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Abstract

In this paper the problem of conflict resolution for two
noncooperative aircraft on a fixed altitude is consid-
ered. We formulate the problem into a differential
game, and then apply the Lie-Poisson reduction on the
dual of the Lie algebra of the special Euclidean group.
The reduced Hamiltonian dynamics is thus derived and
can be integrated explicitly backwards in time. We use
hybrid automata to describe the solution to the reduced
dynamics as well as the aircraft maneuvers in the game.
The safe portion of the target set frontier is calculated,
and the solution to the boundary of the safe portion is
also derived.

1 Introduction

With the rapid growth of air traffic over the past
decade, air traffic management is currently an area of
great research interest [1, 2, 3]. An important notion in
the next generation air traffic management is free flight,
in which each aircraft would be able to optimize its own
trajectory according to certain factors such as safety,
fuel economy and passenger comfortableness. Conse-
quently, the aircraft would have much more flexibility
to choose airway than in the conventional fixed route
system. In order to maintain the standard safety re-
quirement, free flight renders a tremendous complexity
on conflict detection and resolution. In [4], a differ-
ential game approach was proposed for noncooperative
conflict resolution in which each aircraft develops a res-
olution strategy for the worst possible action of the
other aircraft. For the case in which many different
agents have conflicting objectives, noncooperative dy-
namic game theory provides a natural framework.

In this paper, following the work of [5], we develop a
solution for two noncooperative aircraft conflicts on a
fixed altitude. The main contribution of this paper is to
derive the explicit solution to the reduced Hamiltonian
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dynamics of the differential game. This solution can be
nicely described by the executions of hybrid automata.
With this sclution, we are able to find the possible
aircraft maneuvers.

The outline of the paper is as follows. Section 2
presents some background material. In Section 3, a
differential game framework is set up to solve the con-
flicts between two noncooperative aircraft on a fixed
altitude, and the reduced Hamiltonian dynamics is de-
rived by Lie-Poisson reduction. In Section 4, the solu-
tion to the reduced dynamics is obtained and the hy-
brid automata to describe this solution is given. With
this solution, all the possible aircraft maneuvers for
evader and pursuer under optimal control and worst
disturbance are derived. Section 5 presents the com-
putation of the safe portion of the target set frontier
and the solution to the boundary of the safe portion.
A conclusion is given in Section 6.

2 Lie-Poisson reduction on Poisson manifold

In this section, we present some background material.
Readers can find more details in {6, 7, 8].

Let G be a finite dimensional Lie group with identity
e. Denote the Lie algebra of the Lie group G as g. Let
X, be a controlled curve in g, that is,

Xe(u) = imXi, (1)
=1

where u; are controls and the X; span an m-
dimensional subalgebra of g, m < n = dim(g).

Let {Xy,...,X,} be a basis for g, {X',...,X™} be
the corresponding dual basis for g*. The structure con-
stants C¥, are defined by

[Xa, Xs] = 3 ChXa (2)

d=1

where a, b run from 1 to n. Identify the set of functions
on g with the set of left invariant functions on T*G
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endows g* with Poisson structures given by

aF 0G
b . g Cﬂ.blud B.U Bub M (3)

{F: G}:l: (1) =

where p2 = 37| p1; X*. We present the standing theo-

rem of this paper as follows.

Theorem 1 (Theorem 13.6.2, [7} } Let G be a Lie
group and let H : T*G — R be a left invariant Hamil-
tonian. Let h: g* = R be the restriction of H to T, G.
Fora curvep(t) €T (t)G’ let p(t) = (T, Lgy) - p(t) be
the induced curve in g*. Assuming that g(t) satisfies
the differential equation

. ok
g= TeLgEa (4)

where p = p(0), the following are eguivalent:

(8) p(2) is an integral curve of Xp; i.e., Hamilton’s
equations on T*G hold;

(b) for any F € C*(T*G), F = {F,H}, where {,}
is the canonical bracket on T*G;

(c) for any f € C=(g*), we have f = {f,h}_, where

{, }- is the minus Lie-Poisson bracket;
(d) wu(t) satisfies the Lie-Poisson equations

d,
— = njaun (5)

where adg : g — g is defined by aden) = [£, 7] and
ad; is its dual, i.e.,

o = {ps, B} = Z cl,,ud (6)

bd=1

3 Differential game approach to aircraft
conflict resolution

In this section, we introduce the kinematics of an in-
dividual aircraft on a fixed altitude, and then present
a differential game approach to aircraft conflict resolu-
tion. For the early work on this topic, see [4, 5.

