem of finding Let K be the number of targets moving around the surveillance

the permanent of a 0-1 matrix is #P-complete [5]. To overcome thi€gion R. The state dynamics of targétis modeled as

complexity of the problem, many approximation algorithms have & 5k bk

been proposed. In [6], the “cheap” JPDA algorithm is developed T = Avxy + Grwy, @

and the association probabilities are estimated from a formuéa & - .

based on heuristics. In [7], a single-stage data association probldf ¢ = 1, 2,- .., wherexz; € R~ is the state of target at timet,

is considered and a leave-one-out heuristic is developed to avoiti andG? are matrices with appropriate sizes, and is a white

the enumeration of all possible associations. Sampling methosussian process with zero mean and covari@feThe noisy

have been applied before. In [8], the Gibbs sampling methogbservation of the state of a target is measured with a detection

is applied to track a single target using measurements from R{obability py which is less than unity. There are also false alarms

finite number of linear models, where the measurement to modand the number of false alarms has a Poisson distribution with a

association is unknown. In [9], a combination of Markov chainParameterisV where V' is the volume ofR and ) is the false

Monte Carlo (MCMC) and expectation-maximization (EM) isalarm rate per unit time, per unit volume. Let be the number

used to simultaneously track multiple vehicles using measuremertb observations at time, including both noisy observations and

from spatially separated sensors and learn the intrinsic parametéase alarms. Ley] € R™ be thej-th observation at time for

of the sensors. A combination of MCMC and EM is also used i = 1, ..., n;. Each target generates a unique observation at each

[2] to solve the correspondence problem in computer vision. Isampling time if it is detected. The measurement model is

[10], MCMC is applied to compute the association probabilities ik oo g k

in JPDA and it is shown that MCMC outperforms Fitzgerald's yl = Clzi +wy if yi is from z{ @)

cheap JPDA. Unfortunately, in all cases, the performance of an t ul otherwise,

approximation algorithm for JPDA is measured in experiment )

only. The main contribution of this paper is the formal analysisvhere w;’ is a white Gaussian process with zero mean and

covarianceR], C is a matrix with an appropriate size, and
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Now we summarize the joint probability data associatioris a method for computing expectations such as (4) using the
(JPDA) filter [3]. Suppose that we have the following estimatesssociation probabilitie{3;,} in the presence of the identity

from the previous filtering step— 1: uncertainty. As mentioned earlier, the exact calculatiod ®f. }
. . in JPDA is NP-hard [4] and it is the major drawback of JPDA.
Ty_14—1 = E [wt_ﬂYuq} Based on the parametric false alarm model, the posteriar of
. . . - can be computed as
Pt—l\t—l = E [St—1|t—18t—1\t—1 |Y1:t—1] ) 1
P(w|Yi. = —PYi|lw,Y1.t—1)P(w (6)
wheresy ,, , = x{_, — &} ,,_,. For notational convenience, (@i¥re) zZ (¥ =) P) .,
we assume thatl = A, G = Gf andQ = QF, for all k andt, _ Longong o Keng T [ j ]Tf
andC = CJ andR = R}, for all j andt. = 7 P (1=pa) H Ny (wi)|
Step 1 (Prediction)For eachk, compute i=t
. . . _ . n ". _
‘%ﬁt—l — E [mflyl:t—l] _ A‘%?—l\tfl WhgreZ is a normalizing constanig = #{k ._Z{.\;l Eik(w) =
, 1} is the number of detectionsit = n: — nq is the number of
P, = E [Sf\t_ﬁf\t_l |Y1;t—1] false alarmsy; = v, &x(w); k; = k if and only if 7; = 1

and¢; . (w) = 1 for given j; and Ay, (y]) is the Gaussian density
. . N . kj
function with meany, ; , and covariance3,”.

