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Abstract— Joint probabilistic data association (JPDA) is a powerful
tool for solving data association problems. However, the exact compu-
tation of association probabilities {βjk} in JPDA is NP-hard, where
βjk is the probability that j-th observation is from k-th track. Hence,
we cannot expect to compute association probabilities in JPDA exactly
in polynomial time unlessP = NP . In this paper, we present a simple
Markov chain Monte Carlo data association (MCMCDA) algorithm
that finds an approximate solution to JPDA in polynomial time. For
ε > 0 and 0 < η < .5, we prove that the algorithm finds good
estimates ofβjk with probability at least 1 − η in time complexity
O(ε−2 log η−1N(N log N + log(ε−1))), where N is the number of
observations.

I. I NTRODUCTION

The data association problem arises in many applications such
as computer vision, surveillance, clustering, and mobile robots.
In computer vision, the data association problem is known as the
correspondence problem in which the objective is to determine
which observation belongs to which feature [1], [2]. In target
tracking, it is the problem of determining which observation is
generated by which target or clutter.

Joint probabilistic data association (JPDA) is developed to solve
the data association problem arises in multiple-target tracking [3].
JPDA is a suboptimal single-scan approximation to the optimal
Bayesian filter, in which the associations between the “known”
tracks and thelatest observations are made sequentially. At each
time step, instead of finding a single best association between
latest observations and known tracks, JPDA enumerates all pos-
sible associations between observations and tracks and computes
association probabilities{βjk}, whereβjk is the probability that
j-th observation is fromk-th track. Given an association, the state
of a target is estimated by a filtering algorithm and this conditional
expectation of state is weighted by the association probability.
Then the state of a target is estimated by summing over the
weighted conditional expectations. It has proved very effective
in a cluttered environment compared with the nearest neighbor
approach which finds a single best association [3].

However, the exact calculation of association probabilities
{βjk} in JPDA is NP-hard [4] since the related problem of finding
the permanent of a 0-1 matrix is #P-complete [5]. To overcome the
complexity of the problem, many approximation algorithms have
been proposed. In [6], the “cheap” JPDA algorithm is developed
and the association probabilities are estimated from a formula
based on heuristics. In [7], a single-stage data association problem
is considered and a leave-one-out heuristic is developed to avoid
the enumeration of all possible associations. Sampling methods
have been applied before. In [8], the Gibbs sampling method
is applied to track a single target using measurements from a
finite number of linear models, where the measurement to model
association is unknown. In [9], a combination of Markov chain
Monte Carlo (MCMC) and expectation-maximization (EM) is
used to simultaneously track multiple vehicles using measurements
from spatially separated sensors and learn the intrinsic parameters
of the sensors. A combination of MCMC and EM is also used in
[2] to solve the correspondence problem in computer vision. In
[10], MCMC is applied to compute the association probabilities
in JPDA and it is shown that MCMC outperforms Fitzgerald’s
cheap JPDA. Unfortunately, in all cases, the performance of an
approximation algorithm for JPDA is measured in experiment
only. The main contribution of this paper is the formal analysis
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of a simple sampling algorithm for JPDA, called the Markov
chain Monte Carlo data association (MCMCDA) algorithm. We
show that MCMCDA finds an approximate solution to JPDA in
polynomial time. Forε > 0 and 0 < η < .5, we prove that the
algorithm finds “good” estimates ofβjk with probability at least
1−η in time complexityO(ε−2 log η−1N(N log N +log(ε−1))),
whereN is the number of observations (the precise definition of
“good” estimates is given in Section V).

In [11], a general-purpose MCMCDA algorithm is developed
to track an unknown number of targets. It has been shown that
MCMCDA is computationally efficient compared to the multiple
hypothesis tracker (MHT) [12] and outperforms MHT under
extreme conditions, such as a large number of targets in a dense
environment, low detection probabilities, and high false alarm
rates [11]. The MCMCDA algorithm has been extended to sensor
networks in a hierarchical manner to be scalable and it has
been shown that MCMCDA is robust against sensor localization
error, transmission failures and communication delays,i.e., out-of-
sequence measurements [13]. The MCMCDA algorithm presented
in this paper can be considered as a special case of the algorithm
presented in [11] for tracking a known number of targets.

The remainder of this paper is structured as follows. We
summarize JPDA in Section II and describe the MCMC method in
Section III. The MCMCDA algorithm is presented in Section IV
and analysis about the algorithm is shown in Section V. We also
present an experiment confirming our results in Section VI.

