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SUMMARY

The interacting continuous and discrete dynamics in hybrid systems may lead to Zeno executions, which are
solutions of the system having in"nitely many discrete transitions in "nite time. Although physical systems
do not show Zeno behaviour, models of real systems may be Zeno due to modelling abstraction. It is hard to
analyse such models with the existing theory. Since abstraction is an important tool in the hierarchical
design of hybrid systems, one would like to determine when it may lead to Zeno models. Zeno hybrid
systems are studied in detail in the paper. Necessary and su$cient conditions for the existence of Zeno
executions are given. The Zeno set is introduced as the � limit set of a Zeno execution. Properties of the
Zeno set are derived for a fairly large class of hybrid systems. Copyright 2001 � John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hybrid systems have proved to be an e!ective tool for the modelling, analysis and design of
a large number of evolving technological systems, in which digital devices interact with an ana-
log environment. Systems of this type are common in embedded computation, robotics,
mechatronics, avionics, and process control. Owing to the rapid advances in computer tech-
nology, hybrid systems are becoming increasingly relevant and important and consequently have
attracted considerable research interest. However, despite recent progress, there are a number of
fundamental properties of hybrid systems that have not been investigated to su$cient detail.
These include existence and uniqueness of executions, which have only recently been addressed
[1}4]. Another such issue is Zeno executions.
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Roughly speaking, an execution of a hybrid system is called Zeno, if it takes in"nitely many
discrete transitions in a "nite time interval. Physical systems are, of course, not Zeno, but a hybrid
model of a physical system may be Zeno, due to modelling over-abstraction. Since abstraction is
an important tool for handling complex systems, understanding when it leads to Zeno hybrid
systems is essential, for example for the development of simulation tools for hybrid systems. Zeno
hybrid systems, or systems &&close'' to Zeno, make computer simulations imprecise and time-
consuming.Most simulation packages developed for hybrid systems, such as Dymola [5], Omola
[6], and SHIFT [7], get stuck when a large number of discrete transitions take place within
a short time interval. It is therefore important to understand the Zeno phenomenon in order to
develop e$cient computational tools for hybrid systems.
It is di$cult to draw conclusions about Zeno systems using the available theory. Zeno hybrid

automata have been studied to some extent in the theoretical computer science literature [8}12].
The continuous dynamics in those cases, however, are quite limited. Zeno hybrid automata with
more general non-linear vector "elds have only recently been investigated [13}16]. The lack of
theoretical results has often lead researchers to impose non-Zeno assumptions by default. For
example, this is the case in recent work on hybrid control design [17}20]. The work presented in
this paper is a "rst step towards building a suite of results to characterize Zeno hybrid systems.
Our results are useful, for instance, when designing hybrid controllers. Since a uni"ed theory for
hybrid control design does not yet exist, one has to prove that the closed-loop system is well
posed on a case-by-case basis; this includes proving that the system is non-Zeno (see for example
Reference [21]).
The main contribution of the paper is to present some fundamental properties of Zeno

executions and Zeno hybrid automata. We introduce the Zeno set as the � limit set of a Zeno
execution. A complete characterization of the Zeno set is given for a few quite general classes of
hybrid systems. The features of the resets turn out to be very important. For example, we show
that if the resets are all identity maps or all contracting on the guard, the continuous part of the
state converges. We also investigate the conditions under which there are no Zeno execution. In
particular, it is proved that for hybrid automata with identity resets on the guard, if the guards
and the interior of the domains are disjoint and if the boundaries of the domains for any cycles are
also disjoint, then the hybrid automata do not accept Zeno executions.
The outline of the paper is as follows. In Section 2 we introduce the notation and the de"nitions

of hybrid automata and execution (Section 2.1), followed by a number of examples of Zeno hybrid
automata from the areas of modelling, simulation, veri"cation, and control (Section 2.2). The
examples are used to motivate the analysis in the rest of the paper. Zeno hybrid automata and
Zeno sets are introduced in Section 3, and some properties of Zeno sets are discussed in Section
3.2. Section 3.3 presents both necessary and su$cient conditions for the existence of Zeno
executions. A summary and conclusions are given in Section 4. To maintain the #ow of the paper,
all technical proofs are given in the appendix.

2. BACKGROUND AND MOTIVATION

2.1. Hybrid automata, executions and underlying assumptions

For a "nite collection < of variables, let V denote the set of valuations of these variables. We use
lower case letters to denote both variables and their valuations. We refer to variables whose set of
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�The domain is sometimes called the invariant set in the hybrid system literature in computer science.
�This can be done without loss of generality, since if a hybrid automaton violates these conditions, one can construct
another hybrid automaton that accepts exactly the same set of executions and satis"es the conditions [2].

valuations is "nite or countable as discrete and to variables whose set of valuations is a subset of
a Euclidean space as continuous. For a set of continuous variables X with X"�� for n*0, we
assume that X is given the Euclidean metric topology, and use � ) � to denote the Euclidean norm.
For a set of discrete variables Q, we assume that Q is given the discrete topology (every subset is
an open set), generated by the metric d

�
(q, q� )"0 if q"q� and d

�
(q, q�)"1 if qOq�. We denote

the valuations of the union of Q and X by Q�X, which is given the product topology generated
by the metric d((q, x), (q�, x�))"d

�
(q, q�)#�x!x��. We assume that a subset ; of a topological

space is given the induced topology, and we use ;M to denote its closure, ;� its interior,
�;";M �;� its boundary, ;� its complement, �;� its cardinality, and P(;) the set of all
subsets of ;.
The following de"nitions are based on References [2,13,22].