Let vf = 37, Bjxvf(j) be the combined innovation and

= AP, AT +GQGT,

~k

wheresgt,l =af -k, |

[t—1- . .
Step (MkeasuremerLt Validatio)he predicted observation for KF = P, C(BF)~" be the Kalman gain. Then the state of
A b e : = P}, .
targetk s g, = Cly),_,. For each observatiop, define the  gach target and its covariance are computed as follows (for more
innovationvf (j) = y{ — #j,_, and its covariance detail, see [3]).
Bf = E[of(G)f() [Via] e = ey + Kiof
. k T T L T
= CPf,_,C" +R". Ph, = Pk_ - <Z gjk> K{BI K}
Let = = [¢,] € {0,1}™*K be a validation matrix and;, = 1, =1
i.e, vl is validated for target, if and only if ot ) T T T
‘ ot +OKP Y Bl (o) — e | K
ve ()" (BE) ™ ve () <9, (3) j=1
where § is an appropriate threshold. Without loss of generality, I11. M ARKOV CHAIN MONTE CARLO

we assume that, for af, Zle &r > 1, i.e, all observations are . o )
validated with at least one target. If not, we can always resize the Markov chain Monte Carlo (MCMC) plays a significant role in
matrix = and reducer; to make sure that each row vector has afnany fields such as physics, statistics, economics, and engineering
least one non-zero element. [15]. In some cases, MCMC is the only known general algorlthm

Step 3 (State Estimatian)Let 2 be a set of all feasible that fmdg a good approximate solut;on to a complex prob.Iem in
joint association events at time (for notational convenience, Polynomial time [16]. MCMC techniques have been applied to
the subscriptt is dropped). For eachy € Q, w = {(j,k)}, Ccomplex probability distribution integration problems, counting
where(j, k) denotes an event that observatjpis associated with Problems such as #P-complete problems, and combinatorial op-
targetk. We represent a joint association eventby a matrix tlml\l/lzgtl\l/log problems [1|5], [tlhﬁ](-“ t os f disti
E(w) = [k (w)], whereg;k(w) = 1 if the event(i, k) is true, / IS a general method 1o gencrate sampies from a aistri-

o E 7 > o . . bution = by constructing a Markov chaim with statesw and
otherwise £« (w) = 0. A joint association event is feasible when giaiionary distributionr(w). If we are at states € £2, we propose
(i) it agrees with the validation matrix.e, &jx(w) < &i(w) o/ e Q following the proposal distributiog(w,w’). The move is
forKaII J andk; (i) an obs‘ervatlonmhas at most one source, accepted with an acceptance probabilityw, ') where
Do Gr(w) < 1 for all j; and (iii) a target has at most one
. . ng £ . / ’

observationj.e., Z%zl £jr(w) < 1 for all k. Notice that we use Alw,w') = min [ 1, m(w)g(w',w) ’ 7
notations different from [3]. In particular, we did not introduce an m(w)q(w,w’)
additional column for “no target” so observatigns a false alarm

i Zf*léjk(w) —0. otherwise the sampler stays at so that the detailed balance
The state of a target can be estimated as condition is satisfiedi.e.
E(wﬂYu) _ Z E(xﬂw, Vi) P(w]|Yiz) 4) Qw,w") = 1(W)P(w,w') = (W) P(w,w’), (8)

for all w,w’ € Q, where P(w,w') = q(w,w')A(w,w’) is the

nt e e .
. k transition probability fromw to w’ for w’ # w. The described
= Z E(wt|wjk, Y1) P(wsk] Y1), MCMC algorithm is known as the Metropolis-Hastings algorithm.
7=0 If M is irreducible and aperiodic, theWm converges to its

where w;;, denotes the evenfw > (j,k)} and wo, denotes stationary distribution by the ergodic theorem [17]. Hence, for
the event that no observation is associated with takgetet @ given bounded functiorf, the sample mearf of f over the
Bik = P(wjk|Yis). E(zF|w;k, Y1) can be computed easily by Sampled states convergesIEQf(w)/. Notice that (8) requires only
considering it as a single target estimation problem with a sing/d€ ability to compute the ratio(w’) /7 (w), avoiding the need to
observation. Hence, the computationf(z¥|Y:.,) reduces to the normalizer.

