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Generalized Performance of Concatenated Quantum
Codes—A Dynamical Systems Approach
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Abstract—We apply a dynamical systems approach to concate-
nation of quantum error correcting codes, extending and general-
izing the results of Rahn et al. to both diagonal and nondiagonal
channels. Our point of view is global: instead of focusing on par-
ticular types of noise channels, we study the geometry of the coding
map as a discrete-time dynamical system on the entire space of
noise channels. In the case of diagonal channels, we show that any
code with distance at least three corrects (in the infinite concate-
nation limit) an open set of errors. For Calderbank–Shor–Steane
(CSS) codes, we give a more precise characterization of that set.
We show how to incorporate noise in the gates, thus completing
the framework. We derive some general bounds for noise channels,
which allows us to analyze several codes in detail.

Index Terms—Quantum channels, quantum error corrections,
quantum fault tolerance.

I. INTRODUCTION

I N THIS PAPER, we analyze quantum codes in essence, ab-
stracting their details as codes and extracting their fault tol-

erance properties using a dynamical systems approach. This
framework has been initiated by Rahn et al. [1]. They show
how to incorporate diagonal noise on the qubit into an effective
channel on the logical qubits.

We broaden this viewpoint and extend their approach in sev-
eral ways. We look at the effective channel from a dynamical
systems point of view, using tools and methods from this field. In
particular we characterize the region of correctable errors using
tools from the analysis of fixed points and show how to incor-
porate perturbations of the coding map.
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Our second chain of results extends the results of [1] to the
realistic model of faulty gates and general channels. Rahn et al.
only analyzed the depolarizing channel on the physical qubits
as the single source of noise. We show that incorporating noisy
gates gives rise to a perturbed effective channel. We also an-
alyze general noise on the qubits and give several bounds for
the convergence of nondiagonal channels to diagonal channels.
Our results are supported by several examples for the family
of CSS-codes, which is the encoding predominantly proposed
for fault-tolerant quantum computing. We simplify our bounds
in the case of CSS codes and analyze the [[7,1,3]] code, the
smallest member of the CSS family, in great detail.

1) Structure of the Paper: We first introduce the dynamical
systems approach in Section II and establish the notation and
some basics. In Section III, we extend this approach to diagonal
channels, including an analysis of regions of convergence. Sec-
tion IV deals with faulty gates. In Section V, we establish sev-
eral results and examples for nondiagonal (i.e., general) noise
channels and in Section VI, we discuss a way to improve chan-
nels. Our approach allows to drastically reduce the number of
parameters, lending quantum error correcting codes (QECCs)
to an elegant analysis. This, however, comes at some price, and
in Section VII we outline some of the shortcomings of this ap-
proach, before concluding with some open questions.

II. NOTATION AND FRAMEWORK

In this section, we formulate the basic framework and review
the main results from [1], which should be consulted for details.
Quantum states are represented by their density matrices.

The error correction process consists of three parts: encoding
, noise , and decoding . Each part is modeled as a quantum

channel, namely, a map taking density matrices to density ma-
trices. Quantum channels are required to be linear, trace-pre-
serving, and completely positive, hence of the form

with (1)

where are linear operators and is the identity (cf. [2]). In
addition, we will assume that the channels are time-independent
in order to simplify the study of their convergence. In the sub-
sequent sections, we will often denote quantum channels by $.

Encoding takes an initial logical qubit state to the ini-
tial register state which evolves according to some contin-
uous-time noise dynamics. We consider the evolution for a fixed
amount of time , turning noise into a discrete-time operation
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which takes into a final register state . Fi-
nally, decoding takes to the final logical qubit state .
The map

describes the effective dynamics of the encoded information re-
sulting from the physical dynamics of and is called the effec-
tive channel.

We consider noise models on qubits consisting of un-
correlated noise on each single physical qubit, so

times

Given an qubit quantum error correcting code with en-
coding operation and decoding operation , the map taking
the single qubit noise to the effective channel

(2)

is called the coding map of .
The density matrix of one qubit can be expanded in the stan-

dard Pauli basis for density matrices and rep-
resented as a four-dimensional real vector. A noise channel
can then be represented as a 4 4 matrix

(3)

Zeroes in the first row are due to trace preservation. For an arbi-
trary qubit code , the entries of the matrix
can be calculated to be

(4)

where , run over , and
, are the coefficients in the expansions for the encoding

and decoding operations relative to . See [1] for details.
If the matrix (3) is diagonal, is called a diagonal

channel. In that case, we write , , and
and denote the channel by . It was shown in

[3] that complete positivity of such channels implies that the
point must be in the tetrahedron defined by

(5)

It is easily checked that a single-bit Pauli channel with exclusive
probabilities , ,

has the following representation in the previous notation:

In fact, any diagonal channel can be realized as a single-bit
Pauli channel, so the parametrizations of via and via

are equivalent.
The dimensional Pauli group is .