II. JOINT PROBABILISTIC DATA ASSOCIATION

Joint probabilistic data association (JPDA) has been traditionally
used with the Kalman filter, assuming linear dynamic and mea-
surement models and a Gaussian noise model [3], and the Kalman
filter is used in this paper for demonstration purpose. However,
JPDA has been applied with a nonlinear filtering algorithm such
as a particle filter [14]. We note that the proposed algorithm is
applicable for both linear and nonlinear filters and our results can
be easily generalized to the nonlinear case.

Let K be the number of targets moving around the surveillance
regionR. The state dynamics of targetk is modeled as

xk
t+1 = Ak

t xk
t + Gk

t wk
t , (1)

for t = 1, 2, . . ., wherexk
t ∈ Rnx is the state of targetk at timet,

Ak
t andGk

t are matrices with appropriate sizes, andwk
t is a white

Gaussian process with zero mean and covarianceQk
t . The noisy

observation of the state of a target is measured with a detection
probabilitypd which is less than unity. There are also false alarms
and the number of false alarms has a Poisson distribution with a
parameterλfV whereV is the volume ofR and λf is the false
alarm rate per unit time, per unit volume. Letnt be the number
of observations at timet, including both noisy observations and
false alarms. Letyj

t ∈ Rny be thej-th observation at timet for
j = 1, . . . , nt. Each target generates a unique observation at each
sampling time if it is detected. The measurement model is

yj
t =

{
Cj

t xk
t + w′j

t if yj
t is from xk

t

uj
t otherwise,

(2)

where w′j
t is a white Gaussian process with zero mean and

covarianceRj
t , Cj

t is a matrix with an appropriate size, and
uj

t ∼ Unif(R) are random processes for false alarms. Notice that,
with probability 1 − pd, the target is not detected and we call
this a missing observation. LetYt = {yj

t : 1 ≤ j ≤ nt} and
Y1:t = {Y1, . . . , Yt}.



Now we summarize the joint probability data association
(JPDA) filter [3]. Suppose that we have the following estimates
from the previous filtering stept− 1:

x̂k
t−1|t−1 := E

[
xk

t−1|Y1:t−1

]
P k

t−1|t−1 := E
[
sk

t−1|t−1s
k
t−1|t−1

T |Y1:t−1

]
,

wheresk
t−1|t−1 = xk

t−1 − x̂k
t−1|t−1. For notational convenience,

we assume thatA = Ak
t , G = Gk

t andQ = Qk
t , for all k and t,

andC = Cj
t andR = Rj

t , for all j and t.
Step 1 (Prediction): For eachk, compute

x̂k
t|t−1 := E

[
xk

t |Y1:t−1

]
= Ax̂k

t−1|t−1

P k
t|t−1 := E

[
sk

t|t−1s
k
t|t−1

T |Y1:t−1

]
= AP k

t−1|t−1A
T + GQGT ,

wheresk
t|t−1 = xk

t − x̂k
t|t−1.

Step 2 (Measurement Validation): The predicted observation for
targetk is ŷk

t|t−1 = Cx̂k
t|t−1. For each observationj, define the

innovationvk
t (j) = yj

t − ŷk
t|t−1 and its covariance

Bk
t = E

[
vk

t (j)vk
t (j)

T |Y1:t−1

]
= CP k

t|t−1C
T + RT .

Let Ξ = [ξjk] ∈ {0, 1}nt×K be a validation matrix andξjk = 1,
i.e., yj

t is validated for targetk, if and only if

vk
t (j)T (Bk

t )−1vk
t (j) < δ, (3)

where δ is an appropriate threshold. Without loss of generality,
we assume that, for allj,

∑K
k=1 ξjk ≥ 1, i.e., all observations are

validated with at least one target. If not, we can always resize the
matrix Ξ and reducent to make sure that each row vector has at
least one non-zero element.

Step 3 (State Estimation): Let Ω be a set of all feasible
joint association events at timet (for notational convenience,
the subscriptt is dropped). For eachω ∈ Ω, ω = {(j, k)},
where(j, k) denotes an event that observationj is associated with
target k. We represent a joint association eventω by a matrix
Ξ̂(ω) = [ξ̂jk(ω)], where ξ̂jk(ω) = 1 if the event(i, k) is true,
otherwise,ξ̂jk(ω) = 0. A joint association event is feasible when
(i) it agrees with the validation matrix,i.e., ξ̂jk(ω) ≤ ξjk(ω)
for all j and k; (ii) an observation has at most one source,i.e.,∑K

k=1 ξ̂jk(ω) ≤ 1 for all j; and (iii) a target has at most one
observation,i.e.,

∑nt
j=1 ξ̂jk(ω) ≤ 1 for all k. Notice that we use

notations different from [3]. In particular, we did not introduce an
additional column for “no target” so observationj is a false alarm
if
∑K

k=1 ξ̂jk(ω) = 0.
The state of a target can be estimated as

E(xk
t |Y1:t) =

∑
ω

E(xk
t |ω, Y1:t)P (ω|Y1:t) (4)