computation of3;x, where An ergodic chainM on state spac@ converges to its stationary
distribution asymptotically. But a practical question is how fast
Bk = P(wjx|Y1:t) = Z P(w|Y1.0). (5) M becomes close to stationarity. One way to measure the rate

of convergence ofM to stationarity is the “mixing time” of the

Markov chain. LetP be the transition probabilities oM and
The computation of3;; requires a summation over the poste-let P(-) be the distribution of the state at tintegiven thatM

riors, hence the enumeration of all joint association events. JPDA started from the initial state € Q. If 7 is the stationary

w:(j,k)Ew



distribution of M, then thetotal variation distanceat timet with  Algorithm 1 MCMCDA (single step)

initial statex is defined as sampleU from Unif[0, 1]
H 1
Au(t) = | Pt =7l = max|PL(S) - n(s)] (9 U <3 then
SCQ w =w
The rate of convergence 0¥ to stationarity can be measured ~ €/S€ .
by the mixing time choosee = (u,v) € E uniformly at random
if e € w then
T2(€) = min{t : Ay (s) < e forall s > t}. (10) W=w-—e
else ifbothw andv are unmatched i then

One approach to bound,(¢) of a Markov chain with a complex W =w+te
structure is the canonical path method [16]. In this paper, we  g|se ifexactly one ofu andv is matched inv ande’ is the
consider a highly complex Markov chain, hence we use the matching edgehen
canonical path method to boung.(e) of the Markov chain Ww=wte—e
simulated by the MCMCDA algorithm given in Section IV. For the else
remainder of this section, we describe the canonical path method. v _

For a finite, reversible and ergodic Markov chalirt with state end if
spacef?, consider an undirected gragh= (V, /) whereV = Q end if
andE = {(z,y) : Q(x,y) > 0}. Recall the definition of)(-, -) — W Wi ili /
from (8). So an edgéz, y) € F indicates that the Markov chain w = w with probability A(w, ")
M can make a transition from to y or from y to x in a single
step. For each ordered pdit,y) € Q2, the canonical path,,
is a simple path from: to y in G. In terms of M the canonical  complete sampling strategy is described in Section V. In Algo-
path~., is a sequence of legal transitions framnto y in M. Let . , . x(w')
' = {vsy : 2,y € Q} be the set of all canonical paths. Now the'lthm 1, A(w,w’) = min (1» ﬂ(m)g‘ wherer(w) = P(w|Y1:)
mixing time of the chain is related to threaximum edge loading from (12). There are three MCMC moves and we name them for

1 future reference: (i) an adgition move proposgs= w + e; (ii)
p=p(l) = max —— Z ()7 (Y)|Vay |- (11 a deletlon/move proposes’ = w — e¢; and (iii) a switch move
e Qe) proposesy’ =w+e— €.

Yzyde

If 5 is not so big,i.e, no single edge is overloaded, then the V. ANALYSIS

Markov chain can move around fast and achieve the rapidly mixing | ¢t A( pe the Markov chain simulated by Algorithm 1. Since

property. The main result for the canonical path method is a§e self-loop probability is nonzeroM is aperiodic. It can be

follows [16], [18]: . . . ._easily seen thatM is irreducible,i.e, all states communicate,
_Theorem 1:Let M be afinite, reversible, ergodic Markov chain for example via the empty matching. In addition, the transitions

with loop probabilitiesP(z, z) > 5 for all statesz. LetI' be a  gescribed in Algorithm 1 satisfy the detailed balance condition

set of canonical paths with maximum edge loadingThen the (8) so M is reversible. Hence, by the ergodic theorem, the chain

mixing time of M satisfiesr.(¢) < p(logm(x)™" +loge "), for  converges to its stationary distribution [17].

any choice of initial stater. Let us first take a look at the complexity of the problem. As

IV. MCMC DATA ASSOCIATIONALGORITHM noted earlier, the state space of the Markov chaihis Q C

. . . L My(G)U---UMg(G), where M is the Markov chain simulated
In this section, we describe the MCMC data association (MCMby Algorithm 1. For eaclt, | M (G)| < (K) N with equality

CDA) algorithm for approximating the association probabilities : kJ(N-K)!

