Richness of Training Data Does Not Suffice:
Robustness of Neural Networks Requires Richness of Hidden-Layer Activations
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Abstract

To learn the parameters of a model with an on-
line learning algorithm accurately, the signals that
pass through the parameter estimates should sat-
isfy a certain richness condition, such as having
and maintaining full rank, throughout the training
procedure. When gradient descent algorithm is
used to train a neural network, it also creates an
online learning problem. Consequently, robust es-
timation of the network parameters requires that
both the training data and the hidden-layer acti-
vations fulfill a richness condition throughout the
training procedure. In this work, we analyze the
dynamics of the gradient descent algorithm on
feedforward networks, and we derive sufficient
conditions on the training data and the hidden-
layer activations to guarantee boundedness of the
model parameters after training. In light of the
conditions derived, we propose a new training al-
gorithm that improves the richness of the hidden-
layer activations during training. We demonstrate
that the proposed algorithm yields comparable
margin characteristics on the training and test data
for a network trained for a classification task with
CIFAR-10 dataset.

1. Introduction

When a linear model is trained for a supervised learning
task, the training data set needs to span the whole input
space for the model parameters to be learned accurately. If
this condition is not satisfied, the model will not be trained
on a subspace in its domain, and the response of the model
will be unpredictable for inputs containing any component
in this subspace. If the model is trained by an iterative opti-
mization algorithm, this richness condition on the training
data set must be satisfied throughout the training procedure.
Fulfilling such a requirement is in general not difficult for
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single-layer models with fixed input data, but it is a non-
trivial problem when identifying unknown parameters of
dynamical systems (Kumar & Varaiya, 1986; Sastry & Bod-
son, 1989), and as we will show in this work, when training
multi-layer models.

Consider, for example, a linear dynamical system in R™:

ht+1 = Aht + Bx; VteN (1a)
ye = Chy VieN (1b)

with internal state h; € R”, input z; € R, output i, € R,
and unknown parameters A € R"*", B € R™ and C €
R ", Assume we feed a constant input {z; } <y into this
system, that is, we set x; = xg for all ¢ € N, and we
try to learn the input-output relationship of the system by
observing {y; }+cn while the internal state of the system
evolves. Note that as time increments, the eigenvalues of A
with magnitude less than 1 cause the internal state h; to lose
its components in the eigenspaces corresponding to these
eigenvalues. In other words, the stable eigenspaces of A
vanish from {h; };cn exponentially fast, and consequently,
not enough information is received about how the system
behaves in these eigenspaces. As a result, the accurate
input-output relationship of the system cannot be recovered.

This is a classical problem in system identification: when
parameters of a dynamical system is estimated while the
internal state of the system evolves, the input fed into the
system needs to satisfy a certain richness condition. In par-
ticular, for successful identification of the system in (1), the
input signal {z; }+cn needs to contain a certain number of
frequencies (Boyd & Sastry, 1983; 1986). As this example
shows, training a dynamical model in an online fashion ne-
cessitates the injection of sustained perturbations into the
system throughout the training procedure.

In this work, we show that similar requirements arise while
training multi-layer models, even though there does not
appear a dynamical model. As a preamble, consider a
fixed data set {z; };,cz and an L-layer feedforward neural
network:

F(x) = fo(fo-a(-- (f2(f1(2))))),

where fj, represents the operation of the k-th layer of the
network. The parameters of the k-th layer are excited by the
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activations of the previous layer, { fr—1(- - (f1(2:))) }iez-
Therefore, robust estimation of these parameters rely on
whether this set is rich enough and whether this richness is
maintained throughout the training procedure.

1.1. Outline and Contributions

By analyzing the dynamics of the gradient descent algorithm
on feedforward neural networks trained with the squared-
error loss, we achieve the following.

1. For multi-layer networks with ReLU activations, we
provide a richness condition on the hidden-layer ac-
tivations that is sufficient for building a connection
between the convergence of the gradient descent algo-
rithm and the boundedness of the trained parameters.
Note that this a prerequisite for the output of the net-
work not to change arbitrarily when the input changes
little. Then we show that this richness condition is not
satisfied by a network trained naively with the gradient
descent algorithm. This is expected given the existence
of adversarial examples for naively trained models.

2. We reinterpret the classical regularization terms for
single-layer linear models in terms of boosting the
richness of the training data. By building an analogy,
and in light of the sufficient richness conditions derived
in this work, we introduce a training algorithm that
improves the richness of the hidden-layer activations
of multi-layer networks. Lastly, we demonstrate that
this algorithm leads to similar margin characteristics
on the training and test data when a network is trained
for a classification task with CIFAR-10 data set.