=

nt∑
j=0

E(xk
t |ωjk, Y1:t)P (ωjk|Y1:t),

where ωjk denotes the event{ω 3 (j, k)} and ω0k denotes
the event that no observation is associated with targetk. Let
βjk = P (ωjk|Y1:t). E(xk

t |ωjk, Y1:t) can be computed easily by
considering it as a single target estimation problem with a single
observation. Hence, the computation ofE(xk

t |Y1:t) reduces to the
computation ofβjk, where

βjk = P (ωjk|Y1:t) =
∑

ω:(j,k)∈ω

P (ω|Y1:t). (5)

The computation ofβjk requires a summation over the poste-
riors, hence the enumeration of all joint association events. JPDA

is a method for computing expectations such as (4) using the
association probabilities{βjk} in the presence of the identity
uncertainty. As mentioned earlier, the exact calculation of{βjk}
in JPDA is NP-hard [4] and it is the major drawback of JPDA.

Based on the parametric false alarm model, the posterior ofω
can be computed as

P (ω|Y1:t) =
1

Z
P (Yt|ω, Y1:t−1)P (ω) (6)

=
1

Z
λ

nf
f p

nd
d (1− pd)

K−nd

nt∏
j=1

[
Nkj (y

j
t )
]τj

,

whereZ is a normalizing constant;nd = #{k :
∑nt

j=1 ξ̂jk(ω) =
1} is the number of detections;nf = nt − nd is the number of
false alarms;τj =

∑K
k=1 ξ̂jk(ω); kj = k if and only if τj = 1

and ξ̂jk(ω) = 1 for given j; andNkj (y
j
t ) is the Gaussian density

function with mean̂y
kj

t|t−1 and covarianceB
kj
t .

Let vk
t =

∑nt
j=1 βjkvk

t (j) be the combined innovation and
Kk

t = P k
t|t−1C(Bk

t )−1 be the Kalman gain. Then the state of
each target and its covariance are computed as follows (for more
detail, see [3]).

x̂k
t|t = x̂k

t|t−1 + Kk
t vk

t

P k
t|t = P k

t|t−1 −

(
nt∑

j=1

βjk

)
Kk

t Bk
t Kk

t

T

+ Kk
t

(
nt∑

j=1

βjkvk
t (j)vk

t (j)
T − vk

t vk
t

T

)
Kk

t

T
.

III. M ARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role in
many fields such as physics, statistics, economics, and engineering
[15]. In some cases, MCMC is the only known general algorithm
that finds a good approximate solution to a complex problem in
polynomial time [16]. MCMC techniques have been applied to
complex probability distribution integration problems, counting
problems such as #P-complete problems, and combinatorial op-
timization problems [15], [16].

MCMC is a general method to generate samples from a distri-
bution π by constructing a Markov chainM with statesω and
stationary distributionπ(ω). If we are at stateω ∈ Ω, we propose
ω′ ∈ Ω following the proposal distributionq(ω, ω′). The move is
accepted with an acceptance probabilityA(ω, ω′) where

A(ω, ω′) = min

(
1,

π(ω′)q(ω′, ω)

π(ω)q(ω, ω′)

)
, (7)

otherwise the sampler stays atω, so that the detailed balance
condition is satisfied,i.e.,

Q(ω, ω′) = π(ω)P (ω, ω′) = π(ω′)P (ω, ω′), (8)

for all ω, ω′ ∈ Ω, where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is the
transition probability fromω to ω′ for ω′ 6= ω. The described
MCMC algorithm is known as the Metropolis-Hastings algorithm.
If M is irreducible and aperiodic, thenM converges to its
stationary distribution by the ergodic theorem [17]. Hence, for
a given bounded functionf , the sample mean̂f of f over the
sampled states converges toEπf(ω). Notice that (8) requires only
the ability to compute the ratioπ(ω′)/π(ω), avoiding the need to
normalizeπ.

An ergodic chainM on state spaceΩ converges to its stationary
distribution asymptotically. But a practical question is how fast
M becomes close to stationarity. One way to measure the rate
of convergence ofM to stationarity is the “mixing time” of the
Markov chain. LetP be the transition probabilities ofM and
let P t

x(·) be the distribution of the state at timet given thatM
is started from the initial statex ∈ Ω. If π is the stationary



distribution ofM, then thetotal variation distanceat timet with
initial statex is defined as

∆x(t) = ‖P t
x − π‖ = max

S⊂Ω
|P t

x(S)− π(S)| (9)

The rate of convergence ofM to stationarity can be measured
by themixing time:

τx(ε) = min{t : ∆x(s) ≤ ε for all s ≥ t}. (10)

One approach to boundτx(ε) of a Markov chain with a complex
structure is the canonical path method [16]. In this paper, we
consider a highly complex Markov chain, hence we use the
canonical path method to boundτx(ε) of the Markov chain
simulated by the MCMCDA algorithm given in Section IV. For the
remainder of this section, we describe the canonical path method.

