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Minimum Construction of Two-Qubit Quantum Operations

Jun Zhang,1,2 Jiri Vala,2 Shankar Sastry,1 and K. Birgitta Whaley2

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
2Department of Chemistry and Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA

(Received 11 December 2003; published 7 July 2004)
020502-1
Optimal construction of quantum operations is a fundamental problem in the realization of quantum
computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary
two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this
by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two
applications of the B gate. Realization of the B gate is illustrated with an example of charge-coupled
superconducting qubits for which the B gate is seen to be generated in shorter time than the CNOT gate.
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FIG. 1. Tetrahedron OA1A2A3 contains all the local equiva-
lence classes of nonlocal gates [9], where O��0; 0; 0�� and
A1���; 0; 0�� both correspond to local gates, L���2 ; 0; 0�� to the
CNOT gate, A2��
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2 ; 0�� to the double-CNOT gate, A3��
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to the SWAP gate, and B���2 ;
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4 ; 0�� to the new gate we introduce

in this Letter. From the Cartan decomposition on su(4), any
two-qubit unitary operation U 2 SU�4� can be written as U �
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� are the Pauli matrices, and k1; k2 2 SU�2� �
SU�2� are local gates [9–11]. Since the local gates are fully ac-
cessible, it is evident that we need to construct a circuit for only
concept of locally equivalent two-qubit gates, namely,
U � k1U1k2, where k1; k2 are local unitary gates, in order

the nonlocal block A in terms of the available entangling gates
(or Hamiltonians).
Quantum computation requires achieving unitary op-
erations on arrays of coupled qubits in order to realize the
speedup associated with quantum algorithms. It is usu-
ally described in the quantum circuit model with combi-
nations of single- and two-qubit operations [1]. While the
algorithmic complexity is independent of the efficiency of
these circuits, which are known to be interchangeable
with a polynomial overhead [2], the performance of any
physical realization of a quantum circuit may be highly
dependent on minimal switchings of control fields and
interaction Hamiltonians and achieving a minimal time
of gate operations, due to the introduction of decoherence
arising from unwanted interactions between qubits and/or
with the external environment. Efficient construction of
any arbitrary two-qubit quantum operation is thus of
high priority in the search for a realizable quantum
information processor. The current standard paradigm is
based on a combination of quantum controlled-NOT

(CNOT) gates between pairs of qubits and single-qubit
gates [1]. Recent work shows that the CNOT gate is also
one of the most efficient quantum gates known, in that
just three applications supplemented with local gates can
implement any arbitrary two-qubit operation [3–6]. In
this Letter, we introduce a minimum construction from a
newly discovered quantum gate B to implement any ar-
bitrary two-qubit quantum operation with two applica-
tions of B together with six single-qubit gates, both of
which are the least possible.

The single-qubit operations are generally easily imple-
mented by a local Hamiltonian or external field and can
be finitely generated by any convenient basis on su�2� [7].
In contrast, two-qubit operations are highly dependent on
the physical implementation, and it is in general much
more difficult to implement an arbitrary two-qubit op-
eration. The number of single-qubit gates can be indepen-
dently optimized from a carefully chosen library [4] once
the intrinsic quantum circuit structure of two-qubit gates
is determined. It is therefore advantageous to employ the
0031-9007=04=93(2)=020502(4)$22.50 
to obtain the minimal total circuit length. We denote the
local equivalence relation by U�U1. It has been shown
that two gates are locally equivalent if and only if they
have identical values of three invariants [8]. Classification
of two-qubit gates based on these invariants was given an
intuitive geometric interpretation in [9], which is sum-
marized in Fig. 1. Each point in the tetrahedron (also
known as the Weyl chamber, from the specific group
symmetries used in its construction) represents a local
2004 The American Physical Society 020502-1
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equivalence class of nonlocal gate U, with the exception
of vertices O and A1 which are local gates. The special
status of CNOT was demonstrated by an analysis of circuit
optimality within the geometric approach, which showed
that it is indeed the most efficient controlled-unitary
operation and requires only three applications to con-
struct any arbitrary two-qubit quantum operation [6].
These and related [3–5] investigations of optimality
with CNOT motivate the enquiry as to the existence of
two-qubit gates that may be even more efficient than
CNOT. The demonstration of at least one gate [the
double-CNOT (DCNOT) gate] that is equally efficient as
CNOT, requiring also just three applications together
with at most eight single-qubit gates to construct any
two-qubit operation, is one step in this direction [6].

