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Formation flight is the primary movement technique for teams of helicopters. However,
the potential for accidents is greatly increased when helicopter teams are required to fly
in tight formations and under harsh conditions. The starting point for safe autonomous
flight formations is to design a distributed control law attenuating external disturbances
coming into a formation, so that each vehicle can safely maintain sufficient space between
it and all other vehicles. In order to avoid the conservative nature inherent in distributed
MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then
introducing carefully designed inter-agent coupling terms in each performance index. The
proposed algorithm works in a decentralized manner, and is applied to the problem of
helicopter formations comprised of heterogenous vehicles. The disturbance attenuation
property of the proposed MPC controller is validated throughout a series of computer
simulations.

I. Introduction

OTORCRAFT have revolutionized the offensive, defensive, reconnaissance, and security operations in the

battlefield due to their mobility, range, and versatility (including vertical take-off and landing (VTOL)
capability). With recent advances in technology, such as aerial refuelling and night vision, helicopters have
taken on increasingly important roles in military operations. Formation flight is the primary movement
technique for helicopter teams.! By maintaining a coordinated formation, it is possible to achieve flight
integrity with less fuel consumption than an unstructured flight, increasing the possibility of a mission’s
success.

Even with such unique flight capabilities, helicopter teams are confronted by very challenging situations.
The potential for accidents is increased by requirements to fly in close formation and under harsh conditions
including poor weather and extremely low altitudes. The effects of battlefield stress exerted on an aircrew
increase dramatically under these adverse circumstances. We propose that computer-assisted autonomous
formation flight procedures can be implemented to help to diminish battlefield stress.

Even though helicopter formation flight is of critical importance in various operations, little research has
been done on this topic. Since helicopter dynamics are notoriously complex and uncertain, until recently it
had not been feasible to design an automatic controller for a single helicopter. However, recent advances in
system identification techniques and control of rotorcraft-based unmanned aerial vehicles (RUAVs)?? have
provided insight into autonomous helicopter formation flight. Although several researchers have made efforts
on the stable helicopter formation,*° their applications have been restricted to homogeneous formations in
which all the vehicles have identical dynamics.

Model Predictive Control (MPC), also known as moving horizon or Receding Horizon Control (RHC),
has been a useful technique for the control of slow dynamic systems such as chemical processes because the
scheme requires high computational speed of the control hardware due to its on-line nature. Recently, the
rapid development of digital processors, and powerful and inexpensive controllers make it possible to adopt
MPC into hard real-time applications.5

MPC can provide a better performance in controlling uncertain plants since it can update the gain of
the controller based on the current states, whereas fixed-gain control algorithms cannot.” The capability to
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manipulate the state-dependency of the control weighting matrices and constraints in real-time is the key
feature of a model predictive control algorithm. There are excellent survey papers describing the development
of MPC theories. See Ref. 8 and 9 for example.

As long as an MPC algorithm is applied to a formation flight problem, a centralized approach is not
a feasible choice at all, since it is not scalable from the viewpoint of computation and communication.!®
Thus it is natural to consider a decentralized approach to the formation flight problem. However, with a
decentralized MPC scheme, it is recognized that the stability proof becomes very difficult.

Under the assumption that the dynamics of each vehicle are decoupled, a major obstacle in proving the
stability of a decentralized MPC scheme arises in predicting neighbors’ behaviors over the future horizon.
Without considering inter-vehicle constraints, the coupling between agents appears in the performance index
as a penalty on relative gap errors. If there is no appropriate predictions of the behaviors of neighbors, it
is difficult to set bounds on them. In an attempt to resolve this difficulty, authors of Ref. 10 introduced so
called ‘compatibility constraints’, which restrict the future variations of neighbors’ optimal inputs from the
previous optimal ones. Using this, it can be proved that the closed-loop states converge to the neighborhood
of origin. However, due to the nature of this constraint, once an open-loop control is computed and applied to
the system on the current sampling time, the control at the next sampling time is constrained by the previous
open-loop control. In nominal situations (no model errors without exogenous disturbances), this may not
be a problem, since the open-loop control will predict the system behaviors exactly and the system may
stay on the optimal trajectory. However, if the system trajectory starts to deviate from the initial optimal
trajectory because of disturbances or model errors, this constraint would limit the effect of feedback, and
the robust nature of the feedback system might be lost. Before the stability is affected by uncertainties, the
algorithm may have trouble maintaining the feasibility of the optimization problem. Furthermore, since this
algorithm is applicable only to (nonlinear) double integrator systems, it is impossible to use this algorithm
for formation flight of helicopters, which have unmeasurable hidden state variables related to flapping and
stabilizer bar dynamics.