Suppose we have a stabilizer code that encodes qubits into
. Its stabilizer is an abelian subgroup of with

generators . The -dimensional codespace is defined as

so that for all

The subset of that commutes with is the centralizer, and it
includes encoded operations we can perform on the codespace.
We measure each generator , and let if we project
into the 1 eigenspace, and if we project into the 1
eigenspace. We then have an error syndrome , and
we correct with a recovery operator .

It was shown in [1] that if is a stabilizer code, then takes
diagonal channels to diagonal channels. In fact, if
are the generators of , then

where

(6)

and , if , for , .
Here, denotes the -weight, is the encoded , and the

denote recovery operators corresponding to the error syn-
dromes. For later purposes, we extend as the natural homo-
morphism to the negative of the Pauli matrices by

.
Therefore, the components of are polynomials of

degree in , , and . Observe, however, that in general is a
map from a higher dimensional space of nondiagonal channels
to itself. Nondiagonal channels of particular interest to us are
unital channels; a channel is unital if .

An important result from [1] is that concatenation of codes
translates into composition of coding maps. In other words, if

and are codes and denotes their concatenation,
then

Given a noise model and code , we are interested in what
this noise looks like under repeated concatenation of the code
with itself. Then the question is, does

as

If this is the case, corrects the error given by .
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Rahn et al. [1] focus mostly on the symmetric depolarizing
channel given in the above notation by and
derive threshold estimates for various codes. We take a global
point of view, where instead of looking at noise channels point
by point, we consider the behavior of the coding map as a
discrete-time dynamical system and study the set of all noise
channels attracted to the identity channel under iteration of the
coding map. This approach enables us to use methods from the
theory of dynamical systems.

III. OPEN SET OF CORRECTABLE DIAGONAL ERRORS

We will first focus on diagonal noise channels, i.e., those
given by a diagonal matrix, as discussed in the previous sec-
tion. The standing assumption of this section is therefore that
all noise channels are diagonal. We saw that we can charac-
terize the asymptotic properties of the coding scheme involving
the concatenation of a fixed code with itself by studying the
long-term behavior of the dynamical system

We now review some necessary basics from the theory of dy-
namical systems. Good introductory references are [4] and [5].

A. Dynamical Systems Preliminaries

A (discrete-time) dynamical system is a map ,
where is a space with a certain additional structure (topolog-
ical, metric, differentiable, etc.). In our case, it suffices to as-
sume that is some Euclidean space or a subset of it, and
that is a differentiable map. We denote by the deriva-
tive of at a point and think of it as a linear operator on .
We will denote by the norm of as such on op-
erator; that is

(The norm on is arbitrary but fixed.) If depends differ-
entiably on , we define the second derivative of in the usual
way as ; recall that can be thought of
a bilinear map and then denotes its
norm. Continuing recursively, we say that is of class (or
simply ) if exists and is a continuous function of .

For , the set , where
( times), is called the orbit or trajectory

of . A fundamental question in the theory of dynamical sys-
tems is: what is the long term behavior of trajectories? That is,
where does end up eventually, as ? The set of
accumulation points of the orbit of is called the -limit set of

. An example of such a set is a fixed point of , i.e., a point
such that . A fixed point is locally attracting if there
exists a neighborhood of in such that for every ,

, as . A basic criterion for a fixed point to be
locally attracting is the following.

Lemma 3.1: Suppose is open, is a
map, is a fixed point of , and . Then

is locally attracting.

Proof: Let . Since depends continu-
ously on and , there exists a neighborhood
of in such that , for all . Then, by the
mean value theorem

for all . Therefore,

as .
The largest such set is called the basin of attraction of the

fixed point , denoted by . Let denote the open ball
of radius centered at .

Lemma 3.2: Assume is , the hypotheses of the previous
lemma are satisfied, and , for all . Then,

.
Proof: The proof goes along similar lines as the previous

one. Let be arbitrary and .
For an arbitrary point in the closed ball , we have

that is, is a contraction on . Furthermore, for all

which implies that is -invariant. Therefore, under
iteration of , every point in converges to , so

. Taking the union over all
proves the claim.