{6jki- V\?hen applied Ft)g a filtering problem, MCMCBA follows ' the subgraph of+ with the k chosen vertices i/ is a complete
all'the steps described in Section Il except we use MCMCDA tg!Partite graphj.e, all observations are validated for &lchosen
estimate{f,;} in step 3. While the exact computation pf,,} Lardets. Hence, we can bound the sizeés

in JPDA is NP-hard, MCMCDA finds approximations {@;x } in .
polynomial time with good fidelity as shown in Section V. 9 < “I‘fO(G)' +o Mk (G
We fix the timet and the time index is dropped from now. K N! -
Let N = n; be the number of validated observations. We first < Z B ) (N—R Q. (13)
reformulate our problem as a bipartite graph. &t= (U, V, E) k=0 ’

be a bipartite graph, wher = {§* : 1 <k < K} is a vertex Figure 1 shows this bound fok = 5 as a function of the

set of predicted observation¥] = {y’ : 1 < j < N} is @ number of observations. Certainly, the size of the state space
vertex set of observations, add= {(u,v) :u € U,v € V,(u —  grows exponentially as the number of targets or the number of
v)T(B*)) " (u —v) < 8} with s : U — {1,..., K} mapping observations increases, hence, the exact calculation of JPDA by
predicted observation to its target index. An edgéu,v) € E  enumeration is not feasible when the number of targets or the
represents that observatioris validated for target. according to number of observations is large.

(3), hence, we are representing the validation mairby E. Now We first establish a few facts to prove the theorems below. In
a feasible joint event is anatchingin G, i.e, a subsetM C E  (12), the normalizing constant becomes

such that no two edges it/ share a vertex. The set of all feasible

joint association event® can be represented & C M, (G) U

---U Mk (G), where My, (G) is a set of k-matchings i&. The zZ=>" ATl (1 — pg) I M@ ]. «qa
posterior (6) ofw € Q2 can be rewritten as wen (uv)cw

P(w|Yis) = %/\?’*‘W‘p‘d““'(l —p) ] Mulw), (12) We can bound each likelihood term as

(ww)€e L < Nu(v) <L,
where Z is a normalizing constant and/,,(v) is the Gaussian for all

density function with meam and covariance3*(*).
The MCMC data association (MCMCDA) algorithm is an - {<(2 )”U|B’“\)7%}
)™

(u,v) € E, where

MCMC algorithm whose state space is the set of all feasible L = (hax
joint association event@ and whose stationary distribution is the ==
posterior (12). Each step of the MCMCDA algorithm is described

I . ; L = min ((2#)””|Bk\e§>_
in Algorithm 1, where we use the sampling method from [16]. A 1<k<K

=

b
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The lower boundL is due to the measurement validation.

For Theorem 2 below, le€ = %, = %7:(,) and

R = max{1,C,D}. Also definem; = max{1,L}, ms =
min{1, L},

o . K—k
m3(K7 N) - Og}caéx {Af (1 pd) }v
ma(K,N) = min DA pa(1-pg)* "}, and
K,N)
s(K,N) = K1 71+1 ms(K, N)
ms (K, N) og % (KN
K+1
+ Zlogk+Zlogn
Remark 1:1f .5 Kpd < 1 and At < 1 — pq, then
m3(K,N) = N'"%p§ and ma(K,N) = \'(1 — pg)™

So mg(K,N)/m4(K,N) =
remaining exponent.
Notice that the omitted proofs appear in Appendix.
Theorem 2:Suppose that; > 0 and0 < pq < 1. Then the
mixing time of the Markov chainM is bounded byr.(e) <
AR*K?N(ms(K,N) +loge™!) for all = € Q.

K .
(W) and K is the Only

Remark 2:Let 7(¢) be the upper bound found in Theorem 2.
7(e) is polynomial in K and N. Under the assumptions in

Remark 1,7(¢) =

Kpd
O(K’N (Klo ——
( ® M= pa)
If ms(K, N)/m4(K N) does not grow faste.g, Remark 1,
7(e) = O(K*N(Klog K + Nlog N +loge™)). If K is fixed,
7(e) = O(N(Nlog N +loge™)).
Let p(w) be the distribution of the states @# after simulating

+ Nlog N + loge™ 1))