For a finite, reversible and ergodic Markov chainM with state
spaceΩ, consider an undirected graphG = (V, E) whereV = Ω
andE = {(x, y) : Q(x, y) > 0}. Recall the definition ofQ(·, ·)
from (8). So an edge(x, y) ∈ E indicates that the Markov chain
M can make a transition fromx to y or from y to x in a single
step. For each ordered pair(x, y) ∈ Ω2, the canonical pathγxy

is a simple path fromx to y in G. In terms ofM the canonical
pathγxy is a sequence of legal transitions fromx to y in M. Let
Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now the
mixing time of the chain is related to themaximum edge loading:

ρ̄ = ρ̄(Γ) = max
e

1

Q(e)

∑
γxy3e

π(x)π(y)|γxy|. (11)

If ρ̄ is not so big,i.e., no single edge is overloaded, then the
Markov chain can move around fast and achieve the rapidly mixing
property. The main result for the canonical path method is as
follows [16], [18]:

Theorem 1:LetM be a finite, reversible, ergodic Markov chain
with loop probabilitiesP (x, x) ≥ 1

2
for all statesx. Let Γ be a

set of canonical paths with maximum edge loadingρ̄. Then the
mixing time ofM satisfiesτx(ε) ≤ ρ̄(log π(x)−1 + log ε−1), for
any choice of initial statex.

IV. MCMC DATA ASSOCIATIONALGORITHM

In this section, we describe the MCMC data association (MCM-
CDA) algorithm for approximating the association probabilities
{βjk}. When applied to a filtering problem, MCMCDA follows
all the steps described in Section II except we use MCMCDA to
estimate{βjk} in step 3. While the exact computation of{βjk}
in JPDA is NP-hard, MCMCDA finds approximations to{βjk} in
polynomial time with good fidelity as shown in Section V.

We fix the timet and the time indext is dropped from now.
Let N = nt be the number of validated observations. We first
reformulate our problem as a bipartite graph. LetG = (U, V, E)
be a bipartite graph, whereU = {ŷk : 1 ≤ k ≤ K} is a vertex
set of predicted observations,V = {yj : 1 ≤ j ≤ N} is a
vertex set of observations, andE = {(u, v) : u ∈ U, v ∈ V, (u−
v)T (Bκ(u))−1(u − v) < δ} with κ : U → {1, . . . , K} mapping
predicted observationu to its target index. An edge(u, v) ∈ E
represents that observationv is validated for targetu according to
(3), hence, we are representing the validation matrixΞ by E. Now
a feasible joint event is amatchingin G, i.e., a subsetM ⊂ E
such that no two edges inM share a vertex. The set of all feasible
joint association eventsΩ can be represented asΩ ⊂ M0(G) ∪
· · · ∪MK(G), whereMk(G) is a set of k-matchings inG. The
posterior (6) ofω ∈ Ω can be rewritten as

P (ω|Y1:t) =
1

Z
λ

N−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

Nu(v), (12)

where Z is a normalizing constant andNu(v) is the Gaussian
density function with meanu and covarianceBκ(u).

The MCMC data association (MCMCDA) algorithm is an
MCMC algorithm whose state space is the set of all feasible
joint association eventsΩ and whose stationary distribution is the
posterior (12). Each step of the MCMCDA algorithm is described
in Algorithm 1, where we use the sampling method from [16]. A

Algorithm 1 MCMCDA (single step)

sampleU from Unif[0, 1]
if U < 1

2
then

ω′ = ω
else

choosee = (u, v) ∈ E uniformly at random
if e ∈ ω then

ω′ = ω − e
else if both u andv are unmatched inω then

ω′ = ω + e
else if exactly one ofu andv is matched inω ande′ is the
matching edgethen

ω′ = ω + e− e′

else
ω′ = ω

end if
end if
ω = ω′ with probability A(ω, ω′)

complete sampling strategy is described in Section V. In Algo-
rithm 1, A(ω, ω′) = min

(
1, π(ω′)

π(ω)

)
, whereπ(ω) = P (ω|Y1:t)

from (12). There are three MCMC moves and we name them for
future reference: (i) an addition move proposesω′ = ω + e; (ii)
a deletion move proposesω′ = ω − e; and (iii) a switch move
proposesω′ = ω + e− e′.