In Ref.11, researchers used the hierarchical decomposition method, which decomposes the original for-
mation graph into overlapping subgraphs with different hierarchy levels. Under this decomposition, the
algorithm allows a vehicle at a node with high priority to compute control laws for vehicles with lower pri-
orities, and transmit them to vehicles with lower priorities, assuming one time step communication delay.
By doing this, since future behaviors of neighboring vehicles with lower priorities are completely known to
vehicles with higher priorities, ‘prediction’ is no longer needed, and stability can be proved by standard
Lyapunov arguments. In theory, this method provides a simple and clear way to prove the stability of a
decentralized MPC scheme, minimizes the conservatism and required communication bandwidth. However,
in this case, the integrity of the system structure is totally dependent on the communication link, which can
be deteriorated easily in battlefields.

Instead of sticking to proving stability of a decentralized MPC, our focus is on designing an MPC-based
velocity tracking controller with penalties on relative gap errors, and study the propagation of external
disturbances through the formation.

In Section [1I, helicopter dynamics and kinematics are reviewed. Then, we suggest a carefully designed
strategy of defining relative gap errors between neighboring vehicles in Section [[II-A. Before introducing inter-
agent coupling terms into the full scale problem, a stable MPC controller for a single vehicle is designed in
Section [I11Bl Simulation results are shown in Section [V which is followed by conclusions and future work.

II. Helicopter Dynamics

Since the helicopter dynamics, which can be derived using Newton’s law, are represented in the body
coordinates system fixed to the center of the mass of a helicopter,® the kinematic equations between the
body coordinates and the spatial coordinates® are required. The kinematics are further divided into two
parts: (1) the position describing translational motion in the spatial coordinates, and (2) the Euler angles
describing the vehicle’s attitude and heading in the spatial coordinates. It should be pointed out that, even
though the dynamics are assumed to be linear at a certain operating point, the entire system of equations
becomes nonlinear, since the kinematics involve nonlinear transformations. In hover mode, it is possible to
linearize the kinematics and keep the entire system linear. However, in the cruise flight mode, due to the

#Throughout this paper, the spatial coordinates mean the tangent-plane coordinate system, whose origin is located at a
certain point of the earth’s surface.
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non-zero pitch trim, the validity of the linearized kinematics model may deteriorate easily.

A. Basic Helicopter Dynamics and Kinematics

The following definitions of helicopter dynamics and kinematics are based on Ref. 3 and 12 with slight
modifications. The positive directions of x, y, and z axes of the spatial coordinates align, respectively, to the
north, east and downward directions. For detailed derivations of the helicopter dynamics, see Ref. 3 and 13.

As mentioned earlier, the overall system dynamics are divided into the kinematics and the system-specific
dynamics denoted by superscripts K and D. The state vectors and the control input vector are defined as
follows:

T
XD:[u v op g as bis w T TR oC d} (1)
¢ A
x4 = o], xleS], (2)
X
(U
T
u= |:ua18 Ugls Uhy, uref:| ’ (3)

where
u, v, w: trimmed translational velocities in body coordinates
P, q, r: roll, pitch and yaw rates in the body coordinates
@, 0, ¥: roll, pitch, and yaw in ZYX Euler angle notation in the spatial coordinates
a1s, b1s: longitudinal and lateral flapping angles of the main rotor
¢, d: longitudinal and lateral flapping angles of the Bell-Hiller stabilizer bar
T¢p: internal state of yaw rate feedback gyro
Ugls, Uals: inputs to the lateral and longitudinal cyclic pitch
ug,,: input to the main rotor collective pitch
Urcy: reference yaw rate input to the gyro

Let the superscripts S and B denote spatial and body coordinates. x° and x? denote the position in the
spatial coordinates and in the body coordinates, respectively”.
The kinematics part can be defined as follows:

x% = RP7S%P, x4 = RIT %, (4)

where x¥ = [2° y¥ 29T, and w = [p ¢ 7]T. RP~9(x?), the rotation matrix from the body to the spatial
coordinates, and RE—~%(x") is the relationship matrix between angular rates in the body and in the spatial
coordinates. They are defined by'%1°