15-
1 : . + .
05+ sy
. .
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Fig. 2. Expected observations (crosses) and observations (dots)
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Fig. 3. Average variatiom\g as a function of the number of samples

probability at leastl — n, such that, for3;, > €2, 3;x estimates
ﬂjk within ratio1+¢;, and, fOfﬂjk < €2, |ﬁjk—ﬁjk| < (1+61)€2.
We can simplify further by lettingegg = e1e2. Then the time
complexity isO(e; 2 logn ' N(Nlog N +log(eg'))).
VI. SIMULATION RESULTS

In this section, we show a simulation confirming our findings
from last section. Since our goal is to estimate the association
probabilities, we define the variation distance between two sets of
association probabilities;. andf;i, by Ag = max; |8k — Bikl.
A simple case is chosen to demonstrate MCMCDA, in WhICh two
predicted observations are located [at1]” and [0, —1]T with
BF = diag(1,1) for £ € {1,2}. There are 15 observations as
shown in Figure 2. Other parameters afe= 4, V = 16, A\ =
.8125, andpy = .98. In Figure 3, the average variation distance
between two sets of association probabilitigs and 3, from 10

Algorithm 1 for at least(¢) steps. Then the total variation distanceindependent runs is shown as a function of number of samples.

satisfies|p—|| < e. So we can sample fromto estimate{3;x }.
However, there is a small bias in our estimates since we are n

sampling fromx. The following theorem gives an upper bound

on the number of samples needed for finding good estimates.
Theorem 3:Let 0 < €1,e2 < 1 and0 < n < .5. Suppose
that ||[p — 7|| < e for ¢ < e1e2/8. Then, with a total of
504¢; %¢; ' [logn~'] samples fromp, we can find estimates; .
for 5, with probability at leastl — », such that, for3;, > €2,
Bk estimates3;, within ratio 1 + 1, i.e., (1 — €1)Bx < Bjn <
(1 =+ El)ﬂjk, and, forﬁjk < €2, ﬂjk < (1 =+ 61)62.
Remark 3:Following Remark 2, for fixed K, 7(¢) =
O(N(Nlog N 4+ loge™')). Combining this fact with Theo-
rem 3, the time complexity of the overall procedureTis =
O(e;?e; logn ' N(Nlog N + log(el_lez_l))).A Hence, with a
total of T' samples, Algorithm 1 finds estimat@s;, for 8, with

B r are computed exactly by JPDA ami;k are estimated by
MCDA.

VII. CONCLUSIONS

JPDA is a powerful tool for solving data association problems
but the exact computation of association probabilities in JPDA
is NP-hard. Hence, for a large problem, we need to seek for
an approximation algorithm. In this paper, we have presented
an efficient approximation algorithm for JPDA based on Markov
chain Monte Carlo data association (MCMCDA) and proved that
the time complexity of the algorithm is polynomial in the size of
the problem.
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IX. APPENDIX 7 : ep(t) — Q as in [16],

The proofs shown here parallel the proofs by Jerrum and XOY ®(wUw) —exy,,
Sinclair [16] in both structure and details; the main difference n(X,Y) = if thIS a switch mﬁv_e and o
is the introduction of the non-uniform likelihood function into the the current path is a cycle;

A :
posterior, allowing us to understand the relationship between the XY (wuu),  otherwise

parameters in JPDA and the mixing time of the Markov chain. whereexy, is the edge inX adjacent to the start vertex that
was removed first in (ii) abovey (X, Y) is always a matching in

A. Proof of Theorem 2 G andn, is injective as shown in [16]. Notice that the bipartite

graph G considered here is a subset of the graphs considered in

To prove Theorem 2, we need the following lemmas. [16'\1 so the arguments aboyt can be directly applied here.