V. A NALYSIS

Let M be the Markov chain simulated by Algorithm 1. Since
the self-loop probability is nonzero,M is aperiodic. It can be
easily seen thatM is irreducible, i.e., all states communicate,
for example via the empty matching. In addition, the transitions
described in Algorithm 1 satisfy the detailed balance condition
(8) soM is reversible. Hence, by the ergodic theorem, the chain
converges to its stationary distribution [17].

Let us first take a look at the complexity of the problem. As
noted earlier, the state space of the Markov chainM is Ω ⊂
M0(G)∪ · · · ∪MK(G), whereM is the Markov chain simulated
by Algorithm 1. For eachk, |Mk(G)| ≤

(
K
k

)
N !

(N−k)!
with equality

if the subgraph ofG with thek chosen vertices inU is a complete
bipartite graph,i.e., all observations are validated for allk chosen
targets. Hence, we can bound the size ofΩ as

|Ω| ≤ |M0(G)|+ · · ·+ |MK(G)|

≤
K∑

k=0

(
K

k

)
N !

(N − k)!
=: Ω̄. (13)

Figure 1 shows this bound forK = 5 as a function of the
number of observations. Certainly, the size of the state space
grows exponentially as the number of targets or the number of
observations increases, hence, the exact calculation of JPDA by
enumeration is not feasible when the number of targets or the
number of observations is large.

We first establish a few facts to prove the theorems below. In
(12), the normalizing constant becomes

Z =
∑
ω∈Ω

λ
N−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

Nu(v)

 . (14)

We can bound each likelihood term as

L ≤ Nu(v) ≤ L̄,

for all (u, v) ∈ E, where

L̄ = max
1≤k≤K

{(
(2π)ny |Bk|

)− 1
2
}

L = min
1≤k≤K

{(
(2π)ny |Bk|eδ

)− 1
2
}

.



Fig. 1. Ω̄ as a function of the number of observations whenK = 5

The lower boundL is due to the measurement validation.
For Theorem 2 below, letC =

pdL̄

λf (1−pd)
, D =

λf (1−pd)

Lpd
and

R = max{1, C, D}. Also define m1 = max{1, L̄}, m2 =
min{1, L},

m3(K, N) = max
0≤k≤K

{λN−k
f pk

d(1− pd)
K−k},

m4(K, N) = min
0≤k≤K

{λN−k
f pk

d(1− pd)
K−k}, and

m5(K, N) = K log
m1

m2
+ log

m3(K, N)

m4(K, N)

+

K+1∑
k=1

log k +

N∑
n=1

log n.

Remark 1: If .5 < pd < 1 and λf < 1 − pd, then
m3(K, N) = λN−K

f pK
d and m4(K, N) = λN

f (1 − pd)
K .

So m3(K, N)/m4(K, N) =
(

pd
λf (1−pd)

)K

and K is the only
remaining exponent.

Notice that the omitted proofs appear in Appendix.
Theorem 2:Suppose thatλf > 0 and 0 < pd < 1. Then the

mixing time of the Markov chainM is bounded byτx(ε) ≤
4R4K2N(m5(K, N) + log ε−1) for all x ∈ Ω.

Remark 2:Let τ̄(ε) be the upper bound found in Theorem 2.
τ̄(ε) is polynomial in K and N . Under the assumptions in
Remark 1,τ̄(ε) =

O

(
K2N

(
K log

Kpd

λf(1− pd)
+ N log N + log ε−1

))
.

If m3(K, N)/m4(K, N) does not grow fast,e.g., Remark 1,
τ̄(ε) = O(K2N(K log K + N log N + log ε−1)). If K is fixed,
τ̄(ε) = O(N(N log N + log ε−1)).

Let p(ω) be the distribution of the states ofM after simulating
Algorithm 1 for at least̄τ(ε) steps. Then the total variation distance
satisfies‖p−π‖ ≤ ε. So we can sample fromp to estimate{βjk}.
However, there is a small bias in our estimates since we are not
sampling fromπ. The following theorem gives an upper bound
on the number of samples needed for finding good estimates.

Theorem 3:Let 0 < ε1, ε2 ≤ 1 and 0 < η < .5. Suppose
that ‖p − π‖ ≤ ε for ε ≤ ε1ε2/8. Then, with a total of
504ε−2

1 ε−1
2 dlog η−1e samples fromp, we can find estimateŝβjk

for βjk with probability at least1 − η, such that, forβjk ≥ ε2,
β̂jk estimatesβjk within ratio 1 + ε1, i.e., (1− ε1)βjk ≤ β̂jk ≤
(1 + ε1)βjk, and, forβjk < ε2, β̂jk ≤ (1 + ε1)ε2.