[cos 1 cosf cosysinfsing —sinycosp cossinb cos @ + sin Y sin ¢
sint cosf sinysinfsin ¢ + cospcos¢p  sin sin 6 cos ¢ — cos P sin ¢ (5)

| —sinf cos 6sin ¢ cos 6 cos ¢

B—
RE—S =

(1 sin ¢tanf cos¢tanf
R = |o cos ¢ —sing | - (6)

|0 singsecl cos¢psech

The dynamics part can be written as

%P = PP (), x4 (1), u(t)). (7)

bSubscript vehicle indices are suppressed until the next section for simplicity
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Finally, the entire system equation becomes

[ FPP (1), xA(t), u(t))
% XA - Rf—)Sw = f(xs(t)7 XD (t>7 XA (t)7 u(t))’ (8)
XS RB—>S>'(B
or simply,
D
x(t) = f(x(t),u(t)) with x= |xA4 9)
XS

B. Helicopter Cruise Model

In Ref. 13, a linear cruise flight model of the Yamaha R-50 industrial helicopter trimmed at ug = 49 ft/sec,
wo = 11.2 ft/sec, and vy = 0 is introduced and all the coefficients in the dynamics equation are identified
through test flights and system identification techniques. If we convert this trim condition into spatial
coordinates, then it becomes 30 mi/h forward cruise speed with the pitch trim 6y = —0.22(rad).

In order to use the linear cruise model, we need to define several relationships between spatial variables
and variables in the linear dynamics. First, the velocities in the body-fixed frame can be represented by

@B =g +u, y¥ =vo +v, and 2% = wp + w. (10)
Next, the trimmed pitch angle § can be defined as
0=0—0,. (11)
(

From these relationships, the kinematics equations (Eq.(4)) are now well defined. The dynamics can be
represented by

xP(t) = fP(xP (1), x*(t), u(t)) = Ax'(t) + Bu(t), (12)
where A € R1X13 B € R1X4 and
. AT
X = [u v p q a1s bls w T T C d (b 0 . (13)

C. Scaling Based on Froude Number

In order to test the algorithm we propose in the next section with a heterogeneous helicopter team, we need
to generate a model that is different from our existing Yamaha R-50 model. Since it is extremely difficult
to perform an identification flight in a cruise condition without a wind tunnel facility, we used the scaling
technique presented by Mettler.?

The Froude number is the ratio of inertia to gravitational forces. If two different models have Froude
numbers that are close each other, it means that two systems have similar dynamic properties. The number
is defined by

F=-, (14)

where V' is the characteristic velocity, L is the characteristic length, and g is gravitational acceleration. In
helicopter dynamics, the rotor tip velocity and the rotor radius are used as V' and L respectively. The Table!l
shows the comparison of the Froude numbers of Yamaha R-50 and Robinson R22, and they are very close.
We have created a virtual model in the region between the Robinson R22 and Yamaha R-50, which has
two twice the rotor diameter of the R-50 and has a similar Froude number. The scale N refers to a model
helicopter with 1/N the rotor diameter of the Yamaha R-50. It should be noted that the relationship of the
Froude number imposes a relation between time scales,'?

1
second &~ —. (15)

VN

Based on these comparisons, the scaling of coefficients in A and B (Eq.(12)) can be done using dimensional
analysis. The created virtual model is less agile that the original R50 model due to its larger rotor radius
and lower rotor speed. Refer to Ref. 18 for the comparison of dynamic properties of two models.
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Table 1. Comparison of Froude numbers

Rotor Radius (ft) Rotor Speed (rad/s) N  Froude Number

R22 13 53 0.38 1134
Virtual Model 10 62 0.5 1194
R-50 5 89 1 1230

III. MPC-Based Helicopter Formation Flight

A. Formation Topology and Definitions of Gap Errors

In the following discussion, we examine formations where each agent in the formation has connections that
are less than or equal to two. Although cases where one or more agents in the formation has more than
three connections can still be accounted for, these are considered as special cases, and are not described
here. In real-world operations, most helicopter formations fall into the category with maximum two bidirec-
tional connections on each agent.! Some publications'’ 6 on the vehicle formations using distributed MPC
algorithms consider arbitrary formation shapes represented by connected graphs. However, an arbitrary
formation shape is obviously not used in high-speed cruise formations, especially for manned helicopters.
We believe that the research on arbitrarily coupled vehicle formation needs to be developed in the context
of behaviors of a ‘swarm’ of unmanned vehicles.'”