Dexnition 1 (Hybrid automaton)
A hybrid automaton H is a collection H"(Q, X, Init, f, D, E, G, R), where

� Q is a "nite collection of discrete variables;
� X is a "nite collection of continuous variables with X"��;
� Init-Q�X is a set of initial states;
� f :Q�XP¹X is a vector "eld;
� D :QPP(X) is map assigning to each q3Q a subset of X called the domain� of q;
� ELQ�Q is a set of edges;
� G :EPP(X) is a map assigning to each edge e3E a subset of X called the guard of e; and
� R :E�XPP(X) is a reset map, assigning to each edge e3E and each x3X a subset of X.

We refer to (q,x)3Q�X as the state ofH. Throughout the paper, it is assumed that �Q�(R and
that f is Lipschitz continuous in its second argument. Further, we assume that for all e3E,
G(e)O� and for all x3G(e), R(e,x)O�.� A hybrid automaton can be represented by a directed
graph (Q,E), with verticesQ and edgesE. For an example, see Figure 1. For each vertex, q3Q, we
specify a vector "eld, f (q, ) ) and a domain, D(q). For each edge we specify a guard, G(e), and
a reset map, R(e, ) ) (which is suppressed if R(e,x)"�x�). The discrete part of the initial state is
indicated by a double circle and the continuous part by an arrow. Since there is a unique
graphical representation for each hybrid automaton, we will use the corresponding graph as
a formal de"nition in the examples.

De,nition 2 (Hybrid time trajectory)
A hybrid time trajectory is a "nite or in"nite sequence of intervals 	"�I

�
��
���

, such that

� I
�
"[	

�
, 	�

�
] for all 0)i(N,

� if N(R then either I
�

"[	
�
, 	�

�
] or I

�
"[	

�
, 	�

�
),

� 	
�
)	�

�
for all i and 	�

�
"	

���
for all 0)i(N.

A hybrid time trajectory is a sequence of intervals of the real line, whose end points overlap. The
interpretation is that the end points of the intervals are the times at which discrete transitions take
place. Note that 	

�
"	�

�
is allowed, therefore multiple discrete transitions may take place at the

same time. Since all hybrid automata that will be discussed are time invariant, we assume, without
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Figure 1. Water tank system and corresponding Zeno hybrid automation.

loss of generality, that 	
�
"0. Hybrid time trajectories can extend to in"nity if 	 is an in"nite

sequence or if it is a "nite sequence ending with an interval of the form [	
�
,R).

For a hybrid time trajectory 	"�I
�
��
���

, let 
	� denote the set �0, 1,2,N� if 	 is "nite and
�0, 1,2� if 	 is in"nite. We use q and x to denote the time evolution of the discrete and
continuous state, respectively (with a slight abuse of notation). Here q is a map from 
	� toQ and
x"�x� : i3
	�� is a collection of C� maps. An execution is now de"ned as a triple �"(	, q,x) in
the following way.

Dexnition 3 (Execution)
An execution of a hybrid automaton H is a collection �"(	, q, x), where 	 is a hybrid time

trajectory, q : 
	�PQ is a map, and x"�x� : i3
	�� is a collection of C� maps x� : I
�
PX, such

that

� (q(0),x�(0))3Init,
� for all i3
	� and for all t3I

�
, x �(t)"f (q (i),x�(t)) and for all t3[	

�
,	�
�
), x�(t)3D(q(i)),

� for all i3
	�, e"(q(i), q(i#1))3E, x�(	�
�
)3G(e), and x���(	

���
)3R(e,x�(	�

�
)).

We say a hybrid automaton accepts an execution �. For an execution �"(	, q, x), we use
(q

�
, x

�
)"(q(0),x�(0)) to denote the initial state of �. The execution time T(�) is de"ned as

T(�)"��
���

(	�
�
!	