1.2. Related Work

Implicit regularization of the gradient descent algorithm on
matrix factorization, deep linear networks and multi-layer
structures has recently been studied in (Arora et al., 2019;
Gidel et al., 2019; Gunasekar et al., 2017; 2018; Du et al.,
2018; Ji & Telgarsky, 2019). Our work also addresses the
same subject, but the emphasis is on the necessary and
sufficient richness requirements on the training data and
hidden-layer activations for implicit regularization to take
place. Furthermore, our analysis uses a non-vanishing learn-
ing rate, thereby elucidating the effect of learning rate on
regularization.

Robustness of a model against small perturbations in its in-
put is closely tied to presence of an effective regularization
during its training. State-of-the-art neural networks, how-
ever, are known to lack this robustness; imperceptibly small
perturbations can change their outputs drastically (Szegedy
et al., 2013; Kurakin et al., 2016; Goodfellow et al., 2015).
We demonstrate in this work that naively trained networks

will fail to fulfill the richness requirements on the hidden-
layer activations for implicit regularization, which provides
an alternative understanding for the lack of robustness in
these models.

We discuss other related subjects in Section 5, after present-
ing our results.

2. Richness of Hidden-Layer Activations

In this section, we consider a feedforward network with
ReLU activations, which are denoted with the element-wise
z >0,

operation
z
(2)+ = { 0 z<o.

The following theorem provides a sufficient richness condi-
tion for the hidden-layer activations of the network so that
the convergence of the gradient descent algorithm implies
the boundedness of the network parameters.

Theorem 1. Consider an L-layer network with ReLU acti-
vations:
ho(z) =z,
hj(x) = (Wihj—1(x))+
hL(x) = WLhL_l(JJ)

j:172a"'7L_17

with n; nodes in its j-th hidden layer, and assume it has
been trained by minimizing the squared-error loss with the
gradient descent algorithm on the data set {x;};cz. Let Wj
and ﬁj denote the weight matrix and the output of the j-th
layer after the training, and define T' = {i € T : hy,(x;) #
0}. If all hidden-layer activations are bounded over the
training data set:

maX;ez’ MaX e[ ||ilj(xi)||2 < o0,

and if every hidden-layer node is activated by a set of signals
with full-rank in the preceding layer:

ZiEZ’ H{engEj,1($i) > 0} . ﬁj,l(xi)ﬁ;;l(xi) =0

forall k € [n;] and j € [L], then the convergence of the
gradient descent algorithm implies the boundedness of Wj
Sor all j € [L] for almost every initilization. a

Please refer to Appendix A for a detailed description of the
bound on the trained parameters. Theorem 1 states that the
convergence of the gradient descent algorithm guarantees
the boundedness of the weight parameters if every hidden-
layer node is activated by a set of activation patterns with a
full rank in the preceding layer. This condition, however, is
not easily satisfied, particularly by networks trained naively
by the gradient descent algorithm.

To demonstrate this, we trained a 5-layer convolutional neu-
ral network for a binary classification task. The training
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data was chosen as the two classes corresponding to the
planes and the horses in CIFAR-10 data set. The network
was trained with the squared-error loss. Figure 1 shows the
principal component analysis of the signals in the hidden
layers of the network after training. Note that the signals in
the upper layers of the network can be explained by the first
few principal components, which indicates that these signals
are very low dimensional; and more importantly, the rank
of these signals are lower than the width of corresponding
layers. This shows that the richness condition described in
Theorem 1 is not satisfied by this network. Note, however,
that this is no surprise given that this naively-trained net-
work is susceptible to adversarial examples; that is, minute
changes in its input can change the output of the network
drastically. In the next section, we will develop an alterna-
tive training method to produce richer sets of activations in
the hidden-layers of the network.
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Figure 1. Principal component analysis for the activations in the
hidden layers of a 5-layer convolutional neural network trained
with the squared error loss. The plot displays the variance ex-
plained by the first 80 principal components for each layer. The
layers have 4704, 1800, 120 and 84 nodes, respectively. The rank
of the activation patterns in the upper layers are much lower than
the number of nodes in those layers.