Lemma 1:Let C = Af(”%fpd) and D = %ﬁ;‘”. For any otice that
wo,wi,w2 € Q, if w1 = wo — eo, for some edgeey € wo, Q1) = Qw,w)=mr(w)P(w,w)
andwy; = wy — e1, for some edge:; € wi, then the following 1 . ,
inequalities hold: = 3 min{7(w), m(w)}. (15)
m(wo)/m(w1) E g2 and T(w1)/m(wo) E gz’ Next, we boundr(X)x(Y) and we need to consider four cases:
m(wo)/m(w2) < m(ws)/m(wo) < : (i) tis a deletion moveWe havew’ = w — e andm;(X,Y) =
Proof: wo andw; are identical except that; is missing the X®Y @ (wUwW). SincewUn:(X,Y) and X UY are
edgeeo. SO |wo| = |wi| + 1. If eo = (u,v) andk = |wo|, identical when viewed as multisets,
A TFpE(L = pg) K E reom) = W(W);\(EHTEQ)E)Y))
m(wo)/m(w1) = i Nu(v) = oy
AT (1 pg KD min (), m@) T
_ Pd m(w)
= — 9 Au(v <cC. = 2|E {1 } X, Y
M —pg ) IBIQ) max | 1, 75 ¢ (X, V)
On the other hand < 2RIEIQOT (X, Y)),
' where we used the identity (15) in the second equality and
AR pg) K-k Lemma 1 for the last inequality.
m(wi)/m(wo) = N—F & K—Fk G (ii) tis an addition moveWe havew’ = w+e andn(X,Y) =
A e (1= pa) u(v) XY ®(wuw'). SincewuUn,(X,Y) and X UY are identical
M -pg) 1 <D when viewed as multisets, using the arguments from (i),
pa Nu(w) T T(X)n(Y) < 2RIEIQ)m(m(X,Y)).

(iif) tis a switch move and the current path is a cy@eippose

Sinceﬂ'(uJo)/ﬂ'(UJg) = 7'('((,00)/71’((4.11) X 7T(UJ1)/7T(UJ2), by re- W = w—i—e—e'. Letw, = wte. Thenw' = Wi —¢'. Since

peating the above argument twice, we gdtu)/m(w2) < C2. mw) _ mw) 7@ po lemma 159 < 0D < R?
imi 2 m(w’) = w(w) 7(wy)’ y 'r(w') — — :
Similarly, we haver (ws)/m(wo) < D [ Sincen (X.7) = XaYe (wue) - e 2y, the multisets
Lemma 2:Let R = max{1, C, D}, whereC andD are defined wUn(X,Y) differs from X UY only in thate andexy,
in Lemma 1. Then the maximum edge loading of the Markov chain  are missing from it. Hence, by Lemma 1,

M is bounded agp < 4R*K-N. X)) < Cqm(w)r(mi(X,Y))

Proof: For each pair of matching&, Y in G, we define the m(w)
canonical pathyxy as in [16]. Consider the symmetric difference (W)
XY, whereXpY = (X -Y)Uu(Y —X). XY is a disjoint 4

collection of paths inG(incIudir)lg E:Iosed )cycles, each of which < 2RMEIQ(O)7(n(X,Y)).
has edges that belong t§ and Y alternately. Suppose that we (iv) ¢ is a switch move and the current path is not a cydlkis
have fixed some arbitrary ordering on all simple pathgzinand case is similar to (i) but the multisets Un: (X, Y") differs
designate a “start vertex” to each of the paths, which is arbitrary if ~ from X U 'Y only in thate is missing from it. Hence, by
the path is a closed cycle but must be an endpoint otherwise. This Lemma 1,

gives a unique ordering, P», ..., Py on the paths appearing in r(X)n(Y) < Cr(w)r(n(X,Y))

X @Y. The canonical path fronX to Y involves “unwinding” -
each of theP; in turn as follows. We need to consider two cases: )
(i) P is not a cycle Let P; consist of the sequence T
(vo,v1,...,v;) oOf vertices with the start vertexo. If < 2RYEIQ()m(n(X,Y)).

(vo,v1) € Y, perform a sequence of switching moves |n summary, we have, in all cases,
replacing (vejt1, v2j4+2) by (va;,v2541) for j = 0,1,.. .,

2CQ|E\Q(t)maX{1, }W(nt(X,Y))

7(w)

2C|E|Q(t) max{l7 } w(ne(X,Y))

and finish with an addition move ifis odd. If (vo,v1) € X, m(X)m(Y) < 2R E|Q(t)m(n:(X,Y)).
remove(vo,v1) and proceed as before for the reduced pathyp s for any transitiort
(1}1,...,’01). ' '

(i) P is a cycle Let P; consist of the sequence ﬁ oy ot T(X)T(Y) x|
(vo,v1,...,va41) Of vertices, fori > 1, wherevg is <2RIEIY. oo m(me(X,Y)) x|
the start vertex, andvz;,v2541) € X for j = 0,...,1, - XY