Remark 3:Following Remark 2, for fixed K, τ̄(ε) =
O(N(N log N + log ε−1)). Combining this fact with Theo-
rem 3, the time complexity of the overall procedure isT =
O(ε−2

1 ε−1
2 log η−1N(N log N + log(ε−1

1 ε−1
2 ))). Hence, with a

total of T samples, Algorithm 1 finds estimateŝβjk for βjk with

Fig. 2. Expected observations (crosses) and observations (dots)

Fig. 3. Average variation∆β as a function of the number of samples

probability at least1 − η, such that, forβjk ≥ ε2, β̂jk estimates
βjk within ratio1+ε1, and, forβjk < ε2, |β̂jk−βjk| ≤ (1+ε1)ε2.
We can simplify further by lettingε0 = ε1ε2. Then the time
complexity isO(ε−2

0 log η−1N(N log N + log(ε−1
0 ))).

VI. SIMULATION RESULTS

In this section, we show a simulation confirming our findings
from last section. Since our goal is to estimate the association
probabilities, we define the variation distance between two sets of
association probabilitiesβjk andβ̂jk by ∆β = maxj,k |βjk−β̂jk|.
A simple case is chosen to demonstrate MCMCDA, in which two
predicted observations are located at[0, 1]T and [0,−1]T with
Bk = diag(1, 1) for k ∈ {1, 2}. There are 15 observations as
shown in Figure 2. Other parameters are:δ = 4, V = 16, λf =
.8125, andpd = .98. In Figure 3, the average variation distance
between two sets of association probabilitiesβjk andβ̂jk from 10
independent runs is shown as a function of number of samples.
βjk are computed exactly by JPDA and̂βjk are estimated by
MCMCDA.

VII. C ONCLUSIONS

JPDA is a powerful tool for solving data association problems
but the exact computation of association probabilities in JPDA
is NP-hard. Hence, for a large problem, we need to seek for
an approximation algorithm. In this paper, we have presented
an efficient approximation algorithm for JPDA based on Markov
chain Monte Carlo data association (MCMCDA) and proved that
the time complexity of the algorithm is polynomial in the size of
the problem.
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IX. A PPENDIX

The proofs shown here parallel the proofs by Jerrum and
Sinclair [16] in both structure and details; the main difference
is the introduction of the non-uniform likelihood function into the
posterior, allowing us to understand the relationship between the
parameters in JPDA and the mixing time of the Markov chain.

A. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 1:Let C =
pdL̄

λf (1−pd)
and D =

λf (1−pd)

Lpd
. For any

ω0, ω1, ω2 ∈ Ω, if ω1 = ω0 − e0, for some edgee0 ∈ ω0,
and ω2 = ω1 − e1, for some edgee1 ∈ ω1, then the following
inequalities hold:

π(ω0)/π(ω1) ≤ C
π(ω0)/π(ω2) ≤ C2 and

π(ω1)/π(ω0) ≤ D
π(ω2)/π(ω0) ≤ D2.

Proof: ω0 andω1 are identical except thatω1 is missing the
edgee0. So |ω0| = |ω1|+ 1. If e0 = (u, v) andk = |ω0|,

π(ω0)/π(ω1) =
λN−k

f pk
d(1− pd)

K−k

λ
N−(k−1)

f pk−1
d (1− pd)

K−(k−1)
Nu(v)

=
pd

λf(1− pd)
Nu(v) ≤ C.

On the other hand,

π(ω1)/π(ω0) =
λ

N−(k−1)

f pk−1
d (1− pd)

K−(k−1)

λN−k
f pk

d(1− pd)
K−k

1

Nu(v)

=
λf(1− pd)

pd

1

Nu(v)
≤ D.

Since π(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by re-
peating the above argument twice, we getπ(ω0)/π(ω2) ≤ C2.
Similarly, we haveπ(ω2)/π(ω0) ≤ D2.

Lemma 2:Let R = max{1, C, D}, whereC andD are defined
in Lemma 1. Then the maximum edge loading of the Markov chain
M is bounded as̄ρ ≤ 4R4K2N .

Proof: For each pair of matchingsX, Y in G, we define the
canonical pathγXY as in [16]. Consider the symmetric difference
X⊕Y , whereX⊕Y = (X−Y )∪ (Y −X). X⊕Y is a disjoint
collection of paths inG including closed cycles, each of which
has edges that belong toX and Y alternately. Suppose that we
have fixed some arbitrary ordering on all simple paths inG, and
designate a “start vertex” to each of the paths, which is arbitrary if
the path is a closed cycle but must be an endpoint otherwise. This
gives a unique orderingP1, P2, . . . , Pm on the paths appearing in
X ⊕ Y . The canonical path fromX to Y involves “unwinding”
each of thePi in turn as follows. We need to consider two cases:

(i) Pi is not a cycle. Let Pi consist of the sequence
(v0, v1, . . . , vl) of vertices with the start vertexv0. If
(v0, v1) ∈ Y , perform a sequence of switching moves
replacing(v2j+1, v2j+2) by (v2j , v2j+1) for j = 0, 1, . . .,
and finish with an addition move ifl is odd. If (v0, v1) ∈ X,
remove(v0, v1) and proceed as before for the reduced path
(v1, . . . , vl).