Suppose that there are two aircraft on a fixed altitude,
the dynamics of aircraft i can be described by the fol-
lowing state equations

i‘f = v; CO8 ¢;‘
P = v;sin; (7
qvb'i = Wi,

where (x;,¥;) is the position and ¢; is the heading of
aircraft ¢, and #;, w; are the airspeed and angular ve-
locity respectively. Let

cos¢; —singd; x;
gi = [singi cos¢i i, (8)
0 0 1

thus g; € SE(2), the special Euclidean group on the
plane. Take the standard coordinate map (¢,z,y) of
SE(2), and let

6 .
Xe | +v6x|e7 (g)

we have

Xg=TeLy(X,)

10
= w-é% |, +v cos(qﬁ(g))c% |, o sm(¢(g))a% .10

Hence system (7) is left invariant in SE(2). The Lie
algebra of SE(2) is se(2), which is spanned by

d
Xlly = 55'9’
X| —COS(¢(9)) | + sin( ¢(g))3 | (11)
Xsl Sm(¢(9)) | + cos(¢{g) |

Since [ X1, X2] = X;, [X41, X3) = — X0, and (X5, X3] =
0, where [, ] is the Lie bracket on smooth vector fields,
the structure constants are given by

Cly=0, C},=0, C)=1
Cly =0, Ch=-1, Ch=0; (12)
C%a = 0, 0223 = D, 033 = 0.

According to the current standards of Federal Avia-
tion Administration, the aircraft must be separated by
5 nautical miles laterally and 2,000 ft vertically [5].
Hence for two aircraft on the same altitude, the goal of
each aircraft is to remain outside a target set

T = {(91,92) € SE(2) x SE(2)}{(g1,92) <0}, (13)

where {{g1,92) = (22 — 21)* + (y2 — 1)? — 5°. When
aircraft 1 is uncertain about the action of aircraft 2, its
safest strategy is to fly beyond the minimum separa-
tion with aircraft 2, regardless of the action of aircraft
2. Therefore, we formulate this problem as a zero-sum
noncooperative differential game with two players: con-
trol vs. disturbance. The control is the input of aircraft
1w :={v;,un) € U and the disturbance is the input
of aircraft 2 d := (ve,ws) € D. Here the control and
disturbance sets U and D are compact sets in R?:

= (Wi, ] (Wi, w M])’

D = ([v3",v3 ] [wi®,wy ID:

(14)

1664



and the corresponding control and disturbance spaces
are defined as: U = {u(-) € PC*(R) x PC*(R) |u(r) €
UVr e R}, D= {d() € PCR) x PC*(R) |d(7) €
D, V7 € R}, where PC°(R) is the space of piecewise
continuous functions on K.

Consider the two-player, zero-sum differential game
over the time interval [t,0], where ¢ < 0, with cost
functions defined by

Jg1 (-} 92(), (), d(-), 1) = Ug:(0),92(0)).  (15)
Because we are mainly concerned with the safety is-
sue, the cost function depends only on the final state
and the Lagrangian is identically zero. When the La-

grangian is chosen as a function of the control and dis-
turbance inputs, the Lie-Poisson reduction still works.