Now take and observe that [1,1,1] is always an
isolated fixed point of , though not necessarily attracting.
For instance, [1,1,1] is a saddle for the coding map of the
bit-flip code. However, if is the Shor or five-bit code, then

, so [1,1,1] is locally attracting. The following
result shows that this is not a coincidence.

Proposition 3.3: Under the assumptions above, if is a
quantum error correcting code of distance 3, then

Proof: It suffices to show that sends three linearly
independent vectors to zero.

Since the distance of the code is at least three, corrects all
errors of weight one. In particular, it corrects all single-bit Pauli
channel errors
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for and . Such errors correspond
to noise channels , , and

, for , respectively. Let us consider
. To say that corrects -errors means that

This implies that the directional derivative

where . Similarly, we can show
that , where

and . Since , ,
are linearly independent, it follows that .

Corollary 3.4: For every code of distance at least three,
[1,1,1] is an attracting fixed point of the coding map

. If denotes its basin of attraction and on
, then

(7)

Proof: Observe that can be extended to the whole
space , has [1,1,1] as a fixed point, and, by Proposition 3.3,

. Therefore, [1,1,1] is locally attracting
for as a map . By Lemma 3.2,
is contained in the basin of attraction of [1,1,1], again as a
fixed point of . However, we know that is an
invariant set for , i.e., , and it contains [1,1,1].
Therefore, points in are both attracted to
[1,1,1] and stay in under iteration of . This proves (7).

Proposition 3.5: Suppose is a CSS code. It will be shown
in Theorem 5.7 that

for some polynomials , . Let be the largest fixed point of
in (0,1). Then

Proof: It follows from Proposition 3.3. that 1 is an at-
tracting fixed point of . Let be its basin of attraction.
It is well known that its boundary is -invariant. Since

and is -invariant, it follows that is a fixed
point of . Therefore, . This means that for every

, , as .
Now suppose , , . Then

We know that , . Let be an accumulation
point of the sequence . Since , it follows that

. Therefore, , as , which
implies .

To show the opposite inclusion, assume the contrary, i.e., that
there exists a point such that

. Then or . In the former case,

does not converge to 1, and in the latter, ,
contrary to our assumption that is in the basin of attraction of
[1,1,1].

IV. FAULTY GATES

We want to extend the analysis in [1] to include faulty gate
operations both in the error correction and in the computation
circuits. Gate errors are a common form of noise in quantum in-
formation processing. We show how to incorporate faulty gates
into the current framework and how they change the effective
channel and the coding map. Note that fault tolerance for our
noise model has been shown, but that there is some dispute about
the validity of that model and whether quantum fault tolerance
is possible [6].

A. A Simple Noise Model

Our first approach is to start with a very simple error model
for faulty unitary gates

(8)

This error model is rather generic. It has the additional advan-
tage that noise from sequential gates is additive; if we combine
two faulty operations as in (8), we obtain

(9)

i.e. a faulty process with . As we have seen, the effec-
tive dynamics of one level of concatenation is simply encoding,
noise and decoding, i.e.,

Let us also assume here that the noise on the qubits is unital,
i.e. . We now show that faulty gates in this model
have the same effect as noise; hence, we can effectively treat
noise from faulty gates and other types of noise on the qubits in
the same way.

The encoding operation can be written concisely as
, where (or, for codes that encode

more than one qubit, ). This encoding is per-
formed by applying a sequence of gates, possibly faulty, as in
(8). The operation corresponding to can be implemented with
unitary gates in a larger space by appending some ancillary
qubits, for instance as . If errors occur
according to (8), the resulting operation will be

, where
denotes the error-free encoding and is the noise accumu-

lated from gates during encoding. In an analogous way, it can be
seen that a decoding map , implemented with faulty gates, can
be written as , where we
have used that . Putting this together
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under the simplifying assumption that (unital chan-
nels), and using additivity of error from faulty gates, we get

where and is the effective channel with perfect
gates. In other words, faulty gates only contract the iterated map
by . As a result, the coding map (see (2)) changes to

, the coding map with faulty gates, as

The entries of the matrix for the coding map change as

(10)

where we have used the fact that the coding map whose only
nonzero entry is represents a mapping of to the identity
matrix. In other words, the incorporation of faulty gates into our
analysis results in an affine mapping of the coding map: is
contracted by and the element is added.