�
)"lim

���
	�
�
, where N#1 is the number of intervals in the hybrid time

trajectory. An execution is called xnite if 	 is a "nite sequence ending with a compact interval, it is
called inxnite if 	 is either an in"nite sequence or ifT(�)"R, and it is called Zeno if it is in"nite
but T(�)(R. For a Zeno execution �, we call 	

�
"T(�) the Zeno time. We use E�

�
(q

�
, x

�
) to

denote the set of all in"nite executions of H with initial condition (q
�
,x

�
)3Init. All the hybrid

automata considered in this paper are assumed to be non-blocking, in the sense that
E�
�
(q

�
,x

�
)O� for all (q

�
, x

�
)3Init. Conditions for determining when this is the case are given in

Reference [2].
A state (q, x)3Q�X is called reachable by H, if there exists a "nite execution �"(	, q,x) with

	"�I
�
��
���

and (q(N),x�(	�
�
))"(q, x). We use Reach

�
to denote the set of states reachable by

a hybrid automaton H. Throughout this paper, we assume that Reach
�

-�
�	Q

�q��D(q).
Conditions under which this is the case can be established using invariant assertions, proved by
induction arguments over the length of the executions [2].
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2.2. Motivating examples

It should be noted that the Zeno phenomenon is a strictly hybrid phenomenon in the sense that
both continuous dynamics and discrete dynamics are needed to generate Zeno executions. In this
section, we illustrate how Zeno hybrid automata appear in di!erent areas of hybrid systems. In
particular, we give examples of Zeno hybrid automata in modelling, simulation, veri"cation, and
control.

2.2.1. Modelling and simulation. Hybrid automata provide a natural framework for developing
models with abstracted dynamics. This is a useful approach when analysing complex systems, and
for control design it often leads to an appealing hierarchical system structure. However, if the
abstraction is not done carefully, erroneous conclusions may be derived from the model, as
illustrated by the following example.

Example 1 (Water tank system)
Consider the water tank system of Alur and Henzinger [9], shown in Figure 1. Here x

�
denotes

the volume of water in Tank i, and v
�
'0 denotes the constant #ow of water out of Tank i. Let

w denote the constant #ow of water into the system, directed exclusively to either Tank 1 or Tank
2 at each point in time. The objective is to keep the water volumes above r

�
and r

�
, respectively

(assuming that x
�
(0)'r

�
and x

�
(0)'r

�
). This is to be achieved by a switched control strategy

that switches the in#ow to Tank 1 whenever x
�
)r

�
and to Tank 2 whenever x

�
)r

�
. It is

straightforward to show that the unique in"nite execution that the hybrid automaton
accepts for each initial state is Zeno, if max�v

�
, v

�
�(w(v

�
#v

�
. The Zeno time is

	
�

"(x
�
(0)#x

�
(0)!r

�
!r

�
)/(v

�
#v

�
!w). Of course, a real implementation of the water tank

system cannot be Zeno, but instead one or both of the tanks will drain. The Zeno model does not
capture this. The actual scenario depends on the dynamics of the switch, which in the model was
assumed to be instantaneous. For further discussions on this example, see Reference [13].
It is di$cult to run e$cient computer simulations for systems that show a large number of

discrete transitions during a short time interval. Often, either the numerical error or the
simulation time (or both) will be unsatisfactory [13, 14]. One class of systems where this problem
arises is mechanical systems with friction. If the friction is modelled as Coulomb friction, then the
frictional forceF

�
is given by F

�
"!K sgn v, where v is the relative velocity of the contact surfaces

and K'0 is a constant. We may easily model a system with Coulomb friction as a hybrid
automaton, where the domains and the guards depend on the sign of the velocity. Frictional
systems sometimes have the so-called stick}slip motion, which means that the motions is divided
into two phases both of non-zero duration: one when vO0 and one when v"0 (for a simple
example see Reference [23]). For the hybrid automaton, the latter corresponds to a Zeno
behaviour, because it implies that the velocity switches in"nitely fast between a positive and
a negative value. Resolving Zenoness by introducing a new discrete state, which has a vector "eld
given by the continuous dynamics corresponding to the sticking motion, has been proposed for
simple examples [24, 25], but so far no rigorous method seems to have been developed. In many
cases, such a method would speed up the simulation considerably. Other simulation methods to
avoid Zeno include time-stepping methods [26]. It should be pointed out that modelling of
friction and impacts for rigid bodies is, of course, by itself a very active "eld, where advanced
mathematical tools are used to handle contacts in a consistent way [27]. The example here is
meant as an illustration of the multi-domain modelling approach taken in hybrid systems.
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2.2.2. Analysis and verixcation. Most of the veri"cation methods proposed for hybrid systems
seek to determine whether the set of states reachable by a hybrid automaton satis"es certain
properties. For example, model checking techniques involve computer algorithms that &explore'
the set of reachable states automatically. This approach, developed in theoretical computer
science for purely discrete systems, has been extended to timed automata [28], multi-rate
automata [29], hybrid automata with constant di!erential inclusions [30] and, most recently,
classes of hybrid automata with linear vector "elds [31].Deductive techniques, on the other hand,
seek to directly establish properties of the executions of the hybrid automaton, by proving, for
example, invariant assertions [32]. Though the analysis is not completely automated in this case,
the proofs may be assisted by theorem provers [33, 34].
These veri"cation techniques may lead to misleading claims when applied to Zeno hybrid

automata, since the set of states reachable by a Zenomodel may not re#ect the states reachable by
the underlying physical system. For example, for the water tank hybrid automaton (which is in
fact a multi-rate automaton) one can show that for all the reachable states the water in the tanks
will be above the desired low water marks. Clearly this cannot be the case for the physical system,
when the rate at which water is added to the tanks, w, is less than the total rate at which water is
removed, v

�
#v

�
, i.e., when the hybrid automaton model is Zeno.