Most vehicle formation algorithms?® %1116 yse a so-called ‘constant gap’ strategy as described in Fig-
ure [1(a). Ij_;; € R* denotes the constant relative gap vector from i — 1-th vehicle to 4-th vehicle in the
reference coordinates, which is represented by " — y” (tangential-normal to the reference velocity V,%) in
the figure. Note that we need the relationship

:—l,i = - 21‘—1 (16)
for the unique definition of the formation shape. Also, we can obtain the lisflﬂ- using the rotation matrix

R™5(3,) such that
e

i—1,1

= R34l (17)

i—1,°

As shown in Figure 1(a), the gap error can be defined as

s _ s S S
€1 =X —x; t1li4,;
s s _ 18 (18)
=X =7 17

The other type of the gap strategy is called a ‘varying gap’ strategy (Figure 1(b)). In this strategy, the i-th
vehicle considers the middle point in the line connecting ¢ — 1-th vehicle to 7 4+ 1-th vehicle as the reference
point. The error vector becomes
el = 7)(?71 ;XZSH —x7. (19)
For vehicles in edges, the constant gap strategy (Eq.(18)) is used, although other vehicles use the varying
gap strategy. By using the constant strategy in edges, one can show that the sum of squares of gap errors
is zero if and only if all the gap errors are zero, even if we use the varying gap strategy. In the viewpoint
of exogenous disturbance attenuation, the varying gap strategy (with constant gap strategy in edges) shows
superior performance to the constant gap strategy.'® Therefore, we use this strategy throughout this paper.
In order to realize real-world helicopter formations like Vee, wedge, left and right echelon, and left and
right staggered formations,! we need to consider a gap error definition for a vehicle that has followers in left
and right sides. In this case, the gap error vector definition becomes more complex, but they can be defined
in similar manner. See Ref. 18 for details.

B. Model Predictive Control Law for Helicopter Formations

Recall the system equation of the i-th vehicle
x(t) = fi(xi(t), wi(t)), (20)
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(a) Constant reference gap (b) Varying reference gap

Figure 1. Gap error vector definitions

where
x; € X CR", u; €Uy CR™. (21)

Here X; and U; are convex sets. We assume that u,;(¢) is measurable, and f; : X; x U; — R™ satisfies
standard conditions for admitting a unique solution.
The performance index J;(-) has the form of

T7+L
Ji(Xi, ki, t) = / Li(xi(t),x5,(8), (1), y> " ())dt + VI (x;(r + L), x5 ,(r + L), y? (r + L)), (22)

where the terminal penalty function Vif () : X x X_; x R — R is positive definite. The subscript —i
represents indices of neighboring vehicles following the notation of Ref. 10. yf’r : R — R™ is the reference
vector in the spatial frame, which has (at least) the reference velocity vector xfr(t) and the reference heading

¥y (2)-
The finite horizon optimal control (FHOC) problem with initial condition X; = x;(7) and horizon length
L is defined as
Vvl(iwt) = minJi(i%K’iat)v (23)
K
which is subject to Eq.(20), and Eq.(21).
K, is a piecewise continuous time-dependent function in open-loop strategy space such that

K; € ICZ = {I{ : [O,L] X Xz — Z/{Z} (24)
u;(t) = kit — 7, %;). (25)
If an optimal solution of the FHOC problem exists, let x*(t — 7,%;) denote the solution for ¢ € [r,7 + L].