B. More General Noise

It is not difficult to extend this analysis to more general noise
in the gates and general noise on the qubits. Let us assume that
instead of the restricted noise model of (8) we are dealing with
generic noise of rate . We can write

where is some general noise operation.
The analysis of the previous Section IV-A goes through line

by line. The noise process is additive (with in (9) replaced
by ). The encoding and decoding
operations can then be written as

where and are the noise resulting from encoding, re-
spectively, decoding. Concatenating yields

with and the cumulative noise can be written to
first order as

The new coding map with faulty gates is then very similar to
before

In other words, faulty gates introduce a perturbation to the orig-
inal coding map studied in the previous section. They can be
treated in the same way as noise on the qubits. In fact we see
that the occurrence of faulty gates is the same as a process with
increased noise on the gates and perfect gates. However, if the

noise on gates is small compared to the noise on qubits, we can
treat it as a perturbation to the original coding map. We will
show how to incorporate such perturbations in the analysis with
the following Lemma. Here, denotes the norm of
a smooth map on its domain, that is, the maximum of the
suprema of and .

Lemma 4.1: Suppose is an open set,
is smooth (at least ), and .Then
for small enough and every smooth map , if

, then has a fixed point such that
and .

In other words, if a map has an attracting fixed point, then
any sufficiently small perturbation of it also has an attracting
fixed point which is close to the original one.

This is a standard fact from the theory of dynamical systems;
for completeness, we supply a proof here.

a) Proof: Let be an upper bound of on some
relatively compact neighborhood of . Since , there
exists such that maps the closed ball into itself
and . Without loss, we can take so small that

. Assume
. Then it is not difficult to show that for every ,

, which means that takes into
itself. Therefore, by the Brouwer fixed point theorem, has a
fixed point, say , in . Since

we obtain .
To show that is an attracting fixed point for , let us show

that . Observe first that
. Therefore, .

It is clear from (10) that the coding map of a code with
faulty gates is a small perturbation of the coding map
with perfect gates.

V. ANALYSIS OF CHANNELS

In this section, we will give several technical results about
channel maps, which we will subsequently use to analyze var-
ious diagonal and nondiagonal channels and to give examples.
In particular, we will study in detail how nondiagonal elements
of a noise channel affect its convergence and threshold.

A. The Two-Point Theorem

We look at bounds for a general channel, resulting in Theorem
5.4.

Lemma 5.1: For any nonidentity Pauli matrix

(11)

(12)

All elements of the channel are real.
Proof: preserves hermiticity, and is positive (sends

nonnegative to nonnegative ) [7]. The first condition implies
that the elements are real. Then the adjoint channel, which
has the map , is also positive. A simple
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calculation shows that a matrix
is nonnegative if and only if .

Let , and apply

which gives , and , so the nonnegative
condition gives , from which we get

, which gives (11).
Let . Now let

. Then, apply to

which gives and , so
, which gives

, so , which gives (12).
This proof extends naturally to multi-qubit channels.
Corollary 5.2: Each row of a quantum channel in the Pauli

basis has norm at most 1.
Proof: Since , we have ,

and so the result follows from (11).
Corollary 5.3: Let be the nonunital

portion of the channel. Then, we have that any other column
of the channel in the Pauli basis has norm squared

.
Proof: Follows immediately from (12).

Theorem 5.4 (Two-Point Theorem): If two of , ,
are 1, then the channel is the identity channel.

Proof: Let , , be some permutation of the Pauli
matrices such that . From Corollary 5.2,

and are the only nonzero elements in their rows.
From Corollary 5.3, the nonunital part must be 0, and
and are the only nonzero elements in their columns. It
then follows that the channel is diagonal. From the conditions
on diagonal channels given in (5), it easily follows that if two
terms are equal to 1, the third term must equal 1, and so we have
the identity channel.

B. Generalized Shor Codes

In this section, we give a first application of our formalism
and the general bounds we obtained. We study generalized Shor
codes, which are bit flip and phase flip codes concatenated with
each other. We will assume a diagonal channel in what
follows. Note that Theorem 5.4 is easy to prove in this case; it
follows immediately from (5).

1) Bit Flip, Phase Flip: The qubit bit flip code is a clas-
sical code on qubits that corrects all bit flip errors on less than

qubits and none of the errors on greater than qubits; if
is even it also corrects half of the errors on exactly qubits.

The coding map is . To
see this note that the code does not correct phase flips ( or er-
rors), and so if , the -component of the coding map
must be a function of only . Since ,
it follows that the -component of the coding map must be a
function of only . The only such element of the equivalence
class gives us .