Similar problems are encountered when one tries to extend Lyapunov type analysis techniques
to hybrid systems. This has led researchers in this area to explicitly add assumptions requiring the
system to be non-Zeno [18, 17].

2.2.3. Safe and optimal control. Methods for designing controllers that ensure that a hybrid
system is safe, in the sense that it does not reach an undesirable con"guration, have also been
developed. These methods, motivated by earlier work on purely discrete and purely continuous
systems, have been extended to timed automata [35], hybrid automata with constant di!erential
inclusions [36], and hybrid automata with non-linear vector "elds [22]. All the proposed
approaches su!er from the drawback that they allow the controller to &cheat' by forcing the
system to be Zeno, and thereby hiding the fact that unsafe states can be reached. This has again
forced researchers to a priori introduce non-Zeno assumptions. As an example consider the
following problem from free #ight air tra$c management [37].

Example 2 (Aircraft conyict resolution)
Consider two aircraft moving at the same constant altitude along straight line trajectories.

Introduce a set of co-ordinates that centres one aircraft at the origin and let (x
�
,x

�
) denote

the relative co-ordinates of the other aircraft. The dynamics of this system is given by
x
�
"!v

�
#v

	
cos �, x

�
"v

	
sin �, where v

�
(t)3[v

� �
, v�

�
]L(0,R) is the velocity of the "rst air-

craft, v
	
(t)3[v

� 	
, v�

	
]L(0,R) the velocity of the second, and �3 (!�, �) the constant relative

orientation of the aircrafts. If v
�
is treated as a control signal and v

	
as a disturbance signal, the

model describes a pursuit-evasion game with the "rst aircraft being the evader and the second the
pursuer. The evader would like to prevent the pursuer from getting closer than a certain distance,
which would de"ne an unsafe #ight con"guration. Solving the game [37] leads to a saddle
solution described by the hybrid automaton in Figure 2, where �(x)"sgnx

�
sin �#sgnx

�
cos �.

It is easy to verify that all executions accepted by this hybrid automaton avoid the unsafe set. The
con"guration may, however, still be unsafe in practice. The reason is that the hybrid automaton
accepts Zeno executions, for example, governed by the initial states depicted in the "gure. They
correspond to a situation where the evader constantly switches its velocity between v

�
"v

� �
and
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Figure 2. Zeno hybrid automaton describing a con#ict between two aircrafts.

Figure 3. Zeno hybrid automaton describing Fuller's phenomenon.

v
�
"v�

�
. This is, of course, not realistic, because there are some dynamics involved in the

switching. If this controller was implemented in practice, the system would most likely reach the
unsafe set through a chattering trajectory.
Zeno type behaviour may also arise for certain classes of optimal control problems.

Example 3 (Fuller+s Phenomenon)
The hybrid automaton in Figure 3 generates the optimal controls for the problem of minimiz-

ing the performance index ��
�
x	
�
(t) dt, p'1, with respect to the dynamics x

�
"x

�
, x

�
"u,

x(0)"x
�
O(0, 0), and the control constraint �u(t)�)1. The domains and the guards involve the

constant C"C(p)3(0, 1/2). It is possible to show that this hybrid automaton is Zeno [38]. In
optimal control, this is referred to as Fuller's phenomenon [39].
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Figure 4. Zeno hybrid automaton together with the continuous part of an execution
(x

�
solid and x

�
dotted).

3. ZENO HYBRID AUTOMATA AND ZENO EXECUTIONS

Zeno hybrid automata are de"ned in this section. The notion of Zeno set is introduced as the
� limit set for in"nite executions with "nite execution time. A number of examples are presented
to illustrate the characteristics of the Zeno set. For a related discussion see References [13}16].

De,nition 4 (Zeno hybrid automaton)
A hybrid automaton H is Zeno if there exists an initial state (q

�
, x

�
)3Init, such that all

executions in E�
�
(q

�
, x

�
) are Zeno.

Many models of real systems are Zeno, for example, the hybrid systems discussed in Section (2.2).
An example of a Zeno execution is given next.

Example 4 (Multi-level bouncing ball)
The hybrid automaton in Figure 4 (which is a variant of the bouncing ball automaton of

Reference [13]) accepts the execution illustrated by the simulation to the right. The continuous
part of the execution is shown for x

�
"(2, 0). It is easily checked that the hybrid automaton is

Zeno by explicitly deriving the sequence of time intervals �	�
�
!	

�
��
���

, which is a converging
geometric series.
It is clear that Zenoness is due to the interplay between the vector "eld, the resets, and the

guards. For example, if in Example 4 the resets of x
�
is replaced by x

�
:"x

�
/(dx

�
!1), where

d"1/�20x
�
(0), then it is easy to verify that �	�

�
!	

