A FLIGHT CONTROL SYSTEM FOR AERIAL ROBOTS:
ALGORITHMSAND EXPERIMENTS

David H. Shim, H. Jin Kim, and Shankar Sastry !

The Department of EECS, University of California, Berkeley,
Berkeley CA 94720-1774, USA.
{hcshim, jin, sastry} @eecs.berkeley.edu

Abstract: This paper presents a flight control system designed as on-board intelligence for
rotorcraft-based unmanned aerial vehicles (RUAVS). This hierarchical flight control system,
endowed with autonomy resembling sense-reason-act processes of intelligent agents in
nature, gradually refines given abstract mission commands into real-time control signals
for each vehicle. A tracking control layer is designed on the identified vehicle dynamics
and integrated with a trajectory generator for logistical action planning. The proposed
structure has been implemented on radio-controlled helicopters and validated in a variety
of experiments. Results from way-point navigation, a probabilistic pursuit-evasion game and
vision-based tracking of a moving target show the promising potential of intelligent flying

robots.
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1. INTRODUCTION

Deployment of intelligent robots has been made possi-
ble through technological advances, and there is little
doubt that the world of the future will be filled with
intelligent robots employed to autonomously perform
tasks, or embedded in systems all around us, extending
our capabilities to perceive, reason and act, and sub-
stituting human efforts in applications where human
operation is dangerous, inefficient and/or impossible.
Subscribing to this idea, Rotorcraft-based unmanned
aerial vehicles (RUAVS) deserve special interests, due
to their flight capabilities. The unique lift genera-
tion mechanism of a rotorcraft enables hover, vertical
take-off/landing, pirouette, and sideslip, which cannot
be achieved by a fixed-wing aircraft. These versatile
flight modes are often desired for high-fidelity detec-
tion, location and tracking of targets.

While the last decade has witnessed remarkable pro-
gresses in RUAV research including modeling (Mettler
etal., 1999), control theory (Shim et al., 1998; Corban
et al., 1998; Bendotti and Morris, 1995) and avionic
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Fig. 1. A Berkeley RUAV in an autonomous mission
with Unmanned Ground Vehicles

systems (Gavrilets et al., 2000), current technology is
still far from achieving most real-world solutions. The
BErkeley AeRobot (BEAR) research project has been
directed toward improving the performance of RUAVS
as members of a networked intelligence consisting of
multiple robotic vehicles with heterogeneous capabil-
ities. As a benchmark problem that addresses many
issues in multi-robot systems, a probabilistic pursuit-
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Fig. 2. Multi-functional hierarchical flight manage-
ment system of Berkeley RUAVs

evasion game has been studied, in which a team of
vehicles pursue a team of evading vehicles and con-
currently build a map in an unknown environment.
Algorithms and experimental results on real games
between two teams of ground robots in a centralized
setting are presented in (Kim et al., 2001).

In order to employ RUAVs in a wider range of applica-
tions, a decentralized framework should be considered
for the reliable and efficient operations. Therefore, it
is essential that each flight control system be endowed
with well-suited autonomy, i.e., capabilities to inde-
pendently sense, reason, plan and act in coordination
with other robots or environments. This paper presents
the synthesis of a hierarchical flight management sys-
tem (FMS) for RUAVS that provides autonomy while
allowing coordination among team members.

Section 2 presents an overview of a hierarchical flight
control system for RUAVS. Section 3 describes the
identification and regulation of vehicle dynamics, and
trajectory generation. In Section 4, the proposed FMS
is applied to three examples: pre-programmed way-
point navigation, dynamic way-point navigation in a
pursuit-evasion game, and high-speed target tracking
control. Section 5 concludes the paper.

2. FLIGHT MANAGEMENT SYSTEM FOR
INTELLIGENT UNMANNED AERIAL VEHICLES

An “intelligent agent” continuously (1) perceives dy-
namically changing conditions in its environment, (2)
reasons to interpret perceived information, to solve
problems and to determine appropriate action, and (3)
acts appropriately to affect conditions in its environ-
ment. Based on these attributes, this section describes
each layer in a hierarchical flight management system
shown in Fig. 2.

2.1 Sensing
Dynamically changing conditions in the environment

and the vehicle states are perceived by various on-
board sensors. The precise guidance of the host ve-

hicle of much smaller size demands more accurate
navigation sensors. GPS-based INS is employed as a
central navigation sensor-suite in order to correct the
unbounded error of strap-down INS by supplement-
ing a high-accuracy GPS. Additional sensors such as
ultrasonic sensors and laser range-finders are used to
acquire the environment-specific information such as
relative distance from the ground surface, or to detect
the objects around the host vehicle. Contact switches
are installed on the landing gear of the helicopter
primarily to assist automatic take-off/landing. A com-
puter vision system (Sharp et al., 2001) is used to
detect the objects of interest based on their colors or
shapes.