To see that the -component depends on only, note that
the code can correct bit flips ( or errors), sending them

to or errors, respectively, and so if , by
similar reasoning as before we observe that the component
depends only on and hence that the -component is a function
of only . Now, assume only errors. Then , and

, where is the failure probability
as a function of an error rate of . We can obtain from
the properties of the classical bit flip code.

Since the function does not affect the and
components of the channel, from Theorem 5.4, we may ignore
it for the purposes of convergence to the identity channel.

Some values of are

For the phase flip code we get similarly
by exchanging the roles of and .

These codes will have two critical values, and . If
then , and similarly for .

2) Specific Codes: We can now obtain sharper results for
the error threshold of concatenated bit flip and phase flip codes,
extending [1].

The often discussed [[9,1,3]] Shor code has the
coding map

. We define a [[25,1,5]] code
to be , and a [[15,1,3]] code to be

The [[25,1,5]] code has critical values of ,
and . The [[15,1,3]] code has critical values of

and . If , the [[15,1,3]]
code performs much better than the [[25,1,5]], even though it is
less redundant.

C. Convergence of Nondiagonal Channels

In this section, we will establish some general results for non-
diagonal channels in the case of stabilizer codes [8]. Nondiag-
onal channels are in general much harder to analyze than their
diagonal counterparts, as the parameters span a 12-dimensional
manifold. However, we will show that in certain cases these
channels converge to diagonal channels, and will discuss when
these converge to the identity channel.

We can decompose the single qubit noise operator as

(13)

where is the diagonal part, and is chosen such that has
no term with absolute value more than 1; it contains the off-di-
agonal terms. We show that if is sufficiently small and ,
then repeated application of the coding map yields a diagonal
matrix. This will allow to restrict our analysis to diagonal chan-
nels, at least in certain regimes.

We wish to analyze the absolute values of the difference that
the nondiagonal terms make on the channel after we apply the
coding map. Define the difference matrix
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Let us assume that the code is an stabilizer code [8] (it
encodes qubits into qubits, and has distance , which is the
minimal weight of an undetected error). Let be the minimal
weight of a nonidentity stabilizer element.

Theorem 5.5: The nondiagonal terms of the difference ma-
trix have absolute value at most . The diagonal terms of

are at most in absolute value. These coefficients are
bounded above by

(14)

Proof: We can rewrite (4) as

(15)

where is the column of and similarly for . The
(nonzero) entries of are the stabilizer elements, and the
nonzero elements of are times the stabilizer elements,
where is the encoded . We note that is nonzero only if

and are in the same equivalence class of modulo ,
where is the stabilizer group, and is its centralizer (see
[8] for more detailed definitions).

Now, the nondiagonal elements of depend on the nonzero
elements of and with , which correspond to the

and equivalence classes of , which differ on at least
qubits. Then from (4), respectively, (15), it follows that the

nondiagonal terms involve at least nondiagonal terms of
and are hence from (13). The difference of the diagonal
elements corresponds to elements of the same , which differ
on at least qubits, since is the minimal weight of different
elements in the same equivalence class (nonzero elements of the
same ). Hence, they are .

From (15) it is easy to see that the coefficients and are
bounded above by

where we used that each coefficient is at most 1 in absolute value
and the cardinality of the stabilizer group.

Note that in certain cases we have explicit expressions for
, which can come from calculations with a diag-

onal noise channel and can give us tighter bounds on and
than the generic .

1) Convergence to the Identity: Suppose we concatenate the
above coding map times. Then the absolute values of the off-
diagonal terms are bounded above by , where , and

. Then, from Theorem 5.5

where is defined for . Since these affect the
diagonal terms by at most , we can bound the correction
for the diagonal terms as

(16)

Now we assume that the nondiagonal terms go to 0, which
means that , and so and both go monotoni-
cally to 0. From Theorem 5.5, we can see that if the map

converges to within of the identity
matrix, then so does . However, we can get a tighter
bound than this.

Let be the diagonal part of the channel.
We define . We can think of the as
a lower bound on the diagonal part of the channel. Then, the
channel goes to [1,1,1], if . These coding maps are

, and .
The channel converges to identity if

D. CSS Codes on 1 Qubit With a Generalized Noise Channel

In this section, we tighten our result in the case of CSS codes
[9]–[11].

Let our code be a CSS code. From the construc-
tion of CSS codes from classical codes, must be odd. Its sta-
bilizer group is generated by generators, half of which
depend only on tensor products of s and s, and the other
half are the same, except they have s replacing the s. We
can write the stabilizer group as the span of ,
where , and is the -dimensional Pauli Ma-
trices which only depend on tensor products of and .
The stabilizer elements in are used to correct against
errors, and the stabilizer elements of are used to correct
against errors, and so we can write the set of recovery opera-
tors as and , where are the components
of the syndromes obtained by measuring stabilizer generators
from , and each .