(ii) Pi is a cycle. Let Pi consist of the sequence
(v0, v1, . . . , v2l+1) of vertices, for l ≥ 1, where v0 is
the start vertex, and(v2j , v2j+1) ∈ X for j = 0, . . . , l,
with remaining edges belonging toY . We first remove
the edge(v0, v1). Now we are left with an open pathO
with endpointsv0, v1, with the start vertexvk of O, for
k ∈ {0, 1}. Then we unwindO as in(i) above but treating
v1−k as the start vertex to identify that it was a cycle.

Let t be an arbitrary edge in the Markov chainM, i.e., a
transition fromω to ω′ 6= ω. Let cp(t) = {(X, Y ) : γXY 3 t}
be the set of canonical paths that uset. We define a function

ηt : cp(t) → Ω as in [16],

ηt(X, Y ) =


X ⊕ Y ⊕ (ω ∪ ω′)− eXYt ,

if t is a switch move and
the current path is a cycle;

X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

where eXYt is the edge inX adjacent to the start vertex that
was removed first in (ii) above.ηt(X, Y ) is always a matching in
G and ηt is injective as shown in [16]. Notice that the bipartite
graphG considered here is a subset of the graphs considered in
[16] so the arguments aboutηt can be directly applied here.

Notice that

Q(t) = Q(ω, ω′) = π(ω)P (ω, ω′)

=
1

2|E|
min{π(ω), π(ω′)}. (15)

Next, we boundπ(X)π(Y ) and we need to consider four cases:
(i) t is a deletion move. We haveω′ = ω − e andηt(X, Y ) =

X ⊕ Y ⊕ (ω ∪ ω′). Sinceω ∪ ηt(X, Y ) and X ∪ Y are
identical when viewed as multisets,

π(X)π(Y ) = π(ω)π(ηt(X, Y ))

=
2|E|Q(t)

min{π(ω), π(ω′)}
π(ω)π(ηt(X, Y ))

= 2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R|E|Q(t)π(ηt(X, Y )),

where we used the identity (15) in the second equality and
Lemma 1 for the last inequality.

(ii) t is an addition move. We haveω′ = ω+e andηt(X, Y ) =
X⊕Y ⊕(ω∪ω′). Sinceω∪ηt(X, Y ) andX∪Y are identical
when viewed as multisets, using the arguments from (i),

π(X)π(Y ) ≤ 2R|E|Q(t)π(ηt(X, Y )).

(iii) t is a switch move and the current path is a cycle. Suppose
ω′ = ω + e− e′. Let ω1 = ω + e. Thenω′ = ω1− e′. Since
π(ω)
π(ω′) = π(ω1)

π(ω′)
π(ω)
π(ω1)

, by Lemma 1, π(ω)
π(ω′) ≤ CD ≤ R2.

Sinceηt(X, Y ) = X ⊕ Y ⊕ (ω ∪ω′)− eXYt , the multisets
ω ∪ ηt(X, Y ) differs from X ∪ Y only in thate andeXYt

are missing from it. Hence, by Lemma 1,

π(X)π(Y ) ≤ C2π(ω)π(ηt(X, Y ))

= 2C2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R4|E|Q(t)π(ηt(X, Y )).

(iv) t is a switch move and the current path is not a cycle. This
case is similar to (iii) but the multisetsω∪ηt(X, Y ) differs
from X ∪ Y only in that e is missing from it. Hence, by
Lemma 1,

π(X)π(Y ) ≤ Cπ(ω)π(ηt(X, Y ))

= 2C|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R3|E|Q(t)π(ηt(X, Y )).

In summary, we have, in all cases,

π(X)π(Y ) ≤ 2R4|E|Q(t)π(ηt(X, Y )).

Thus, for any transitiont,
1

Q(t)

∑
γXY 3t π(X)π(Y )|γXY |

≤ 2R4|E|
∑

γXY 3t π(ηt(X, Y ))|γXY |
≤ 4R4K|E|

∑
γXY 3t π(ηt(X, Y ))

≤ 4R4K|E|
≤ 4R4K2N

where the second inequality follows from the fact that the length
of any canonical path is bounded by2K, the third equality is due
to the fact thatηt is injective andπ is a probability distribution,
and the last inequality follows from|E| ≤ KN . Hence, ρ̄ ≤
4R4K2N .