�
��
���

diverges as ��
���

�1/i�. Hence, the hybrid
automaton will not accept any Zeno executions in this case.

3.1. � limit sets and Zeno sets

To investigate the limiting properties of in"nite executions, we generalized the concept of � limit
set [40] to hybrid automata.

De,nition 5 (� ¸imit set)
A point (q( , x( )3Q�X is an � limit point of an in"nite execution �"(	, q, x), if there exists a

sequence ��
�
��
���

with �
�
3I

��
for some i

�
3
	�, such that as nPR, �

�
PT(�) and

(q(i
�
),x��(�

�
))P(q( , x( ). The� limit set S�LQ�X of an execution � is the set of all� limit points of �.
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The Zeno set is introduced as the � limit set of an in"nite execution that has "nite execution
time.

De,nition 6 (Zeno set)
An� limit point of a Zeno execution is called a Zeno point. The Zeno set of a Zeno execution is

the set of all Zeno points.
We use Z

�
LQ�X to denote the Zeno set. In other words, Z

�
consists of all cluster points of

sequences �(q(i
�
),x�� (�

�
))��

���
with �

�
3I

��
and i

�
3
	� such that �

�
P	

�
as nPR. We write

Q
�

"�q3Q : � x3X, (q,x)3Z
�

� for the discrete part of Z
�

and X
�

"�x3X : � q3Q,
(q,x)3Z

�
� for the continuous part (notice that, in general,Z

�
OQ

�
�X

�
). The Zeno set can be

empty, "nite, countable, or even uncountable. For all the examples in Section (2.2) the continuous
state converged to a unique value, i.e. Z

�
LQ��x( � for some x( 3X. In Example 4, we have

Z
�

"�(q
�
, (0, 0)), (q

�
, (3, 0)), (q

�
, (5, 0))�, so that Q

�
"Q and X

�
"�(0, 0), (3, 0), (5, 0)�. We

present a few more examples to illustrate other possibilities.

Example 5 (;ncountable Zeno set)
Consider a hybrid automaton H accepting a Zeno execution with Z

�
"�(q( , x( )�. Modify this

hybrid automaton into a new hybrid automaton H� by adding two components (x
�
, x



) to the

continuous state of H. For x
�
and x



, let the continuous dynamics in all discrete states be

x
�
"x



"0, the resets for all edges be

�
x
�

x


� :"�

cos � sin �
!sin � cos �� �

x
�

x


�

where � is a rational constant and the initial condition be �(1, 0)�. The guards and the domains of
H� are the obvious extensions of those of H. Then, the Zeno set of H� is
Z�

�
"�q( ���(x( ,x

�
, x



)3X�R� : x�

�
#x�



"1�. Hence, the Zeno set is an uncountable set.

Example 6 (Empty Zeno set)
Consider a hybrid automaton that accepts a Zeno execution with Z

�
"�(q( , x( )�. Append

a component x
�
to the continuous state with trivial dynamics x

�
"0, reset x

�
:"2x

�
and initial

condition x
�
(0)"1. Then, for all ��

�
��
���

with �
�
3I

��
and i

�
3
	� such that as nPR, �

�
P	

�
,

the sequence �x��
�
(�

�
)��

���
has no cluster point. The modi"ed hybrid automaton has no Zeno point

(its Zeno set is empty), since the augmented continuous state blows up.
The discrete part of the Zeno set, Q

�
, will be visited in"nitely often by a Zeno execution.

A discrete state being visited in"nitely often is, however, not necessarily in Q
�
, as shown by the

following example.

Example 7 (Discrete states visited in,nitely often)
Consider the hybrid automaton in Figure 5. It is easy to see that it accepts a Zeno execution

with Zeno time 	
�

"1. The Zeno set is Z
�

"�(q
�
, (0, 1))�. The discrete state q

�
is visited in"nitely

often by the Zeno execution, but still q
�

� Q
�
. The reason for this is that x

�
blows up in q

�
.

Lemma 2 in Section 3.3 gives conditions under which a discrete state that is visited in"nitely
often belongs to Q

�
.

For most hybrid automata, the discrete evolution of Zeno executions becomes periodic as the
Zeno time is approached. However, in Reference [41] hybrid automata that do not exhibit this
periodic behaviour are presented.
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Figure 5. Zeno hybrid automaton in Example 7.

3.2. Properties of Zeno sets

Determining the structure of the Zeno set can be very important in some cases. For example, if it
turns out that the continuous state converges ( �X

�
�"1), one may hope to de"ne extensions of the

Zeno execution beyond 	
�
using regularization techniques [13]. To study such properties of the

Zeno set we introduce the following de"nitions. The reset R is called an identity on G if for all
(q, q�)3E and for all x3G(q, q�), R(q, q�,x)"�x�. R is called non-expanding on G if there exists
�3[0, 1] such that for all (q, q�)3E, for all x3G(q, q� ) and for all x�3R(q, q�,x)

��x���)���x��

R is called contracting on G if the same is true for some �3[0, 1). Finally, R is called non-
contracting on G if for all (q, q�)3E, for all x3G(q, q�) and for all x�3R(q, q�,x), ��x���*��x��.
In the proofs, the following lemma is used, which is an immediate generalization of the

corresponding result for continuous-time systems [40, Proposition 5.3].