The Pauli operators are encoded as

(17)

To obtain a convenient representation of the decoding operator
, we define the average recovery function as
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where the are the recovery operators (see Section II) Let
be the diagonal matrix given by

(18)

Where is the linear homomorphism defined in Section II (6).
In particular note that if commutes with all recovery opera-
tors , then , and if anti-commutes with all of the
recovery operators then . Then, from [1] we obtain
for the decoding matrix

(19)

Lemma 5.6: The nonzero elements of must be contained
in , and similarly for , although usually not for .

In particular this implies that if or , then
depends only on , , , and . Then to find

convergence of the and rows, we can look at these rows
separately.

Proof: Since , the non identity stabilizer elements
must commute with half of the recovery operators. Only the
nonzero elements of don’t commute with exactly half of
the recovery operators. This implies that each nonidentity el-
ement of commutes with half of the elements of

, and similarly for and . If half
of either or commute with some element of , then
half of all of the recovery operators commute with it. Now, pick
some nonzero element of , where .
If then . Then, if an element , it follows
that , and so, half of commutes with .
Then, must commute with half of the recovery elements, and
so must be zero in . Then the nonzero elements of are
in .

Theorem 5.7: There exists functions and
such that the following is true for :

Furthermore, these functions and are
symmetric under permutations of , , and .

Proof: The permutation , sends
to itself, and sends

Then, from Lemma 5.6, and the fact that sends
, and must exist as stated.

As for the symmetries, depends on and . By per-
muting , , and , we preserve the stabilizer elements which
are the nonzero elements of , and so is fixed under per-
mutations of , , . depends on , and

. By permuting , , and , we preserve the nonzero ele-
ments of , which are times the elements of (see (17)),
and so is fixed under permutations of , , and

. The other cases follow similarly.
Lemma 5.8: Let be single qubit Pauli matrices and

let be a nonzero element of . Then appears tensored an
even number of times in .

Proof: In the case where , corresponds to the
stabilizer group. Since is generated by even weight elements
in and even weight elements in , in order for it to be
Abelian, it must have the above property. For general we have

, and, using is on all qubits, the desired result
follows.

Theorem 5.9: A CSS code takes a channel to the identity
channel if and only if both vectors
and converge to [0,1,0,0] under the
map

In fact, it is sufficient that they converge to .
Proof: Obviously, this is a necessary condition. From

Lemma 5.8, we see that each of the variables , , and in
, and must appear an even number of

times in each term. So we may ignore any 1 sign in front of
or . From the symmetries we have, it then follows

that the aforementioned map determines convergence on the
and rows. The rest of the theorem follows from Theorem

5.4.
Remark (Unital Channels): In the case of unital

channels, the above reduces to the condition that both
and converge to

under the map

Notice that this no longer depends on .
Lemma 5.10: For CSS codes, we have

for and as defined in Theorem 5.5.
Proof: We use the bound of Theorem 5.5 for the nondiag-

onal terms. In the case of a CSS code, we have for or
that , and so the nonzero entries are given by

. Therefore, the sum in (14) has only entries,
giving an overall coefficient of .

1) Doubly-Even CSS Codes: Doubly even CSS codes are
CSS codes that have weight divisible by four for and

. For these codes we can strengthen Theorem 5.9. Define
functions and that are the same as the and defined
in Theorem 5.7, without the factors of .

Theorem 5.11: A doubly even CSS code takes a
channel to the identity channel if an only if both

and
converge to [0,1,0,0] under the map

Proof: The stabilizer group is formed by generators
, and generators , each with weight divisible by
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4. Then and together appear a number of times divisible
by 4 in each stabilizer element (and similarly for ,

). Following similar reasoning to that of the proof of
lemma 5.8, we find that and together appear a divisible
by four number of times in each term of . Then,

, and by definition

(20)

These satisfy all the symmetries above and the convergence
relations of Theorem 5.9. (without the factors of ).