We now prove Theorem 2.M is a finite, reversible, ergodic
Markov chain with loop probabilitiesP (x, x) ≥ 1

2
for all states

x (see Section IV). Hence, by Theorem 1, we have

τx(ε) ≤ ρ̄(log π(x)−1 + log ε−1). (16)

The upper bound for̄ρ is computed from Lemma 2. Now we just
need to find the upper bound forπ(x)−1. From (14),

Z ≤
∑
ω∈Ω

mK
1 m3(K, N)

= mK
1 m3(K, N)|Ω|

≤ mK
1 m3(K, N)

K∑
k=0

(K

k

) N !

(N − k)!

≤ mK
1 m3(K, N)(K + 1)!N !,

where the second inequality is by (13). Although this bound on
Z is not tight, it will serve our purpose. For anyω ∈ Ω, π(ω) ≥
1
Z

mK
2 m4(K, N) so

1

π(ω)
≤

Z

mK
2 m4(K, N)

≤
(

m1

m2

)K m3(K, N)

m4(K, N)
(K + 1)!N !.

Hence,

log
1

π(ω)
≤ log

((
m1

m2

)K m3(K, N)

m4(K, N)
(K + 1)!N !

)
= m5(K, N).

Putting all together, we have, for all initial statex ∈ Ω, τx(ε) ≤
4R4K2N(m5(K, N) + log ε−1).

B. Proof of Theorem 3
Let βε2 = {(j, k) : βjk ≥ ε2}. For now, assume(j, k) ∈ βε2 ,

i.e., βjk ≥ ε2. Let Xjk(ω) = I((ŷk, yj) ∈ ω) where I is an
indicator function. Notice thatEπ(Xjk) = π(ωjk) = βjk, where
ωjk = {ω ∈ Ω : (ŷk, yj) ∈ ω}. Since‖p− π‖ ≤ ε,

|p(ωjk)− π(ωjk)| ≤ ε ≤
ε1π(ωjk)

8

|Varp(Xjk)− Varπ(Xjk)| ≤ 3ε ≤
3ε1π(ωjk)

8
. (17)

Let β̄jk = 1
s

∑s
i=1 Xjk(ωi) be the sample mean ofs samples

from p. ThenE(β̄jk) = p(ωjk) andVar(β̄jk) = 1
s
Varp(Xjk). By

Chebyshev’s inequality,

P
(∣∣β̄jk − p(ωjk)

∣∣ >
ε1

3
p(ωjk)

)
≤

9

ε21s

Varp(Xjk)

p(ωjk)2
. (18)

Now if |β̄jk − p(ωjk)| ≤ ε1
3

p(ωjk), from (17),

|β̄jk − π(ωjk)| ≤ |β̄jk − p(ωjk)|+ |p(ωjk − π(ωjk|

≤
ε1

3
p(ωjk) +

ε1

8
π(ωjk)

≤
ε1

2
π(ωjk) (19)

and β̄jk estimatesπ(ωjk) within ratio 1 + ε1. Sinceε1 < 1 and
Varπ(Xjk) ≤ π(ωjk),

Varp(Xjk)

p(ωjk)2
≤

Varπ(Xjk) + 3
8
π(ωjk)(

7
8
π(ωjk)

)2 ≤
2

π(ωjk)
. (20)

Hence, by choosings = 72ε−2
1 ε−1

2 and using (18) and (20),

P
(
|β̄jk − p(ωjk)| >

ε1

3
p(ωjk)

)
≤

1

4
, (21)

that is,β̄jk estimatesπ(ωjk) within ratio 1+ ε1 with probability
at least3/4.

Now consider repeating the above experiment by an odd number
t times, independently. Let̂βjk be the median of the resultingt
values ofβ̄jk. By (21), the probability that̂βjk fails to approximate
βjk within ratio 1 + ε1 is at most

t∑
i=(t+1)/2

(t

i

)(1

4

)i (3

4

)t−i

≤
(

1

4

)t/2 (3

4

)t/2 t∑
i=(t+1)/2

(t

i

)

≤
(

3

16

)t/2

2t =

(
3

4

)t/2

.

Now let t = 6dlog η−1e+ 1, this probability is bounded above
by η. Hence, with a total ofst samples,β̂jk estimatesπ(ωjk)
within ratio 1 + ε1 with probability at least1 − η for βjk ≥ ε2.
Notice thatst is upper bounded by504ε−2

1 ε−1
2 dlog η−1e.

Now considerβjk that are smaller thanε2. With probability at
least1 − η, for (j, k) ∈ βε2 , (1 − ε1)βjk ≤ β̂jk ≤ (1 + ε1)βjk.
So if β̂jk ≥ (1 + ε1)ε2, we must have(j, k) ∈ βε2 . Hence,
β̂jk ≤ (1 + ε1)ε2 for βjk < ε2.
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