Since aircraft 1 attempts to maximize the cost index,
regardless of the action aircraft 2 might take, thus the
optimal control and worst disturbance action are ob-
tained as

u' = argmax min J(g1 (), g2(-), u(), d(), 1)

6
d' = argmin max J(31 (), g2()s (), d(), 1) )

(1

The game is said to have a saddle solution (u”,d*) if
the optimal cost J*(g1,g2,t) does not depend on the
order of the play [9]:

J* (g1, 92,1) = max min J{g1(-} 92(-), u(-), d(-), t)

- (17}
= minmax J(g: (), 92(), u(-),d(); )
To solve this differential game, let p; = pld¢ + pldz +
pldy € T, SE(2),i=1,2, then
T Lg.(ps) = pide + pide + pidy,  (18)
where
4 =p
pi = P cos(¢(g)) + p? sin(4(g)) {19)
pi = —p}sin(g(9)) + pf cos($(g))-
The Hamiltonian is given by
H(gl 1 §2,P1,P2, U, d)
= (ph T3L91 (Xe,l)) + (stTeng (X€.2)) (20)
= (T:Lg]pls Xe,l) + (Te'ngpLXeﬂ)
= piwn + o + pywe + pdvg,
where X, ; = w,-a%| + vigy | = 1, 2. It follows

that the optimal input u* a.nd worst disturbance d*
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are given by

w’ + wi wy! —wi
P= s
M m m
. U4 -
Ul ! 2 1 +8 n(ﬂf) L 2 ! 3
a (21)
. _ Wy Uy 1 Wy —wf
M m M m
" Uz + Vo ’U2 .
Uy = ) — 5§ (M%) 2 2 )
and the optimal Hamiltonian H* is
H*(g1,92,p1,p2) = plw + v} + phws + pdv. (22)

Since H* is G-invariant, by Theorem 1, regular ex-
tremals are given by integral curves of the reduced
Hamiltonian H* on se*(2)_ x se*(2)—. The Poisson
bracket of two functions ¢ and ¢ on se*(2)- can be
calculated through (3):

d¢ 6
G- =- Y Chuall e ()
a,bd=1 Ha
From (6}, the reduced Hamilton’s equations are
e
#] = pwi #3 = g (24)
Hy = gy, 3 = ~pgw;.
The terminal conditions for p,, p: are given by
P1(0) = (0,2(z1(0) — 72(0)), 2(42(0) — 32(0)))”, (25)
P2(0) = (0,2(22(0) — 22(0)), 2(02(®) — 12 (O)))" -

Therefore from (19), the terminal conditions for ,u.{, ,ug
are

#i(0) =0
£1(0) = 2(21(0) — 22(0)) cos 1 (0)
+ 2(11(0) = y2(0)) sin ¢, (0)
£#3(0) = —2(21(0) — 2(0)) sin 6, (0)
1 + 2(y1(0) ~ y2(0)) cos ¢1{0), (26)
1a(0) =0
p3(0) = 2(x2(0) — ;(0)) cos $2(0)
+ 2(y2(0) — y1(0)) sin ¢2(0)
13(0) = —2(22(0) — 2, (0)) sin ¢4 (0)

+ 2(12(0) — »1(0)) cos ¢2(0).

Thus the optimal trajectory can be obtained by solving
the differential equation (7), {24) with the boundary
condition {26} and initial condition of ¢; and g¢; at time
t.



4 Solutions to the differential game

From (21}, it is clear that the optimal control is de-
termined by the sign of u} and g2, and the worst dis-
turbance by the sign of u} and u3. The closed form
solution to the differential game can be derived pro-
vided that the dynamics of the reduced Hamiltonian
H* on se*(2)_ x se*(2).. can be solved together with
the aircraft dynamics (7). In this section, we assume
the final state for the optimal cost index is known, and
solve the differential equation backwards.