2) Example: [[7,1,3]] CSS Code: We use the example of the
[[7,1,3]] code, a doubly even CSS code commonly used in fault
tolerance calculations, to illustrate how to find the functions de-
fined in Theorem 5.7. and use Theorem 5.9 to analyze the con-
vergence of channels under this code.

b) Computation of the Coding Map: The stabilizer
group of this code is generated by the elements ,

, and , ,
. Using the notation from Section V-C, the nonzero

elements of are the stabilizer group elements

We have , and . One
notices that there are 7 terms that are some permutation of

. Let denote the sum over these
permutations. and give us the
corresponding permutations of and .
Similarly, there are 42 terms that are , up to
some permutation, so we define a function
to sum over these. Then we can write

With we get

The recovery operators which depend on are

Combining these with the recovery operations in , we
easily find all 64 recovery operators. There are one in the form

, all seven permutations of , all seven permu-
tations of , all seven permutations of , and all

42 permutations of . (19) now allows us to find the el-
ements of . We calculate from . com-
mutes with 8/64 recovery elements, commutes with
40/64 recovery elements, and , ,
and each commute with 32/64 of the recovery el-
ements. Then

A similar calculation shows that
, but does not follow this pattern.

Now, we wish to compute . First, we look at how the
component of contributes. From

, it follows that only elements in that are identity
on the last four qubits contribute. This is just , so we
get .
For the component of , everything
in contributes. This gives a contribution of

Together, these give

A similar calculation shows that

For the functions , which are related to by (20), we obtain

Note that
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c) Analysis: We consider the convergence of a row of the
channel matrix as in Theorem 5.2. We have from The-
orem 5.2 that

(21)

If the channel is diagonal (or in general in the case where all
but one parameter , , or are zero) we have a critical point

such that .
Let us now analyze the behavior of nondiagonal channels

with small off-diagonal elements.
Theorem 5.12: If any of , , , or is within of 0, it must

go to 0.
Proof: Thiscanbeproved in generalbya rather lengthycal-

culation. To convey the main idea we will here only give the proof
in the case where one of the 4 variables equals 0 (for example,
a unital channel). Then our function becomes

. We want to show that
that if , we have that . Without
loss of generality, we may assume that is positive. Below the
critical value , we have , so we only
need to see if , which is maximized by

, . A simple calculation shows that there is no
solution. Then it follows that must monotonically go to 0.

From Theorem 5.12 and (21) we easily see that the vector
must converge to a vector with at most one nonzero

coefficient. Now suppose that is slightly above , and that ,
, and have absolute values of at most some small . We wish

to see how much changes the critical convergence value for .
Let . Then,

Since , , and become up to 4th order of , the
vector converges to [1,0,0,0] for

, which implies that

Solving up to first order for our new critical value, we get

This implies that the off-diagonal terms affect the threshold to
fourth order (as implied by Theorem 5.5.); but here we improved
the prefactor . Note that Lemma 5.10 would have given a pref-
actor of 512.

If we choose a larger number instead of 6.147 26, for example
7, then our vector converges to [1,0,0,0] from
for as big as 0.3.

VI. SVD CANONICAL FORM

In this section, we follow the method of [3], applying unitary
gates before and after our channel to create a new channel that
has fewer parameters. This can be used to improve the region of
convergence to the identity channel.

Let be the nonidentity elements of the Pauli group . Then
if , then the unitary channel performs
a rotation by in the plane. More generally:

Lemma 6.1: Expressing the unitary gates as channels in the
Pauli basis creates a bijection from to

The Singular Value decomposition (SVD) theorem [12] states
that if is a real matrix, then there exists such
that the are orthogonal, and is a diagonal matrix with
elements , which are called the singular values of .
Then , where .

Theorem 6.2: If is a channel on one qubit, then there
exists a channel

(22)

where the are channel representations of a matrix of in
the form , and the designates the sign of .

d) Proof: From (3), define the vector
, and let be the 3 3 matrix with

the other nine variable elements. From the SVD theorem, we
have

where . The outer matrices are unitary
channels by lemma 6.1.

Note that , so if the channel is unital, .

A. CSS Codes

We now apply the above to CSS codes, and in particular ex-
amine the [[7,1,3]] CSS code.

Proposition 6.3: For a given CSS code with a channel in
the canonical form of (22), if at least 2 of converge to
[0,1] under the map

(23)

where the are the functions from Theorem 5.7, then by ap-
plying unitary gates before and after the channel , we can
create a new channel that converges to the identity.

Proof: Suppose that and converge to [0,1]
under the given map. We define a matrix such that

, , , and the diagonal matrix
. By Lemma 6.1, these are unitary channels. Then

(24)

and the rest follows from Theorem 5.9.
Now, in a method similar to that of Theorem 5.9, we only

need to consider the convergence of the two-dimensional real
space under the map from (23). In particular, we
are interested in the region of for which it converges to
[0,1]. For the channel from (24), if both and
converge to [0,1], then converges to the identity channel.
From Corollary 5.2, .
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1) Example: The [[7,1,3]] CSS Code: For the [[7,1,3]]
code, the map is , where

. Let .
This converges to [0,1] if and only if .