3. Reinterpreting Regularization

When a linear model is trained on a rank-deficient data set,
or when a linear model is desired to be robust against small
perturbations in its input, the classical procedure is introduc-
ing a regularization term to the training loss function. This
regularization typically involves penalizing some norm of
the model parameters, and it is considered to assign a prior
distribution on the values the parameters can take or to limit
the class of functions that can be learned.

We can provide a dual interpretation for these regularization
terms in terms of the richness of the training data, as stated
in the following theorem.

Theorem 2. Given a set of points {x; };cz in R™ and corre-

sponding target values {y; } ;e in R, consider the following
two problems:

IIllIl Z —w'x) +)\||w||p , (2a)
i€l
| o)
min — ;— min w (x; + )
w2 P Y d:||d]|g<e
. 2
—i—(i— max w a?i—i-d)}, (2b)
i e v ( )
where || - ||, and || - ||4 are dual norms, m € [1,00) is some

fixed number, and )\, € € (0,0) are hyperparameters. For
each ), there exists some € such that the solutions of the two
problems are identical.

Problem (2b) shows that for each training point, perturbing
the input of a linear mapping in two directions such that the
output of the mapping is maximized and minimized creates
a richness in the training data that is equivalent to penaliz-
ing the norm of the parameters. An analogous procedure
for multi-layer neural networks is inserting perturbations
to every hidden-layer of the network preceding the affine
operations. To illustrate, consider an L-layer feedforward
network with ho(z) = x and

hj(z) = (Wjhj—1(z) +bj)+ Vj€[L], 3)

where {W;},c(z) and {b;};e[z) are the weight and bias
parameters of the network. The parameter W; corresponds
to a linear operation in the j-th layer of the network, such
as a matrix multiplication or a convolution. We can insert
perturbations to this network as ho(z; d) = x and

hj(w;d) = (Wilhj_1(z;d) + dj] + b;) 4 Vj € [L], 4)

where d = (dy,ds, . ..,dr) is the concatenation of the per-
turbations applied to each layer of the network. Then, solv-
ing the regression problem with the cost function

- 2 - 2
Z % (yi - ggg hi (@i d)) + %(yl - gleai%(hL(xﬁ d)) ;
i€L
where D is the allowed set of perturbations, should force the
output of the network to remain close to the target values
despite changes in the input and in the activations in the
hidden layers.

Before proceeding to the next section, we summarize in Al-
gorithm 1 the procedure for training a neural network while
ensuring persistent excitation of the parameters. For sim-
plicity, the algorithm is described for the stochastic gradient
method with momentum.

4. Experimental Results

In this section, we test Algorithm 1 on a binary classification
task. Only two classes of images, the horses and the planes,
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Algorithm 1 Training with Persistent Excitation

1: input: training data {(z;, y;) }icz,
neural network fy(2;d) = hy(z;d) in (4),
set of allowed perturbations D,
learning rate 17, momentum parameter y

2: initialize: Af < 0

3: repeat

4: randomly choose i € 7

5: dy < argmax cp fo(xs;d)

6: dy + argmingcp fo(2s; d)

7 A YAD+ (1 =) Vo(fo(wiidi) — i)

+ (1 =) Ve(fo(wi; do) — yi)?
8: 0« 0 —nAb
9: until training is complete

have been chosen from CIFAR-10 data set for the classifi-
cation task. The network used in the experiment contains
two convolutional layers followed by three fully-connected
layers.!

Figure 2 shows the margin distribution of the same network
trained in two different ways: perturbing all layers of the
network as described in Algorithm 1 and perturbing only the
input of the network during training, similar to adversarial
training (Madry et al., 2018). For both cases, the perturba-
tions during the training phase are restricted to be in ¢, ball
with radius 0.020. The plot shows the percentage of points
the network misclassify versus the amount of disturbance
needed in the input of the network to cause misclassification
at evaluation phase, which is computed by using the pro-
jected gradient attack algorithm (Madry et al., 2018; Rauber
et al., 2017) after training.

We observe that perturbing only the first layer of the net-
work during training substantially increases the margin of
the training data; however, this does not correspond to an
improvement for the margin of the test data. In contrast,
when all layers are perturbed as described in Algorithm 1 to
improve the richness of the activations in the hidden layers,
the margin of the training data becomes a good indicator of
the margin of the test data.