Note that V;(x;,t) = J(X;, k], t).
Based on these, the receding horizon control law for i-th vehicle at ¢t = 7 is defined as

w; (1) = k(%) = K7(0,%;). (26)
The running cost £;(-) has the form of
Li(xi,x%,wiy7) = L9 (i, x%,) + LY (xi,y7) + L7 (x0) + L (w3). (27)
For vehicles in edges,
LI (xi,x5;) = [lef illas ., (28)
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where ||z||o denotes a matrix weighted norm (z7Qx). Similarly, using the varying gap strategy, the term
can be represented as

L9 (x,%5,) = [[ef] . (29)
LY(-) penalizes the tracking error, and can be defined as
LY (xi,y7 (1) = [ly? (t) = CY (xi)llgr, (30)

where C} : X; — R™ maps the state vector into corresponding output signals. In order to track the reference
velocity vector and heading in the spatial coordinate system, we use the following definition of CY(x;) in
simulation:

CY(x;) = (31)

RB—>SXiB
¥

The term L7(+) is for remaining terms in the state vector that do not appear in the previous running costs,
¢, 0, p, g and r, for example. It is noticeable that internal states, a, b, r¢p, ¢, and d, are not penalized,
since they are not measurable, and related dynamics are well damped.® Therefore, we can define £Z(-) such
that

L7 (xi) = [|CFxillqs (32)

where C¥ € R™ *" and n? denotes the number of terms in the state penalized by £F(-). L£¥(-) penalizes
input magnitudes,

L (i) = |[uil|r, (33)
with positive definite matrix R; € R™ *™
Finally, the terminal penalty Vif (+) is defined by
e’
yZS — CZ“I(Xz) vehicles in edges
Crx; P
v/ (xix%,y7) = , (34)
e}
yf - CY(x;) otherwise
Crx; P

where P, € R +ni+ni)x(nf+ni+ni) ig o positive definite matrix. This terminal penalty plays several
important roles in achieving guaranteed stability. In the next section, we discuss a design procedure of an
MPC without time dependent terms £9%P(-) and LY(-).

C. Design of Nonlinear MPC without Inter-agent Couplings

Due to pioneering research efforts in the 1990s, several design methodologies for stable MPC algorithms
are now available.® In most of the stability proofs of MPC algorithms, the ‘tail’ of the value function of
an FHOC problem plays a very important role, since it is known that, if one can approximate this term
properly, the MPC based on FHOC problem realizes the virtues of infinite-horizon problems in stability and
robustness. The work of Chen and Allgéwer!? achieves this by taking advantage of the terminal inequality
constraint and (virtual) terminal linear controller. Their technique for proving stability is one of the well-
regarded among various finite-horizon based online optimization controllers, including a decentralized MPC
algorithm.'® However, it is reported that by introducing a terminal inequality constraint in the FHOC
problem the numerical computation becomes slow,2? and sometimes the MPC structure nonrobust.?!

On the other hand, Jadbabaie et al.?2 achieved a stable MPC algorithm by using the so-called control
Lyapunov function (CLF) as a terminal cost without any terminal constraints. In this case, even though
it is not easy to find a proper CLF for a given nonlinear system without conservatism, the scheme effec-
tively minimizes the number of constraints subject to FHOC problem, which is quite important in practical
implementation of an MPC algorithm.
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In the remaining section, we describe the procedure to define a CLF for the nonlinear helicopter cruise
model without inter-agent coupling and time dependent terms using semi-definite programming, which ap-
pears in Ref. 20.

First, we need to redefine helicopter cruise dynamics (Eq.(12)) without the spatial position vector part
as follows

xP

x4

B
0

AP A4
ARSTP(xN) 0

+ 17| u, (35)

d [x
dt | x4

where the matrix A in Eq.(12) is separated into A4 and AP, and ARITS (x4) is rearranged version of RE—%

(Eq.(0)) in corresponding order and dimension.
If we set upper and lower limits of ¢ and 6, then we can get bounds of those terms in A Rgas(xA). The
operational limits of attitude variables are set to

—30° < ¢ < 30°, —40° <6 <20°. (36)

The corresponding bounds of terms in ARS HS(XA) are
—0.4195 < sinptan#= p; < 0.4195
—0.8391 < cos ptan 6= py < 0.3640
0.8660 < cos ¢ Lp3<1
—05< —sing £ps <05
—0.6527 < sin ¢psecd £ ps < 0.6527
0.8660 < cos psec = pg < 1.3054

Now we are ready to convert the system matrix in Eq.(35) into an affine parameter varying matrix®?® such
that

6
A(p(t) = AG + Zpi(t)Af’ (37)

where A? is a constant matrix that has only one 1 on the corresponding entry, and zeros otherwise. A} is
the matrix that has constant terms in the system matrix of Eq.(35). Finally, the above parameter varying
matrix can be represented by a polytopic model

A(t) € Co{A7, A3, ..., A} }, (38)

where the set Co{-} denotes the set that includes all possible convex combination of its vertex elements. The
conversion from Eq.(37) to Eq.(38) can be done by the function aff2pol in LMI Toolbox,?* and it results
in a polytopic model with 64 vertices.