4
with remaining edges belonging t&". We first remove SAR K|} 50 m(m(X,Y)

4

the edge(vo,v1). Now we are left with an open pat® Ej@?g}

with endpointsv, v1, with the start vertexv, of O, for =

k € {0,1}. Then we unwindOD as in (i) above but treating where the second inequality follows from the fact that the length

vi—k as the start vertex to identify that it was a cycle. of any canonical path is bounded By, the third equality is due

Let ¢ be an arbitrary edge in the Markov chaikt, i.e, a to the fact thaty, is injective andr is a probability distribution,

transition fromw to w’ # w. Let cp(t) :e\jv(X,Y i vxy >t} and the last inequality follows fromE| < KN. Hence,p <
be the set of canonical paths that useWe define a function 4R*K2N. ]



We now prove Theorem 2M is a finite, reversible, ergodic
Markov chain with loop probabilities®(z, =) > % for all states
x (see Section V). Hence, by Theorem 1, we have

72(€) < p(log m(z) ™! + loge™1). (16)

The upper bound fop is computed from Lemma 2. Now we just

need to find the upper bound fai(x)~'. From (14),

Z < > mffms(K,N)
weR
= mims(K,N)Q|
K
K N!
< mfma(K,N) Y () o
k:0<k)(N—k)!
< mEm3(K,N)(K + 1)!N!,

where the second inequality is by (13). Although this bound o

Z is not tight, it will serve our purpose. For aay€ Q, 7(w) >
1 K
ng m4(K, N) SO

1 -z
m(w) m§m4(K,N)
mi ng(K,N)
< (M) Mmoo
Hence,
K
logﬁ < log((ZZ) :jEK:x;(KJrl)!N!)
= ms(K,N).

Putting all together, we have, for all initial statec 2, 7, (¢) <
AR*K2N(ms(K,N) +loge™).

B. Proof of Theorem 3
Let Be, = {(4,k) : Bjr > e2}. For now, assuméj, k) € fc,,
i.e, Bjx > e Let Xjp(w) = I((#*,47) € w) wherel is an

indicator function. Notice tha. (X;x) = 7(w;k) = Bjr, where
wir = {w € Q: (9*,y7) € w}. Since|lp — 7| < e,

e1m(w;ix)
8

3 .
[Var, (X;5) — Vare(X5)] < 3e< %

A

[p(wjn) — m(wjin)] < €<

< 17

Let B = 1327, Xjk(wi) be the sample mean ofsamples
from p. ThenE(B;x) = p(w;x) andVar(8;x) = 2 Var,(X;x). By
Chebyshev’s inequality,

_ €1 9 Varp(Xj )
P (‘/Bjk *P(ij)| > gﬂ%‘k)) < E?SW (18)
Now if |3 — p(wjr)| < Fp(wjr), from (17),
1Bk — m(wir)l < 1Bjk — pwjr)] + [p(wjr — m(wjikl
< %lp(wjk) + gﬂ(wg'k)
< ) (19)

and 3, estimatesr(w;x) within ratio 1 + ¢;. Sincee; < 1 and
Varﬂ(X‘,-k) < W(wjk),

Varp(Xjk) < Varw(Xjk) + %W(u}]k) < 2
p(wjk)? (gﬂ(wjk))z = m(wik)

Hence, by choosing = 72¢; %¢; ! and using (18) and (20),

(20)

~ €1 1
P (\ﬁjk —p(wjg)| > gp(wjk)) <7 (21)
that is,Bjk estimatesr (w;) within ratio 1 + €; with probability
at least3/4.

Now consider repeating the above experiment by an odd number
t times, independently. Lef;, be the median of the resulting

values of3;%. By (21), the probability thaﬁjk fails to approximate
Bix within ratio 1 + ¢; is at most

OE G < (707 3,0

i=(t+1)/2

t/2 t/2
< (@) #-()
16 4
Now lett = 6[logn~*] + 1, this probability is bounded above

by n. Hence, with a total ofst samples,3;;, estimatesr(w;x)
within ratio 1 4+ ¢; with probability at leastl — n for 8;, > e2.
-1

Notice thatst is upper bounded bg04e; %e; ' [logn™'].
Now considerg;; that are smaller thar,. With probability at

i=(t+1)/2

feast1 — n, for (j,k) € Bey, (1 — €2)Bjx < Bin < (1+ €1) B

So if Bjx > (1 + e1)e2, we must have(j, k) € f,. Hence,
Bjk < (1 + 61)62 for ﬁjk < €2.