2.2 Reasoning & Coordination

Data sensed by sensor-suites should be properly in-
terpreted by a strategy planning layer. Fig. 2 shows
three types of strategy planners to be implemented for
each experiment in Section 4. The appropriate strategy
planner is selected by a switching layer for a given
mission.

When this information is not enough to identify the
current state of the world, the world is modeled
as a partially observable Markov decision process
(POMDP), as described later in Section 4.2. The strat-
egy planner then updates each agent’s belief (informa-
tion) state, i.e., probability distribution over the state
space of the world, given measurement and action
histories, and generates a policy, i.e, a mapping from
the agent’s belief state to its action set. Search of the
optimal policy is computationally intractable in most
problems, thus usually sub-optimal policies are imple-
mented (Kim et al., 2001), or, the class of policies
to search through is limited (Ng and Jordan, 2000).
Algorithms are typically run on real-time operating
systems to satisfy hard real-time constraints.

The strategy planner also manages communication
networks. The role of communication in the FMS for
UAVs is more critical than in conventional FMSs for
manned vehicles, because UAVS should report the ve-
hicle status and accept external commands typically at
a faster rate than human voice communication. More-
over, it is desirable to have the support of high quality-
of-service (QoS) wireless communication system in
order for multiple UAVs to function as a tightly co-
ordinated, reconfigurable, distributed networked intel-
ligence.

While the autonomy of each vehicle is important,
intervention of human intelligence is often neces-
sary due to contingencies or mission characteristics.
Open-control architecture allows each strategic plan-
ner to accept incoming requests from human opera-
tors for mixed initiative planning through human-to-
console and console-to-UAV interface. The human-
to-console interface, implemented as a graphic-user-
interface (GUI), receives human commands and dis-
plays the information downloaded from the UAV. The
console-to-UAV interface sends the commands in a
proper data structure to the UAV controller and re-
ceives the UAV status.



2.3 Action

One of the most essential capabilities of a UAV is
to autonomously guide itself through the requested
trajectories or way-points, with minimal supervision
by human operators. Each vehicle platform should be
equipped with stabilizing controllers that take input
saturation and state constraints into consideration, as
will be described in 3.3. Action-sensing coordination
occurs at a very fast rate in order to cope with contin-
gencies, for example, such as detection and avoidance
of collisions.

3. VEHICLE-LEVEL CONTROL & TRAJECTORY
COORDINATION

This section describes the components at the vehicle-
level of the hierarchy for autonomous flight: dynamic
model identification, control and trajectory genera-
tion.

3.1 Vehicle Platform Construction

Berkeley RUAVS are built with off-the-shelf radio-
controlled helicopters of various sizes and payloads.
An industrial radio-controlled helicopter, Yamaha R-
50, is equipped with on-board navigation computers
and sensors for the experiments described in this pa-
per. An optical engine RPM sensor regulates the en-
gine at a constant speed in order to maintain the vehi-
cle dynamic response close to the nominal operating
point at which the dynamic model is acquired. The
FMS software, implemented on a QNX™ real-time
operation system, manages sensors, vehicle control,
and communication. More detailed theoretical and
practical issues in building an RUAV are described
in (Shim, 2000).

3.2 Dynamic Model Identification

Acquisition of high-fidelity models of the target UAVs
is a critical step in the design of a high-performance
flight management system. Multi-input multi-output
(MIMO), nonlinear characteristics and severe distur-
bance must be accounted for to acquire precise mod-
els. A lumped parameter method models a helicopter
as a combination of main rotor, tail rotor, fuselage
and stabilizer fins. Since a servorotor mechanism, aug-
mented to the main rotor system in order to increase
a response time delay and damping, dominates the
main rotor dynamics, it should be properly reflected in
the template model. In this research, prediction-error
method (Ljung, 1997) is applied to the collected data
using the parametric model proposed by (Mettler et
al., 1999), resulting in a six degree-of-freedom rigid
body model with the first-order servorotor dynamics:
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where S and B denote spatial and body coordinate
respectively, and ¢, 8, and  denote roll, pitch, and
yaw, respectively. The transformation between spatial
and body coordinates are given by
[%5,y5, 297 = RE7SE, v, 28T,

where RB—~S € SO(3) is the rotational matrix of the
body axis relative to the spatial axis, represented by
ZY X Euler angles [@,0,W]. The parameters ajs and bis
are longitudinal and lateral flapping angles, and ry, is
the feedback gyro system state. u consists of inputs to
the lateral cyclic pitch, longitudinal cyclic pitch, main
rotor collective pitch, and tail rotor collective pitch.