Lemma 1
Consider a hybrid automaton with R non-expanding on G. Then, there exists c'0 such that

for all executions �"(	, q,x), all n3
	� and all t3I
�
, ��x�(t)��)(��x

�
��#1)e��!1. If instead R is

non-contracting on G, then ��x� (t)��*(��x
�
��#1)e
��!1.

For continuous-time systems, Lipschitz continuity of the vector "eld excludes the possibility
for "nite escape time. Lemma 1 allows us to draw a similar conclusion for hybrid systems whose
reset is non-expanding on the guards. This, in particular, implies that all Zeno executions of
a hybrid system remain bounded. Therefore, since the vector "elds are assumed to be Lipschitz
continuous, there exists some K'0 such that for all n3
	� and t3I

�
, �� f(q(n),x�(t))��)K.

Moreover, for sequences ��
�
��
���

with �
�
3I

��
and i

�
3
	� such that �

�
P	

�
as nPR, the

Weierstrass theorem implies that �q(i
�
), x�� (�

�
)��

���
has at least one cluster point. Therefore, Zeno

executions of hybrid automata whose resets are non-expanding on the guards, have at least one
Zeno point (Z

�
O�).

For identity resets, the continuous part of the Zeno set is a single point, as is shown next.

Theorem 1
For all Zeno executions of a hybrid automaton with R identity on G, �X

�
�"1.

A similar result holds if R is contracting on G.
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¹heorem 2
For all Zeno executions of a hybrid automaton with R contracting on G, X

�
"�0�.

Notice that the de"nition of contracting given above implicitly requires that R(q, q�, 0)"�0�
for all (q, q�)3E such that 03G(q, q�). The result can be extended to cases where the resets share
any common "xed point, x*, and are contracting after a change of co-ordinates taking x to
x!x*. This would, for example, allow us to extend Theorem 2 to cover appropriate classes of
a$ne functions.

3.3. Existence of Zeno executions

Since Zeno executions do not re#ect the true behaviour of a physical system, it is important to
study under what conditions hybrid automata accept only Zeno executions. Su$cient and
necessary conditions for this are presented in this section.
First, recall that every hybrid automaton can be associated with a directed graph (Q, E). It is

obvious that a hybrid automaton is Zeno only if that graph has a cycle. The following observation
is also straightforward.

Proposition 1
If there exists a "nite collection of states �(q

�
,x

�
)�

���
such that

� (q
�
, x

�
)"(q


,x


),

� x
���

"(q
�
, q

���
, x

�
) for all i"1,2,K!1; and

� (q
�
,x

�
)3Reach

�
for some i"1,2,K;

then the hybrid automaton accepts a Zeno execution.

Example 7 shows that it is possible for a discrete state to be visited in"nitely often by a Zeno
execution, but still not appear inQ

�
. However, if the reset is non-expanding on the guards, this is

not the case.

Lemma 2
For all Zeno executions �"(	, q,x) of a hybrid automaton with R non-expanding on G, there

exists some M such that for all i*M, q(i)3Q
�
.

Lemma 2 can be used to establish the location of Zeno points with respect to the domains.

Theorem 3
Consider a hybrid automaton with R non-expanding on G and assume it accepts a Zeno

execution with Zeno set Z
�

"�(q
�
,x

�
)��

���
for some m'0. If G(q, q�)�D(q)�"� for all (q, q� )3E

with q, q�3Q
�
, then x

�
3�D(q

�
) for all i"1,2, m.

A consequence of Theorem 3 is that X
�

-��Q��
���

�D(q
�
). The following non-Zeno condition

follows directly from the theorem.

Corollary 1
A hybrid automaton with R identity on G accepts no Zeno executions if

� G(q, q� )�D(q)�"� for all (q, q�)3E,
� for all cycles �q

�
�
���

with q


"q
�
and (q

�
, q

���
)3E, 1)i)K!1, �
�

���
�D(q

�
)"�.
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It is interesting to notice that the standing assumption by Tavernini in Reference [42]
is implied by the two conditions in Corollary 1. Under this assumption, it is proved
that each solution has "nitely many switching points in "nite time, i.e., the system is
non-Zeno.
The second condition in Corollary 1, on disjoint boundaries of the domains, can be replaced by

the two assumptions that the boundaries only meet at a single point which is an equilibrium point
for the vector "eld in each discrete state. Without loss of generality this point can be assumed to
be the origin.

¹heorem 4
For a hybrid automaton with R identity on G, an execution �"(	, q, x)3E�

�
(q

�
,x

�
) with

x
�
O0 is not Zeno if

� G(q, q�)�D(q)�"� for all (q, q�)3E,
� for all cycles �q

�
�
���

with q


"q
�
and (q

�
, q

���
)3E, 1)i)K!1, �
�

���
�D(q

�
)"�0� and

f (q
�
, 0)"0.