5. Discussion

Dropout. Using dropout in the hidden-layer neurons, that
is, setting the output of random subsets of neurons to zero
during training, is known to prevent overfitting (Srivastava
et al., 2014). This can be reinterpreted based on the richness
of hidden-layer activations. Randomly setting some of the
neurons in the hidden layers during training increases the
variety in the hidden-layer activations, thereby improving

'The implementation is available at github.com/nar—k/
persistent—-excitation.
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Figure 2. A network is trained in two different ways: by perturbing
every layer of the network as described in Algorithm 1 in order
to boost the richness of the hidden-layer activations, and by per-
turbing only the training data (the first layer) similar to adversarial
training. When only the first layer is perturbed, the margin for the
training data increases substantially, but this is not reflected in the
test data. In contrast, when all layers are perturbed to improve the
richness of the hidden-layer activations, the margin of the training
data becomes a good indicator of the margin of the test data.

the richness of the signals that excite the parameters during
training. Nevertheless, the space where the random pertur-
bations is needed is very high-dimensional (it is equal to
the dimension of the input space plus the total number of
hidden-layer nodes in all layers of the network), and it is
difficult to fill up the neighborhood of the training data in
this space with random perturbations.

Importance of low-dimensional activations. The fact that
activations in the hidden layers of a naively-trained neural
network will become low-dimensional is critical in realizing
that augmenting the training data set may not help achieving
robustness in neural networks. This is because adding more
training data will not necessarily be effective for attaining
the required richness in the hidden layers, and consequently,
the parameters may not be trained robustly. However, if
the low-dimensionality of the hidden-layer activations is
overlooked, the conclusion will be different. For example,
(Schmidt et al., 2018) analyzes the robustness of classifiers
with full-rank, non-degenerate data sets and single-layer, lin-
ear models, and arrives at the conclusion that the robustness
could be achieved with more training data.

All-layer margin and generalization. (Wei & Ma, 2020)
recently showed that a new concept of margin, which is
computed for multi-layer models by allowing perturbations
in the hidden-layers as well as in the inputs, can be used
for obtaining generalization bounds for these models. This
is closely aligned with our results involving the richness
requirements on the hidden-layer activations of multi-layer
models and the effect of boosting this richness by injecting
perturbations into the hidden layers during training.
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Appendices

A. Proof of Theorem 1

Theorem (Restatement of Theorem 1). Consider an L-layer network with ReLU activations:

ho(z) = x,
h](.’I}) = (th.j—l(x))+ J = 172a T 7L - 1a
hi(z) = Wrhp_1(x)

with nj nodes in its j-th hidden layer, and assume it has been trained by minimizing the squared-error loss with the gradient
descent algorithm on the data set {x;};cz. Let Wj and flj denote the weight matrix and the output of the j-th layer after the
training, and define T' = {i € T : hy(x;) # 0}. Define Ij’.C as the set of points that activate the k-th node in the j-th layer
of the network after training:

IF={i €T 1 el hj(z;) >0} Vke€[ny], Vje[L—1].
Assume all hidden-layer activations are bounded over the training data set:
max;ez Max;e[z] ||iAL](9:Z)||2 < 00,
and every hidden-layer node is activated by a set of signals with full-rank in the preceding layer:

Zieﬂ hj_1(zi)h] () =0 Vk € [n;],V) € [L].

Then the convergence of the gradient descent algorithm from almost every initialization implies that

22 1 Ay (@)I3
Wl < 5 > 3 z = h] 2 vjelL-1],
keny] Amin(iezs hj—1(@i)hy_y (@:)) (o7 [he ()13
and ) .
~ 2
IWelly < 5 > 5 O

kelnn .y MaXezs | [[hr—a(z:)ll3

Proof. Given the neural network

ho(z) =z,
hj(z) = (Wihj_1(z))
hi(z) = Wrhr_1(x),

L oj=12...,L-1,

for each point in {z;};icz and for each layer j € [L — 1], define the diagonal activation matrix G*; as

(GZ) B 1 if el;l—thjfl(l'i) > 0,
Jkk T ) 0 otherwise,

where ey, is the k-th standard basis vector in R™ for each k € [n;]. Then we can write

hL(.”L’l) = WLG271WL71G272WL72 . GﬁWlxz Vi e 1.
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The training loss function is

1
5 Sk w) — il

i€
where {y; }icz is the set of target values corresponding to the input points. For each weight matrix W}, we can write the
gradient descent algorithm calculated with automatic differentiation as

W, « W; — 5Zie (GIW, L\ Ghy o W W Gl Wi GEW G Wy -
- GiWhaa W G- WL GE )
+ 5Zie (GiW, Gy Wy WG WG )
followed by the updates of the activation matrices:

(G%),,. < UW;hj_1(z;) >0) Vken], Vje[L—1],Viel

For the gradient descent algorithm to converge to an equilibrium from the points in its neighborhood, that equilibrium needs
to be stable in the sense of Lyapunov (Sastry, 2013). Let {W; } ¢z and {Gé}iez, je[L—1) denote the parameters and the
activation matrices at equilibrium. Lyapunov stability of this equilibrium implies that

Amax (G”W LG W C:;‘.Hwﬁlég) Amax (ﬁj,l(xi)h},l(xi)) < % 5)
Note that
W+ Gl Wi Ghhy(2:) = hi(xs),
and therefore,
7 (:)113
s (@) 13
Combining (5) and (6), we obtain

< e (GIW Gy W G W GY) Vie T ©)

2
Amax <hj_1($i)h;r_1($i)> < = Viel.

On the other hand,

Amax (ﬁj—l(xi)ﬁ; 1 (@ )) > ef G Wy ahy o(i)h]_o(w) WD Gl Vk € [nj4].
Let Ij’f denote the set of points that activates the k-th node of the j-th layer at equilibrium:

7{zeI’ ey hj(z;) >0} VEk e [nj], Vi e [L—1].

Then we can write

Amax (h],l(xl)h;r 1( )) > € ijliljfg(.’Ei)il;lQ(iEi)Wj—[l@k Vi € Ijkfl,

which implies

) ) . . 2 ||y ()3
T . Ay ) i < A 2
ep W1 (Z'LGI’“ h]_g(zz)h]_g(fm)) W,_ier < Zie;k_ 5 HiLL(xZ)”g

1
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This gives a bound on the k-th row of Wj_l:

1 2 ||k ()]
led W1 < . i S il
2= Amin (Zzezk hj_g(xi)h;lz(xi)) Z'LGIj—l o ||hL(Z‘Z)|

j—1

NN NN

As a result, if
> g Hek Wimahja(a:) > 0} - hy_a(zi)h 5(2:) = 0 Yk € [n;a],

all rows of Wj_l are bounded, for j = 2,3,..., L.
To bound the norm of WL, consider the gradient update for Wy,_;. Similar to (5), we have

A (G W26 ) A (B a(wdh] () < 5 Vie T

For every point activating the k-th node in the (L — 1)-th layer, we have
GiL,lek = €k,

which yields
T, TTi Ao 1 TR A .k
eI W Wien < Amas ( i W WLGL_l) Vie Tt .

Therefore, we can write

A 2 2 .
|[Weeklls < ———— VieIj_,,

S|lhr—2(i)ll5

which implies
2

. 2
||WL€1€H2 < — 5-
omaxiery  [|hr—2(zi)l,

This proves that k-th column of Wy, is bounded in norm. ]

B. Proof of Theorem 2

By duality of the norms || - ||, and || - ||4, we have

T T
4 d) = C_
Jin w4 d) = vl = e,

max w' (z; +d) =w z; + e|lw|,.
d:ldllq<e

Then problem (2b) can be written as
min 1 (yi — w'a; + €Hw||p)2 + 1 (yi — w'z; — e||w\|p)2 ,
w =2 2
€T
which can be simplified to
mm E ) +62||pr

This is a convex problem in w, and we can introduce a slack variable to bring the second term into a constraint form:

minimize Z‘ez (yl — wT:L'i)Q + €%t 7
1

w,t

subject to  [Jw|? < t.
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Fix € > 0, and assume that (wo, t) is the solution of (7). Then wy is also a solution to the problem

. T2
minimize Ziez(yZ w' ;)
subject to ||w|\§ < to,
as well as
. T 2
minimize ZZ_GI(% —w' ;) (8)
subject to  [Jwl[;" < tgn/z.

If to = 0, then wy is also zero, and this solution can be obtained by (2a) by choosing A large enough. Therefore, without
loss of generality assume ¢ty # 0. Then problem (8) satisfies the Slater’s condition, and strong duality holds (Boyd &
Vandenberghe, 2004). Then we can find its solution by solving

. T2 * m __ ,m/2
IIB)DZZ_GI(?JZ w xl) + A (“w”p tO )

where \* is the dual solution. Note that this problem is strictly convex in w, and therefore, its solution is unique, for which
the only candidate is wg. We conclude that

wy = argminzl (yi — ’LUTLEi)Q + )x*HwH;” u
w i€