For a given weighting matrices (only for internal states, heading, and attitude variables extracted from
Eq.(27)), the minimum upper bound of the value function is the optimal value of the following convex
optimization problem:2°

min tr(Z2) (39)
Y >0
YAV 4 A'Y - BX — XTBT YQ'?* XTR'?]
QY -1 0 <0
RY2X 0 -1 | (40)
S Y
Iy

Y=y, z" =2,

where Z is a slack variable, Y = P~! and X = KY are the change of variables. From this result, the
terminal cost (for the system without external time-dependent signals) is defined by V/(x) = x” Px.
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Due to the size of the given cruise dynamics, the dimension of the above convex optimization problem is
prohibitively huge. The problem has 2(n®)? — (n® —1)(n® —2) +n®n’ (292 in our case) variables and 64+1+1
LMI constraints whose dimensions are (2n* 4+ n*)2, (2n*)2, and (n®)?2, respectively. Most of contemporary
personal computers are based on a 32 bit structure, and their maximum allowable memory block size is
limited to four giga bytes, which is marginal for our problem. Using LMITOOL2?* and SeDuMi,?® we tried
to solve the full-scale problem, but a solution was not complete even after 96 hours. Instead, we sampled 32
vertices from 64 vertices in the definition of the polytopic model, and used them for CLF computation. In
this case, the solver converges after 15 hours. The magnitudes of elements in the obtained matrix are shown
in Figure 2.

For the given CLF V/(x), it is known that there
exist r € Ry such that

min(V7 (x)+x7Qx+u’Ru) <0 forx € Q,, (41)

where 0, = {x € R">*"4|V/(x) < r}, and np and
n4 are dimensions of x” and x4, respectively.

Let x*(¢t;X) be the optimal trajectory at ¢ €
[1,7 + L] starting from x = x(7). If x*(7 + L;X) €
., then the trajectory starting from X converges to
the origin under the RHC scheme.??

To complete the design procedure, we need to
choose a proper horizon length L so that we can
have a sufficiently large invariant set that includes
Q... However, in high-dimensional systems, it is very
difficult to compute an invariant set corresponding
to an L analytically or numerically. In our research,
we set L = 0.5 (s) based on several simulation results
with various values of L. The sampling frequency is
set to 50Hz (§ = 0.02 sec) so that it is identical with that of our existing UAV control system.3

In order to show the validity of the CLF computed from the sub-sampled polytopic set, computer sim-
ulations are performed with several initial conditions. As shown in Figure 3(a) — 3(c), the designed MPC
scheme successfully stabilizes all the initial conditions in Table 2l

It is noticeable that all the states converge to the origin in spite of control input saturations in the
beginning of simulations (Figure 3(c)). Even though the design procedures we use here are originally for
unconstrained MPC, the controller works well with input constraints in our case.

Magnitude

14

Number of column

Number of row

Figure 2. Magnitudes of elements in matrix P

#(0) (degree) 6(0) (degree)

IC1 20 30
1C2 20 -30
1C3 -40 30
1C4 -40 -30

Table 2. Initial conditions used for single helicopter simulations with the designed MPC controller

D. Interagent Information Structure and Communication

Provided that the inter-agent communication happens only one time per sampling instance,” a decentralized
algorithm can be implemented with lower bandwidth communication channels, whereas a centralized setup
requires high bandwidth communication channel on the central agent which solves the optimal control
problem for every agent. However, in a decentralized setup, if inter-agent communications are required during
a numerical iteration, the total amount of information transferred between agents can be more than that of
a centralized case.?® This scheme falls into a category of algorithms using cooperative iteration.?” Since this

©This means that there is no communication while solving a local optimization problem.
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Figure 3. Regulation performance of the designed MPC controller, IC1: blue solid, IC2: blue dashed, IC3:
red dash-dotted, IC4: red dotted

cooperative iteration needs stable and high bandwidth communication channels and strict synchronization
between agents, it is more challenging to implement one on a hard real-time system. In the proposed setup,
we use one inter-agent communication per every sampling instance, and there is no communication while
solving an FHOC problem.