We have now discovered a new quantum gate that
possesses greater efficiency than both the CNOT and
double-CNOT gates and that provides the desired mini-
mal number of gate switchings to simulate an arbi-
trary two-qubit quantum operation. The new gate,
which we term the B gate, is the following: B �
e��=2��i=2�
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y . In the geometric representation
illustrated in Fig. 1, this gate is located at point B on the
base of the tetrahedron OA1A2A3. This is a point of high
symmetry, lying in the center of the region of gates on the
base that can generate the maximum amount of entangle-
ment [9] when no local ancillas are allowed [12,10]. This
gate has the remarkable quality that only two applications
together with at most six single-qubit gates can simulate
any arbitrary two-qubit unitary. We show this by giving
an analytic circuit that implements a generic nonlocal
operation from B. Such a generic nonlocal operation is
A � ec1�i=2�
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z [9–11]. As discussed
in Ref. [9], the local invariants of A can be completely
defined in terms of the coefficients �c1; c2; c3�, which
correspond to the Cartesian coordinates in Fig. 1. The
values of these coordinates for points in the tetrahedron
therefore provide a complete parametrization of all pos-
sible nonlocal gates.

Simulation of this generic nonlocal operation can be
done with the following quantum circuit:

where the parameters �1 and �2 satisfy

cos�1 � 1	 4sin2
c2
2
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2
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������������������������������������������������������
cosc2 cosc3

1	 2sin2�c2=2�cos
2�c3=2�

s
:

(1)

To prove that the above quantum circuit is indeed locally
equivalent to A, we follow the procedure of Refs. [8,9] to
calculate the local invariants of this quantum circuit as
020502-2
g1 � 4cosc1cos2
�1

2
sin2�2; g2 � 4sinc1 sin�1 cos�2;

g3 � 2�cos4�2�cos�1 
 1�2


 2cos2�2�cos
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 4cos2c1 
 cos2�1 
 2cos�1 	 1�:

(2)

Substituting Eq. (1) into Eq. (2), with some subsequent
simplifications, leads to the demonstration that the local
invariants of this quantum circuit are identical to those of
the generic nonlocal operation A [see Eq. (25) in Ref. [9] ].
Hence, this quantum circuit provides an analytic con-
struction for realization of any arbitrary two-qubit op-
eration. Note that in this circuit, at most six single-qubit
gates are needed.

The new B gate is not a controlled-unitary gate. These
lie on the line OA1 in Fig. 1 (note that OL is equivalent to
A1L [9]). B is instead a completely new gate with a
different character from the CNOT gate and any other
familiar quantum gate. It is locally equivalent to a gate
that performs the operation jmi�jni!e��=4�i
x�m�n�jmi�
jm�ni on the computational basis. We can thus describe
gate B by a simple circuit in terms of commonly used
quantum gates as follows:

This quantum circuit consists of a CNOT gate with
the control qubit on the top wire following a
controlled-e��=4�i
x gate with the control qubit on the
bottom wire. The local equivalence between gate B and
this quantum circuit can be proved by showing that
they both have local invariants g1 � g2 � g3 � 0.
Given the greater efficiency of the B gate relative to
the standard CNOT for constructing arbitrary two-qubit
unitaries, it will be interesting to explore the use of this
new gate for construction of quantum compilers and
quantum algorithms [13,14], and in quantum error cor-
rection [15,16].

We now consider how the new B gate may be realized in
experiments. Since the B gate is optimal in constructing a
quantum circuit, this suggests that one might always
prefer to implement B as the elementary two-qubit gate
for any given physical system. However, the ease and
efficiency of constructing the elementary gates for quan-
tum computation from an available Hamiltonian is also a
critical issue for realization of quantum circuits [17–19].
Optimally efficient construction of quantum operations is
realized by the quantum circuit which contains a mini-
mal number of single- and two-qubit gates, where each
gate is itself also implemented with a minimal applica-
tion time. From a physical perspective, there are therefore
two aspects to optimality, namely, the circuit gate count
and the cost (e.g., in time) for physical generation of
020502-2
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FIG. 2. Trajectory of inductively coupled Josephson junction
qubits that generates gate B from the Hamiltonian HJ. Shown
here is the minimum time solution, which is obtained for the
Hamiltonian parameters EL � 1, � � 1:1436 with minimal
time duration t � 1:5014. The trajectory is confined to the
c1; c2 basal plane of the tetrahedron OA1A2A3 of Fig. 1.
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individual gates from the physical Hamiltonian. Our
result above shows that the B gate is optimal for the
former. Concerning the second question of cost in con-
structing gates from a given Hamiltonian, we find that
this depends on the form of the Hamiltonian, with the B
gate easier to implement than the CNOT (or DCNOT) gate in
some situations while the CNOT (or DCNOT) gate may be
easier to achieve in other situations. As a simple example,
we can consider pure nonlocal Hamiltonians, i.e., those
containing no single-qubit terms. From the geometric
theory [9], it is straightforward to prove that when the
physical Hamiltonians are 
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requires only one switching to implement the CNOT, the
DCNOT, and the B gate, respectively. The overall circuit
optimality is thus implicitly linked to the particular
choice of physical implementation.