Note that the "rst assumption of Theorems 3 and 4 are ful"lled for systems under logic-
based switching [43], piecewise linear systems [20], complementarity systems [44] and mixed
logical dynamical systems [45]. Hence, these two results provide assumptions to guarantee
non-Zenoness for these large classes of hybrid systems. Similar result to Corollary 1 and
Theorem 4 holds also for hybrid automata with contracting resets having the origin as a
"xed point.

4. CONCLUSIONS

Motivated by a number of examples appearing in di!erent applications of hybrid systems,
we have studied some properties of Zeno executions. We saw that it is important to understand
Zeno in order to develop e$cient tools for modelling, veri"cation, simulation, and design
of hybrid systems. The Zeno set was introduced to capture the limiting behaviour of
Zeno executions. In general, the Zeno set can have a complex structure. It was proved,
however, that for hybrid automata having either only identity resets or only resets con-
tracting on the guard, the continuous part of the Zeno set is a singleton. These hybrid systems
include, for example, feedback control systems with logic-based switching and complementarity
systems. For such systems, our results guarantee that every Zeno execution converges to a
single point in the continuous state space. It may then be possible to extend the execution
beyond the Zeno time in a consistent way [13, 3]. Both necessary and su$cient conditions
for a hybrid automaton to accept Zeno executions were presented. In particular, it was
proved that for hybrid automata with identity resets on the guard, if the guards and the
interior of the domains are disjoint and if the boundaries of the domains are also disjoint, then the
hybrid automaton does not accept Zeno executions. Moreover, it was shown that the last
condition can be replaced by that the boundaries of the domains have the single intersection
point being the origin, which should also be an equilibrium point for the vector "eld in all discrete
states.
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APPENDIX

Proof of ¸emma 1. By Lipschitz continuity, there exists c'0 such that for all n3
	� and t3I
�
,

�� f (q(n), x�(t))��)c(��x�(t)��#1). Since ��x���"x�x it follows that

�
d��x���
dt �"2��x���

d��x��
dt �"2�x�xR �)2��x����x ��

so that

�
d��x��
dt �)��x ��"�� f (q, x)��)c( ��x��#1)

!c(��x��#1))
d��x��
dt

)c (��x��#1)

Applying the Bellman}Gronwall Lemma [40] twice, we have

( ��x�(	
�
)��#1)e
���
�� )��x�(t)��#1)(��x�(	

�
)��#1)e���
�� , t3I

�
and n3
	�

By the assumption on non-expanding resets, we have ��x�(	
�
)��)��x�
�(	�

�
�
)��, which yields

��x�(t)��#1)(��x�
�(	�
�
�

)��#1)e���
�� 

)(��x�
�(	
�
�

)��#1)e�����
�
��
�e���
�� 

By induction,

��x�(t)��#1)(��x�(0)��#1)e��

therefore,

��x�(t)��)(��x
�
��#1)e��!1

The proof for non-contracting resets is similar.

Proof of ¹heorem 1. Consider a Zeno execution �"(	, q,x). For all ��
�
��
���

with �
�
3I

��
and

i
�
3
	� such that �

�
P	

�
as nPR, we have

x��(�
�
)"x�� (	

��
)#�

��

���
f (q(i

�
),x�� (s)) ds

"x�� (	
��
)#(�

�
!	

��
)( f

�
( q(i

�
),x��(��

��
)),2, f

�
(q(i

�
), x�� (��

��
))),

for some ��
��
, 2, ��

��
3I

��
. Hence for all k'l*0,

x�� (�
�
)"x�� (�

�
)#(	�

��
!�

�
)( f

�
(q(i

�
), x�� (��

��
)),2, f

�
(q(i

�
),x�� (��

��
)))

#

��
�
�

������

(	�
�
!	

�
)( f

�
(q(i),x�(��

�
)),2, f

�
(q(i),x�(��

�
)))

#(�
�
!	

��
)( f

�
(q(i

�
), x��(��

��
)),2, f

�
(q(i

�
),x��(��

��
)))
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which gives that

��x��(�
�
)!x�� (�

�
)��)K

��
�
����

(	�
�
!	

�
)

whereK'0 is such that ��( f
�
(q(n),x�(��

�
)),2, f

�
(q(n),x�(��

�
)))��)K for all n3
	� and ��

�
,2, ��

�
3I

�
(recall that such a K exists by continuity of f and the fact that ��x�� remains bounded). Since
��
���

(	�
�
!	

�
)(R, �x��(�

�
)��

���
is a Cauchy sequence. The space X"R� is complete, so the

sequence has a limit x("lim
���

x��(�
�
). Moreover, the following argument shows that this limit is

independent of the choice of sequence ��
�
��
���

. Consider two sequences ��
�
��
���

and ��
�
��
���

,
�
�
3I

��
and �

�
3I

��
, i

�
, j

�
3
	� such that �

�
P	

�
and �

�
P	

�
as nPR. Without loss of

generality, suppose that i
�
*j

�
,

x��(�
�
)"x�� (�

�
)#(	�

��
!�

�
)( f

�
(q( j

�
),x�� (��

��
)),2, f

�
(q( j

�
),x�� (��

��
)))

#

��
�
�

������

(	�
�
!	