3.3 Stabilization & Tracking Control

The unstable RUAV dynamics needs proper stabiliza-
tion using feedback control by the on-board real-time
controller. A multi-loop single-input single-output
(SISO) controller (Shim et al., 2000) demonstrated
stable responses with 0.5 m accuracy in the x and y
directions, 0.1 m in the altitude, and 3° in the heading,
when employed for hover and slow motion. In order to
account for nonlinear nature and input/state saturation
over the flight envelope including agile maneuvers, a
nonlinear model predictive control is currently being
applied. Only for controller design purposes, Eqgn. (1)
is discretized to

Xir1 = f(Xk, Uk). 2

and a cost function for tracking is defined by
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where § £ yg —y,y = Cx € R, yq is the desired tra-
jectory, and Sis introduced to bound the state variables
that do not directly appear in y. By introducing a se-
quence of Lagrange multiplier vectors {Ax € R™}N
Eqn. (3) can be written as
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With the Hamiltonian function
Hic = L(Xk, ¥k, k) + Mgy 1 F (X, U), (5)
Eqn. (4) can be written as
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In order to compute {uy}f ~* that minimize J, take a
look at
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With a candidate input sequence {uy}y * and a given
Xo, on-line optimizations can be achieved by the fol-
lowing process presented in (Sutton and Bitmead,
2000):

while |AJ] > e do

fork=1,--- N

compute {x}} using (2)
end
fork=N,---,1

compute Ak using (7) and (8)
end
fork=1,- N

compute a K ysing (10)
end
if AJ<0

Ukt1 = Uk—i-AkaHk fork=0,- -1
elsereduce Ay .

The details on this tracking control scheme are re-
ported in (Kim et al., 2002). The associated parame-
ters are tuned to generate an appropriate control input
for each flight mode, and resulting controllers will be
integrated with the trajectory coordination layer.

3.4 Trajectory Generation

A trajectory generation layer is responsible for gen-
erating a desired trajectory or a sequence of flight
modes and triggering the proper control law in the
stabilization/tracking layer to execute it.

The trajectory generation layer employs a framework
called Vehicle Control Language (VCL). VCL is im-
plemented as a script language that decomposes a
given mission into a sequence of flight modes or way-
points with the provided command set, as will be
shown in Section 4.1. Using rapidly reprogrammable,
easily transmitted VCL codes, it is possible to isolate
the strategic planner and the stabilization layer. By

abstracting away the details of sensing and control of
each agent, the unified interoperability for high-level
planning across heterogeneous platforms is achieved.
Yet by considering the dynamics of each vehicle in
high-level planning, the overall system can achieve
real-time performance. A VCL module consists of
the user interface on the ground station, the language
interpreter, and the sequencer on the FMS. For a given
flight pattern, the VCL code may be generated using
a graphic user interface, or manually and uploaded as
an ASCII file to the flight computer for a sequential
execution.

4. EXPERIMENTS

In this section, the performance of the proposed hi-
erarchical FMS is evaluated in a series of test flights
of three distinct scenarios: (1) way-point navigation
using a batch (or preprogrammed) VCL mode, (2)
a pursuit-evasion game employing a dynamic VCL
mode, and (3) high-speed tracking of a moving target
assisted by the on-board vision computer.

4.1 Way-point Navigation: Batch VCL Mode

In this mode, the VCL execution module assumes the
highest hierarchy in the guidance of the RUAV. A
lawn-mowing pattern as shown in Fig. 3 is used as a
sample trajectory and the corresponding VCL codes
are generated in the strategy planner as a text file. The
flight mode, way-point, and other optional parameters
are extracted in each line of VCL code and then sent
to the trajectory coordination layer. Upon receiving
a new VCL command, it activates a suitable control
module for the current flight mode associated with
the target way-point and other options. The real-time
control outputs generated by the stabilization/ tracking
layer are sent to the actuators on the host RUAV. The
navigation measurements are reported to all the layers
for feedback control and other supervisory tasks.

4.2 Pursuit-Evasion Game: Dynamic VCL Mode

This experiment evaluates the performance of the
FMS in a probabilistic pursuit-evasion game (PEG) (Kim
et al., 2001). The goal of pursuers is to “capture”
evaders in a given grid-field. An evader is considered
as captured when it is located within a certain range
(e.g., 1.5 m) from a pursuer and it is in the pursuer’s
visibility region. The initial locations of evaders are
unknown a priori. At each discrete time instant, the
group of pursuers, consisting of RUAVs and/or un-
manned ground vehicles (UGVS), is required to go to
the requested way-points and take measurements of
their own locations and of any evaders within their
visibility regions using sensor-suites. This measure-
ment is used to decide the pursuers’ next action that
minimizes the capture time. From the pursuers’ point
of view, this PEG i |s modeled as a POMDRP, i.e., a tuple
(8,4,7T,2,0,R)?:

2 Random variables are indicated in bold type according to the
usua convention.



TakeoffTo(0,0,-5)rel;