We now illustrate physical generation of the B gate with
an example where B is seen to be implemented with a
shorter application time than CNOT and hence provides an
overall optimal circuit. We consider charge-based
Josephson qubits that are inductively coupled [20]. The
elementary two-qubit operations are generated by the
interaction Hamiltonian HJ � 	 1

2EJ�
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y, where EJ is the single-qubit Josephson

energy and EL is a scale factor. Without loss of generality
we can set EJ � �EL, so that HJ � 	 1

2�EL�
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y, and consider EL � 1. Estimates based on

current circuit capabilities suggest that values 0:01 � � ’
1 are feasible [21]. Application of this two-qubit
Hamiltonian generates a unitary evolution U � eiHJt

(with �h � 1) that is characterized by the three local
invariants [9]
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(3)

where x � cos�2t and y � cos
������������������
��2 
 1�

p
�t. The geomet-

ric theory provides us with the means to translate the
time-dependent values of these invariants to a trajectory
of points in the tetrahedron of Fig. 1 and hence to the
specific nonlocal two-qubit gates that are naturally im-
plemented as a function of this time evolution. From the
second invariant, g2 � 0, we obtain the Cartesian coor-
dinate c3 � 0 in Fig. 1, which implies that all nonlocal
operations that are generated by one application of HJ
must be located on the base of the tetrahedron OA1A2A3.
The CNOT gate is located at the point L in Fig. 1, whereas
the B gate is located in the middle of the triangular base
(see also Fig. 2). Each of these gates represents a different
local equivalence class and is characterized by its own set
of values �g1; g2; g3�. For CNOT �g1; g2; g3� � �0; 0; 4� [9],
whereas for the B gate �g1; g2; g3� � �0; 0; 0�. Thus to find
conditions such that the Hamiltonian HJ exactly achieves
020502-3
either of these gates in one application, we need to both
tune the Hamiltonian parameter � and also to find the
time duration t that solves Eq. (3) for the corresponding
values of g1 and g3. Whenever there is no solution, at least
two switchings of the Hamiltonian will be required to
reach the target gate.

In [9], we have shown that the time optimal solution to
reach CNOT in a single application is achieved when � �
1:1992, with application time t � 2:7309. In contrast, the
new B gate is found to be reached with a shorter single
application time of HJ for its optimal solution, which has
a similar value of �. After some algebraic work, we find
that the solutions to Eq. (3) for g1 � g3 � 0 must satisfy

x � cos
2n
 1

8
�; y2 � 1	

1
 �2

�2 x2; (4)

where n is an integer. Hence the time t at which B is
achieved is t � �2n
 1��=8�2, where � satisfies

sin 2
������������������
1
 �	2

p 2n
 1

8
� �

1
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�2 cos2
2n
 1

8
�: (5)

The numerical solution indicates that the allowable val-
ues of � constitute an infinite set. The minimum time
solution is obtained for � � 1:1436, with corresponding
minimum application time t � 1:5014. The trajectory
representing this time evolution through the nonlocal
gate space to the target gate B is shown in Fig. 2. Thus,
in this physical system the dual savings of shorter appli-
cation time of the B gate over CNOT will add to the smaller
number of gate applications required to implement an
arbitrary operation, resulting in significantly less intro-
duction of decoherence in experimental implementa-
tions of quantum logic and simulations that are based
on the B gate.

In summary, we have presented a new quantum gate B
that provides a direct analytic recipe to efficiently
020502-3
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implement any arbitrary two-qubit quantum operation
with just two applications. This is more efficient than
the standard CNOT gate and the double-CNOT gate, both
of which require three applications to realize an arbitrary
two-qubit unitary. The B gate indeed achieves the mini-
mum number possible, as is easily seen by recognizing
that a circuit consisting of just one application of a given
two-qubit gate together with local unitaries can produce
only quantum operations that are locally equivalent to
that given gate. To simulate an arbitrary two-qubit opera-
tion with this B gate, we need only to determine two
parameters in a simple quantum circuit. An explicit ex-
pression for these two parameters is given here. Taken
together with at most six single-qubit gates accompany-
ing this minimal two-qubit gate count, this provides a
new paradigm for optimally efficient construction of
quantum operations.

We have illustrated the physical generation of B with
the example of inductively coupled Josephson junction
qubits, for which generation of B is also seen to be more
efficient than generation of CNOT in that it requires less
application time. In this situation, the new gate provides
an optimal route from the Hamiltonian to any arbitrary
two-qubit quantum operation, thereby providing an effi-
cient realization of one of the basic requirements for
quantum circuit construction. A similar analysis can be
made for other physical implementations using the time
evolution approach described above and in Ref. [9].
Given these advantages of the new B gate, we expect it
will be very useful for the further development of quan-
tum computation.
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