Assume that (z1(0) — z2(0))® + (:1(0) — #2(0))*
52, cosa (z2(0) — 21(0))/5, and sina
{y2(0) — y1(0))/5, we have that

#1(0) =0

#3(0) = —10cos(¢n(0) — )

#3(0) = 10sin{¢1(0) — a),

p3(0) =0

#5(0) = 10cos(¢2(0) — a)

#5(0) = —10sin(¢2(0) - ).
Without loss of generality, let —7 < $1(0) —a < 7

and -7 < ¢2{(0) ~ @ < 7. Further, we assume the
constraints on the dynamics of the aircraft:

vM >0,

(27)

v >0, wP <0, wM >0, (28)

which implies that the aircraft can turn either clockwise
or counterclockwise, and fly only forward.

Solving the differential equation (24) with the bound-
ary condition (27) explicitly, we find that the solution
to w1 can be described by the non-zeno executions of
the hybrid automata shown in Figure 1. For the de-
tails on the hybrid automaton, see [10]. Here all the
resets of the hybrid automata in Figure 1 are iden-
tity maps, and all the discrete transitions are triggered
by the sign change of pl. Note that the hybrid au-
tomata are endowed with the final states instead of the
initial states and the time goes from negative infinity
to final time instant ¢t = 0. If -3 < $1(0)—a < O
or 0 < (0) ~a < §, the solution to g, is ac-
cepted by the hybrid automaton on the top, which
have only two discrete states; if 5 < ¢1(0) —a < 7
or =1 < ¢1(0) —a < —7, the solution is accepted
by the hybrid automaton on the bottom, which have
four discrete states. Further, it turns out that the ex-
ecutions of the hybrid automata for p; are periodic:
the continuous part has a minimum positive period
T = 2|¢1(0) — Gl(;liq' - # , and the discrete part
has a minimum positive period either 2 or 6, depend-
ing on which quadrant ¢; (0} — « les in. The solution
t0 u2 can be obtained similarly.

Since the signs of p; determine (v, w}) and (vi, w3)
through (21), the aircraft dynamics (7) switches the
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Figure 1: Hybrid automata for u

optimal control and worst disturbance between their
boundaries at the same time instant and in the same
transition sequence as ;. From the trajectory of re-
duced dynamics y;, the aircraft state g; can be derived
explicitly by solving the system dynamics (7). De-
pending on which quadrant ¢;(0) — « Hes in, there are
four different cases for the solution to g;(t). Each case
yields an aircraft maneuver as shown in Figure 2. For
t < —2|¢:(0) — x| f]w? (0)), the trajectory of g; switches
the maneuvers in the following sequences:

(A) « D) « (o) « (D) «
B) « (O « (B « (€ «
(C) + (B) + (C) « (B) «
D) « (A) « (D) « (A) «

For example, the maneuver ahead of (A) is (D), and
what precedes even further is (A) again. The complete
trajectory of ¢; can be obtained by piecing together all
the maneuvers according to the above sequences.

5 Safe portion computation

QOur poal is to maintain the two aircraft beyond the safe
separation, i.e., keep the trajectory of system (7) from
entering the prespecified target set T defined in (13).
The Lie derivative of I(gy,g2) with respect to X, is
ol ) T
Lx,lg1,92} = =——(w1,v1 cos 1,11 8in ¢}
91 (29)

+ ﬁ (wa, w2 COS ¢ha, U Sin 2 )7 .

Og2



(A) (B)
(€) (D)
~ Figure 2: Aircraft maneuvers
For those (g1, g2) on 97,
Lx,l{g1,92) = 10{-v1(0) cos{¢1 (0) — o) (30)
+ v2(0) cos(p2(0) - a)).
Let
M m
Li(g1) = 21 cos(d1 (0) ~ a)
My (31)
= | cos(¢1 (0) - Q)JL_Z“L,
M m
La(g2) = 2% cos(9(0) - )
A om (32)
~ [ cos(¢2(0) ~ @) H—5-,
then
Lx,Hg1,92) = 10(L2(g2) — La{gn))- (33)

We define the safe and unsafe portions of the target set
frontier T as follows [4]:

Safe portion of 8T

. 34
= {(,92) € 0T | 3u,V¥d, Lx,l(g1,g2) > 0}, (34)

Unsafe portion of 8T
= {{91,92) € 0T |Vd,3u, Lx, l{g1,92) < 0}.