�
) ( f

�
(q( j),x�(��

�
)),2, f

�
(q( j),x�(��

�
)))

#(�
�
!	

��
)( f

�
(q(i

�
),x��(��

��
)),2, f

�
(q(i

�
), x�� (��

��
)))

This gives that ��x��(�
�
)!x��(�

�
)��)K� ��

����
(	�

�
!	

�
). Hence, ��x�� (�

�
)!x��(�

�
)��P0 as nPR,

which shows that both sequences have the same limit. This completes the proof. �

Proof of Theorem 2. As in the proof of Theorem 1, we get that for a Zeno execution �"(	, q, x) it
holds that

��x��(�
�
)��)��x��(	

��
)��#�� �

��

���
f (q(i

�
), x��(s)) ds ��

)��x��(	
��
)��#K(	�

��
!	

��
)

Using the fact that ��x��(	
��
)��)���x��
�(	�

��
�
)�� for some �3[0,1), it follows that

��x��(�
�
)��)���x��
�(	�

��
�
)��#K(	�

��
!	

��
)

"� ��x��
�(	
��
�

)#�
����
�

���
�

f(q(i
�
!1),x��
�(s)) ds ��#K(	�

��
!	

��
)

)���x��
�(	
��
�

)��#K�(	�
��
�

!	
��
�

)#K(	�
��

!	
��
)

By induction,

��x��(�
�
)��)��� ��x

�
��#K

��
�

���

���
�(	�
�

!	
�
)

and

�
�

����

K
��
�

���

���
�(	�
�

!	
�
)"K

�
�

���

(	�
�

!	
�
)

�
�

����

���"
K	

�
1!�

(R

Therefore, K� ��
���

���
�(	�
�

!	
�
)P0 as i

�
PR, which yields that ��x��(�

�
)��P0 as nPR, hence

X
�

"�0�.
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Proof of Lemma 2. Suppose that for allM*0 there exist some i
�
*M, such that q(	

��
) �Q

�
. By

the assumption that Q is "nite, the sequence �q(	
��
)��

���
has a subsequence �q(	

���
)��

���
with

q(	
���
)"q( �Q

�
. By Lemma 1, the sequence �x��� (	

���
)��

���
is bounded. Then, there exists some

x( 3X such that lim
���

x (	
���
)"x( (by possibly passing to a subsequence). By the de"nition of the

Zeno set, (q( , xL )3Z
�
, which gives a contradiction.

Poof of Theorem 3. For every (q( , x( )3Z
�
, there exists a sequence ��

�
��
���

with �
�
3I

��
and

i
�
3
	� such that as nPR, q(i

�
)Pq( and x��(�

�
)Px( . Notice that, since Q is given the discrete

topology, q (i
�
)Pq( implies that q(i

�
)"q( for n su$ciently large. Moreover, by an argument

similar to the one in the proof of Theorem 1, there exists K'0 such that
��x�� (	�

��
)!x��(�

�
)��)K��	�

��
!�

�
��. Therefore, ��x��(	�

��
)!x( ��P0 as nPR. By the standing assump-

tions, we have that x��(	�
��
)3D(q( ). Moreover, from Lemma 2, q(i

�
)3Q

�
if n is su$ciently large.

Hence, for n su$ciently large, there exists some q( �3Q
�
such that x��(	�

��
)3G) (qL , qL �), which gives

that x��(	�
��
)3GK (qL , q( �)�D(q( ). Since G (q( , qL � )�D(q( )�"�, it follows that x��(	�

��
)3�D(q( ). Moreover,

since �D(q( ) is a closed set, the limit xL "lim
���

x��(	�
��
) belongs to �D(q( ).

Proof of Theorem 4. Assume that �"(	, q, x)3E�
�
(q

�
, x

�
) with x

�
O0 is a Zeno execution. By

Theorem 1, it holds that Z
�

"Q
�

��x( � for some x( 3X. Then by Theorem 3 and the second
assumption, it follows that xL "0( . Let ¸ be the largest Lipschitz constant of f (q, ) ) for all q3Q. By
Lemma 2, there exists some M such that for all n*M, q(n)3Q

�
. Then, from Reference [40,

Proposition 5.3], we have that for all n3
	�, n*M and t3I
�
,

��x�(t)��*��x�(	
�
)��e
���
�� 

Since x�(	
�
)"x�
�(	�

�
�
),

��x�(t)��*��x�
�(	�
�
�

)��e
���
�� *��x�
�(	
�
�

)��e
���
��
� 

Proceeding further,

��x�(t)��*��x
�
��e
��.

Since � is a Zeno execution, lim
���

��x�(	
�
)��*��x

�
��e
���'0. This contradicts, however, the fact

that lim
���

x�(	
�
)"xL "0. Hence, the hybrid automaton accepts no Zeno executions.
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