As shown in Eq.(27)), the proposed MPC scheme requires the predicted trajectory of neighbors for ¢ €
[, 7+ L] at every sampling time. In Ref. 10, neighboring agents interchange their predicted trajectories and
use them as estimations of neighbors’ trajectories. This appears to be a reasonable choice, but it requires
higher communication bandwidth than the scheme that uses only current neighbors’ states and extrapolates
them for prediction. Moreover, few research is done about the cases that these predictions are not accurate
due to external disturbances and/or model uncertainties.

In our research, the transferred spatial positions of neighboring agents are extrapolated over the finite
horizon. The predicted positions of neighboring vehicles are represented by

x‘ii(7+t):x§i(7)+5<‘ii(7)t for 0<t<L. (42)

As shown in the following section, acceptable performance can be achieved by this scheme. However, since the
prediction error increases as the prediction horizon extends, the extension of the length of prediction horizon
does not mean the enlargement of domain of attraction. In addition, the velocity information transferred to
neighbors should be properly filtered so that the effects of noisy measurements can be minimized.

IV. Simulations

The MPC algorithm for autonomous helicopter formations as formulated and described above was imple-
mented in Matlab/Simulink environment. The core of the implementation involves a solution to the FHOC
problem, and the following section is devoted to a discussion of numerical algorithms for FHOC problems.

A. Numerical Solver for Finite-Horizon Optimal Control Problem

In general, the nonlinear FHOC problem can be numerically solved in two ways: indirect and direct ap-
proaches. Indirect approaches utilize the necessary conditions given by the Pontryagin Minimum Principle.
Then, it can be viewed as a multi-point boundary value problem, and an optimal solution is obtained by
boundary value problem solvers like shooting methods and finite-element methods. However, these indirect
methods are known to be very sensitive to their initial conditions, and as a result, lack robustness. See Ref. 28
and references therein. Therefore, it is not practical to use indirect methods in solving online optimization
problems.

Direct methods, on the other hand, discretize continuous dynamics and cost functions using a high-order
Runge-Kutta method?®2? or direct collocation,?® convert it into a finite-dimensional nonlinear optimiza-
tion problem, and obtain an optimal solution through nonlinear programming techniques. These provide
approximate solutions, but they are robust against arbitrary initial conditions, and optimal solutions with
reasonable accuracy can be achieved using less intensive numerical procedures than indirect methods.
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In the following simulations, we use the DynOpt package.?? This package uses the 4th order Runge-
Kutta method for discretization of the continuous-time dynamics and cost functions, and achieves an optimal
solution using the sequential unconstrained minimization technique (SUMT). Since the package contains the
SUMT algorithm and it is tightly integrated with discretization procedures, DynOpt allows for compact and
versatile implementation. Although other solvers using direct method like NTG3' and DIRCOL?? require an
external commercial nonlinear programming solver, it is worthwhile to use them in that they provide more
user-friendly options and detailed error messages for debugging. In the case of NTG, it was reported that
the package is used as an MPC engine in a hard real-time application.®

B. Simulation Setup

Figure 4 shows the configuration of the right echelon formation' used in simulations. We chose this config-
uration because we want to investigate the propagation of disturbances through connected vehicles.
In the case of the constant gap strategy (vehicles in edges, Vehicle
0 and 7 in Figure 4), gap vectors are defined as @ 0
|

30 -30 1
tic1= |30 fiv1 = | 30 | (43) @

30 —-30 @ 2

and all units are in ft. ~,

When we defined the FHOC problem (Eq.(23)), we assumed that T ’ j
there are constraints on states such that x; € &;. In recent publi- @
cations,?!+32 it is reported that the state-constrained MPC scheme is ‘., ;
possibly not robust due to the discontinuity in the value function in- Y ‘

duced by state constraints. In accordance with this observation, we @
use only input constraints in our application, even though our FHOC
problem solver allows state constraints in the formulation. We use the

following admissible input set for all vehicles in our simulations Figure 4. Right echelon formation
with eight helicopters used in simu-
U={ueR"|-1<u’ <1, 1<j<ni} (44) lations

where u/ denotes the j-th element of the vector u.

A final consideration here is the weighting on the attitude states, ¢
and 0 (roll and pitch angles). It is well known in the field of aircraft control that the stabilization of attitude
dynamics is a key to good controller design. This is due to the coupling between the translational dynamics
and the attitude dynamics. In order to keep the attitude variation at a minimum, the terms related with ¢
and 0 in Eq.(32) should be more heavily penalized than other terms.