REFERENCES

[1] 1. Cox, “A review of statistical data association technigues for motion
correspondence/hternational Journal of Computer Visiowol. 10,

no. 1, pp. 53-66, 1993.

F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, “EM, MCMC, and
chain flipping for structure from motion with unknown correspon-
dence,” Machine Learning, special issue on Markov chain Monte
Carlo methodsvol. 50, pp. 45-71, 2003.

Y. Bar-Shalom and T. Fortmanriracking and Data Association
San Diego, CA: Mathematics in Science and Engineering Series 179
Academic Press, 1988.

J. Collins and J. Uhlmann, “Efficient gating in data association
with multivariate distributed states|EEE Trans. Aerospace and
Electronic Systemsvol. 28, no. 3, 1992.
L. Valiant, “The complexity of comgutin
cal Computer Sciencevol. 8, p?. 189-201, 1979.

R. Fitzgerald, “Development of practical PDA logic for multipltarget
tracking by microprocessor,” itMultitarget-Multisensor Tracking:
Advanced Applicationsy. Bar-Shalom, Ed. Artech House: Nor-
wood, MA, 1990.

T. Huang and S. J. Russell, “Object identification in a Bayesian
context,” in Proc. of the Fifteenth International Joint Conference on
Artificial Intelligence 1997, pp. 1276-1283.

N. Bergman and A. Doucet, “Markov chain Monte Carlo data
association for target tracking,” ifroc. of IEEE Int. Conference
on Acoustics, Speech, and Signal Processing (ICASERP.

H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov, “Tracking many
objects with many sensors,” iroc. IJCAI-99 Stockholm, 1999.

S. Cong, L. Hong, and D. Wicker, “Markov-chain Monte-Carlo
aPproac for association probability evaluatioffE Proceedings

of Control, Theory and Applicationsol. 151, no. 2, pp. 185-193,
March 2004.

S. Oh, S. Russell, and S. Sastry, “Markov chain Monte Carlo data
association for general multiple-target tracking problemsPrioc. of

the 43rd IEEE Conference on Decision and ContRéradise Island,
Bahamas, Dec. 2004.

D. Reid, “An algorithm for tracking multiple targetslEEE Trans-
a8t7i%n on Automatic Controlvol. 24, no. 6, pp. 843-854, December

2

[3

[4

5
6

the permanentheoreti-

(7]

8

B
[10]

[11]

[12]

1979.
S. Oh, L. Schenato, and S. Sastry, “A_hierarchical multiple-target
tracking algorithm for sensor networks,” Rroc. of the International
gggference on Robotics and Automatiddarcelona, Spain, April

5

[13]

[14] D. Schulz, W. Bu_r%ard, D. Fox, and A. Cremers, “Tracking multiple
moving targets with a mobile robot using particle filters and statistical
data association,” ifProc. of the IEEE International Conference on
Robotics and Automation (ICRA2001.

I. Beichl and F. Sullivan, “The Metropolis algorithmComputing in
Science and Engineeringol. 2, no. 1, pp. 65-69, 2000.

M. Jerrum and A. Sinclair, “The Markov chain Monte Carlo method:
An approach to approximate countlng and integration,Approxi-
mations for NP-hard Problem®. Hochbaum, Ed. PWS Publishing,
Boston, MA, 1996.

G. Roberts, “Markov chain concepts related to sampling algorithms,”
in Markov Chain Monte Carlo in Practigeser. Interd|sciﬁ|inary
Statistics Series, W. Gilks, S. Richardson, and D. Spiegelhalter, Eds.
Chapman and Hall, 1996.

P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of
Mgagkov chains,”Annals of Applied Probabilityvol. 1, pp. 36-61,
1991.

(18]
[16]

[17]

(18]