Since Lx_l{g:,g2) is separable in w and d, it is clear
that those (g1,g2) on 8T for which Lz{g2) > Li(q)
constitute the safe portion of T, and those (¢1,92)
on 8T for which La(gs) < Li(g1) constitute the unsafe
portion. Now we consider only the case v* = vJ* = v™,
oM = v = oM, and wP = —w, wM = w, wherc
w € RY. Then we have

(35)

Safe portion of 8T
= {{g1,92) € IT| — [¢1(0) — ] < $2(0) —  (36)
<le1(0) — aj},

Unsafe portion of 8T
={{91,92) € IT| — 7 < $a(0) — @ < —|¢:(0) - @, (37)
or [¢(0) — o] < ¢2{0) —a £ 7}

We present the relative kinematic model for two air-
craft, which describes the motion of aircraft 2 with re-
spect to aircraft 1:

z,(t) = cos 1 () (z2(t) — 1 (2))
+ sin @y (£) (y2(2) — y1(t))

yr(t) = —sin g, (£)(x2(t) — =1 (1)) (38)
+cos¢i (t)(y2(8) - 1 (t))

ér(t) = ¢a(t) — @ (1).

We illustrate the safe portion of 8T in the relative

¢T

Figure 3: Thc safe portion of 37 in relative model.

model in Figure 3. With the solution for y;, it can be
derived that the Hamiltonian H* keeps constant along
the optimal trajectory, i.c., H*(r) = H*(0), for all 7 €
{t,0]. Furthermoere,

H*(0)
=07 (0)3(0) + v3(0)1:3(0)

= 301 + ol +sg(R OO ~ IO (30)

+ 508 o — sen(BO) e — op))k0)
= 10(La(g2) = Li(g1))-

Thercfore H*{0) = 0 implies ¢1{0) — o = £(¢2(0) — ).
Note that it is nothing but the boundary of the safe
portion of dT. With the solutions of the differential
game, we can compute the solution to the boundary
of the safc portion of 9T by intcgrating the system
cquation backwards in time.

Case I ¢1(0) = ¢2(0)
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‘We have the solution as follows:
z,(t) = K cos(¢ (1) — @)

yr(t) = —Ksin{gh(t) - @) (40)
#:(t) =0,
where ¢ (t) = wit + ¢;(0). Furthermore,
dy, ™ B
i = tan(~2— (61(8) — a)). (41)

Therefore for any t < 0, the trajectory of (yr,z,) is
tangential to 8T, and ¢ (t) = ¢2(t). The trajectory
for this case is depicted in Figure 4.

Figure 4: ¢,(0) = ¢2(0): Left: Top view of the trajec-
tory in the relative model; Right: trajectories
for aircraft 1 (solid) and aircraft 2 {dashed) re-
spectively.

Case IT  $:1(0) —a = —{¢2(0) — @)

When ¢ = 0, we have

dyr
dzy |y

= tan(z — (¢1(0) — ), (42)

thus the trajectory of (y,,z,) is tangential to T at
t = 0. The solution for this case is omitted due to its
length, and the trajectories are shown as in Figure 5.
It turns out that for all ¢ < 0, vj(t) = v3(1), wit) =
w3(t), and ¢ (t) —a = —(¢2(t) — a).

Note that in both cases, the trajectories are periodic
and the minimum positive period is 4|¢ (0) — af/w.

6 Conclusion

By applying Lie-Poisson reduction to a differential
game on the special Euclidean group, we study the two
aircraft conflict resolution problem in a noncooperative
circumstance. The hybrid automata is used to describe
the solution to the reduced Hamiltonian dynamics as
well as the trajectory switching among different aircraft
maneuvers for evader and pursuer. The safe portion of
the target set frontier is calculated, and the solution to
its boundary is also obtained. It may then be possible
to perform efficient computation of solutions to hybrid
systems.

Figure 5: Left: Trajectory in the relative model; Right:
Top view of the left figure
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