C. Performance with a Homogeneous Formation

In order to investigate disturbance attenuation performances of the proposed controller, we exert negative
longitudinal wind gust on the leading vehicle. The longitudinal acceleration induced by the wind gust is
shown in Figure 5

As shown in Figure 6, the MPC algorithm with the varying gap strategy successfully damps out the
relative gap errors caused by the disturbance as they propagate into the homogeneous formation, i.e., the
maximum gap errors caused by the disturbance between vehicles become smaller and smaller.

D. Performance with a Heterogeneous Formation

In order to test our algorithm in a heterogeneous setup, we put virtual models from Section [IIl in locations
of 1, 2, 4, 5, and 6 in the right echelon formation (Figure 4). For Vehicles 0, 3, and 7, the original R-50
cruise model is used.

As shown in Figure!7,, the proposed algorithm successfully damps out external disturbance as it propagates
through this heterogeneous formation.
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Figure 6. Gaps in x-direction, homogeneous formation under negative gust in longitudinal direction

In the case of mesh stability algorithm,33 the gap error in- 0s
duced by the leader motion was amplified between a normal
vehicle and a more agile vehicle. Since the algorithm uses po-
sition information of the leader as well as neighboring vehicles,
and an agile vehicle tends to maintain the relative position from
the leader even when the relative gap errors between neighbors
become large, there exists a ‘jump’ in gap error propagation.
However, in our MPC-based formulation, since vehicles share
only reference velocities and heading, the dilemma of the global
connection to the leader does not appear, and the space be-
tween vehicles can be safely maintained.

Figure [8 shows comparisons of gaps between homogeneous 250
and heterogeneous formations. Note the figure related with Ve-
hiclle 0 and 3. .Althotllgh there exists slight performance degra- Figure 5. Disturbance induced by wind gust,
dation comparing with the homogeneous case, the proposed pegative x direction
algorithm shows comparable disturbance attenuation capabil-
ity in heterogeneous formation.

Wind Gust Induced Acceleration (ft/s?)

. . . . . . .
5 10 15 20 25 30 35 40
Time (sec)

V. Conclusions and Future Work

In this paper, the problem of autonomous helicopter formations is considered. A stable MPC-based
controller for a single helicopter was implemented first, and then carefully designed inter-vehicle coupling
terms were added in order to maintain safe space between helicopters. In Section [I1I, we showed the proposed
algorithm successfully damps out exogenous disturbances via a series of simulations. The algorithm was also
applied to a heterogeneous formation, and it showed a good attenuation property.

The current issue of the proposed scheme is that the FHOC problem solver, DynOpt, is too slow for
real-time applications. It takes about an hour to perform an 8-vehicle formation simulation for 80 seconds.
Our algorithm will be tested with different solvers such as the gradient descent method.?* We are optimistic
because we already have performed successful MPC experiments using the gradient decent method.® The
enhancement of the performance of our existing solver is also now being pursued. As soon as the develop-
ment of the enhanced FHOC solver is completed, the proposed algorithm will be implemented on BErkeley
AeRobot (BEAR) testbed,®!® and a series of experiments will be performed.
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Figure 7. Gaps in x-direction, heterogeneous formation under negative gust in longitudinal direction
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Figure 8. Comparison of gaps in x-direction, homogeneous formation: dashed lines, heterogeneous formation:
solid lines
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In this work, collision avoidance between neighboring vehicles has not been addressed explicitly. The
MPC-based formation controller copes with it only in an implicit manner, in terms of disturbance attenuation.
In addition to collision avoidance, individual vehicles in the team may face various emerging situations such as
pop-up threats, strong wind gusts, communication failures, and lack of thrust power. Under these unfavorable
circumstances, one or more vehicles may separate from the formation until adversities are overcome. Once
normal flight conditions are restored, the separated vehicle will rejoin the formation and continue its mission.
This means that we need a high-level agent on top of the proposed MPC formation controller that facilitates
complex logistics allowing more dynamic and flexible autonomous formation flights. In this context, we

introduced the concept of the “formation manager”,'® and it will be implemented on the BEAR avionics as
a part of the autonomous formation flight system.
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