A numerical calculation shows that always converges
to [0,1] for . For , this
threshold is exact, and so this converges to [0,1] for

. For a unital channel, , and so this converges to
[0,1] for . In either of these cases, we just
need at most one singular value of the channel to be less than
or equal to the given critical value.

We can find an approximate solution for the region of conver-
gence to [0,1] by solving . For , we have an ap-
proximation for the region of

. As increases, these approximate regions rapidly
converge to the actual region of convergence to [0,1].

The singular values of a unitary channel are always 1. Note
that if the unitary channel from Lemma 6.1 is in
its original non canonical form (we do not apply the unitary
gates from Theorem 6.2), it converges to the identity channel
for .

VII. CONCLUSION AND FURTHER QUESTIONS

A. Drawbacks of Our Approach

The approach of integrating the sequence of concatenated
encoding and noise as a rather simple map from channels to
channels is very powerful. By abstracting away from the de-
tails of the encoding and the noise process, it drastically re-
duces the number of parameters, and makes the coding process
amenable to a dynamical systems type analysis. However, this
approach sometimes comes at a price. By ignoring the details of
the coding and correction process, we might get error thresholds
above the actual thresholds if we accounted for all these details.
The following example illustrates this, introducing the notion of
a recovery function.

Suppose we have a stabilizer code. We define a re-
covery or error correcting function [13] which maps the
collection of syndromes measured by the codes to some qubit
Pauli operator, . We also define a syndrome
function , which maps Pauli errors to some syn-
drome. With these definitions we must have that ,
for any . Note that we can chose up to elements
of the stabiliser without any difference for error correction.
Hence our choices for differ from each other by elements
of the centralizer are limited to the elements of the Cen-
tralizer modulo the Stabilizer. They can be written as an element
of times some representative element of . To study the
choice of recovery function on the channel, define the matrix

to be the diagonal matrix

Then the matrix operator , defined in (18), is .
We have , where the quasichannel (they
do not have to preserve trace)

is the contribution of a single on the channel map.

When we measure a syndrome during error-correction, we
gain some information about the channel. Let the encoded state
be described by the density matrix

. We can re-write our channel as a sum over
all syndromes

If we measure and use the information, we collapse to a syn-
drome with probability ,
and the resulting density matrix is . In particular,
if , then

, which doesn’t depend on , and the resulting -inde-
pendent channel is then . If we throw this infor-
mation away we recover the coding map from the previous
sections. In other words the coding map approach corresponds
to ignoring the information about the channel that we could have
obtained from the syndrome measurements, to optimize the re-
covery functions.

By performing measurements on the subblocks of a concate-
nated code, we affect the channel on each qubit of the top level
code. If we do not optimize our error correction, we are not
being as efficient as we should be. For example, a distance 3
code cannot correct some 2-qubit errors, and so the code we ob-
tain by concatenating it once with itself without changing the
error correction function cannot fix some 4–qubit errors. How-
ever, the distance of a distance code concatented with a
distance code is , and so we should be able to cor-
rect any 4 qubit error. The problem is to keep track of all of this
syndrome information, and finding the optimal error correction
function seems to be computationally hard.

B. Open Questions

We have initiated a dynamical systems approach to quantum
error correction, extending the result of Rahn et al.. [1]. This
only opens the road to further analysis and many questions re-
main open. We list a few of them here.

In our analysis we have always assumed that an error correc-
tion process is successful, if the associated coding map takes
the noise channel to the identity channel. However, this might
be too stringent a condition. Are there any other criteria for in-
formation retrieval, which are not equivalent to zero (corrected)
error?

Another question relates to the basin of correctable noise for
a code: If our noise channel lies outside the basin of attraction
of a certain code, can we find another code that would “lift”
this noise into the basin of attraction of the old code? More
specifically, given a code (with ) and a noise channel

, is there another code such that ?
If the answer is positive, then the concatenation scheme
corrects , as . It would be interesting to formalize these
ideas.

Yet another question concerns the shape of the region of cor-
rectable noise. Is there a (nontrivial) bound for the size or shape
of the domain of attraction? Can we characterize regions of
noise that are not correctable by any code? There is a new and
interesting bound on noise from which no circuit can recover in
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[14]. However the methods used there are not dynamical. Is it
possible to make sharper statements?
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