Hover (0,0,0)rel heading=270deg duration=10s;
FlyTo(0,-5,0)rel vel=0.5m/s stopover autoheading;
Hover (0,0,0)rel heading=0deg duration=10s;
FlyTo(5,0,0)rel vel=0.5m/s stopover autoheading;
Hover (0,0,0)rel heading=270deg duration=10s;
FlyTo(0,-5,0)rel vel=0.5m/s stopover autoheading;
Hover (0,0,0)rel heading=180deg duration=10s;
FlyTo(-5,0,0)rel vel=0.5m/s stopover autoheading;
Hover (0,0,0)rel heading=270deg duration=10s;
FlyTo(0,5,0)rel vel=0.5m/s stopover autoheading;
Hover(0,0,0)rel heading=0deg duration=10s;
FlyTo(5,0,0)rel vel=0.5m/s stopover autoheading;
Hover (0,0,0)rel heading=270deg duration=10s;
Land;
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Fig. 3. A VCL code for lawn-mowing pattern and

flight experiment result

e S is a finite set of states of the world, i.e., the
configurations of the pursuers and evaders in the
given field,

e A4 is afinite set of actions;

e T:S5x4— PD(S) is a transition function.
T(s';s,a) =P(s(t+1)=¢|s(t) =s,a(t) = a)
is the probability of landing in the state s' € S
under the action a € A from the state s € S;

e Z is a finite set of observations the pursuer can
experience of its world;

e O:5x4— PD(Z) is the observation function.
O(z,5,a-1) =P(z(t) =z | s(t) =¢,at—1) =
at_1) Is the probability of making observation z
given that the pursuer took action a; and landed
in state s';

e R:5x4x Z— Risareward function. r(s,as,z)
1 if s corresponds to the evader-captured config-
uration and O otherwise.

The pursuers’ belief state, r]t(s) L2P(s(t) =s|Ar1=
Ai_1,Zt = Z;) denote the conditional probability that
the world is in state s given r]?s) £ P(s = s), and
the action and observation histories, i.e., Ai_1 =
{ag,---,ar-1}, and Zt = {zo,---,z}. Given that the
pursuer observes z;1 after applying a;, the recursive

belief state dynamics can be obtained by applying
Bayes’ rule

Fig. 4. Snapshots of 1 vs. 1 Pursuit-Evasion Game (P:
Pursuer RUAV, E: Evader UGV)
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whose denominator can be treated as a normalizing
factor, independent of s’. The strategic planner im-
plements a variety of computationally-efficient sub-
optimal policies, including a greedy policy with re-
spect to n+1(s’), under which the location in the pur-
suer’s one-step reachability region with the highest
probability of containing the evader at the next step is
selected as the way-point for the pursuers. This infor-
mation is sent to the pursuers in a VCL code via wire-
less communication and processed by the on-board
VCL execution module. Fig. 4 shows a PEG of one
greedy aerial pursuer vs. one greedy ground evader in
a 20m x 20m field. The number of participating agents
can be easily changed. The setup of one aerial pursuer
is shown so that the load of RUAV is maximized.
Along with the trajectories for the RUAV pursuer and
the UGV evader, the evolution of the probabilistic
map is shown as the gray-scale background and the
square represents the visibility region of RUAV. The
RUAV pursuer catches the evader in 133 seconds. This
experiment shows that the proposed control law and
dynamic VCL are well-suited in a hierarchical control
structure for the PEG.

4.3 High-Speed Position Tracking

In this scenario, an RUAV is required to track a mov-
ing ground object, after the RUAV detects it. The vi-
sion computer estimates the relative position of the
ground target by extracting a special feature of a
marker detected by a camera (Sharp et al., 2001). The
high-rate position-tracking request, e.g., at 3 Hz in this
case, activates a specially-tuned way-point navigator.
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Fig. 5. Tracking control of ground target

In Fig. 5, the trajectories of the RUAV and UGV are
shown. The FMS shows satisfactory tracking perfor-
mance with a small error attributed to wind gusts. In
the middle of the experiment, it was noticed that the
vision computer ceased sending the reference trajec-
tory for about 8 seconds. The FMS demonstrates its
fail-safe feature in this faulty situation by following
an expected trajectory of targets until next command
is received.

5. CONCLUSION

This paper has shown the design/implementation pro-
cedure and effectiveness of a hierarchical structure
for an RUAV flight control system. The experimen-
tal results validate the satisfactory performance of
the multi-functional flight management system con-
structed on Berkeley RUAVs in the three exam-
ples considered in this paper: way-point navigation,
pursuit-evasion game and tracking of a moving target.
Further research effort will be exercised to expand the
capability of the flight management system with rich
strategy planning logics and increased robustness in
order to narrow down the gap between current RUAVS
and intelligent flying robots.
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