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Abstract— This paper introduces a distributed networked
control system (DNCS) consisting of multiple agents commu-
nicating over a lossy communication channel, e.g., wireless
channel. Two aspects of DNCSs are studied in this paper – state
estimation and stabilizing communication control. Based on the
Kalman filter, optimal linear filtering algorithms are derived
for the discrete-time linear dynamic models of the DNCS with
lossy links. Then, the problem of finding a communication
control which stabilizes a DNCS is considered. The stabilizing
communication control problem seeks the acceptable ranges of
packet loss rates at which the overall system is stable. Efficient
algorithms based on convex optimization are developed for
solving the stabilizing communication control problem.

I. INTRODUCTION

With the recent developments in communication, com-
puting, and control systems, a networked control system
(NCS) has received a fair amount of attention recently. In
a general sense, an NCS consists of spatially distributed
multiple systems or agents equipped with sensors, actuators,
and computing and communication devices. The operation
of each agent is coordinated over a communication net-
work. The examples of an NCS include sensor networks
[1], networked autonomous mobile agents [2], e.g., a team
of UAVs, and arrays of micro or micro-electromechanical
sensors (MEMS) devices.

Recently, different aspects of NCSs have been studied
extensively. Sinopoli et al. [3] showed the phase transition
behavior of the Kalman filter when the measurement packet
loss is modeled by a Bernoulli random process and estab-
lished the relationship between the speed of dynamics and
the packet loss rate for the stable estimation of the system.
Similar estimation problems are discussed in [4], [5]. The
control problems over an unreliable communication channel
have been studied by many authors, including [6], [7], [8].
The stability of NCSs has been also studied in [9], [10].

There is a growing interest in consensus and coordination
of networked systems inspired by the model by Vicsek et al.
[11], in which a large number of particles (or autonomous
agents) move at a constant speed but with different headings.
At each discrete time, each particle updates its heading based
on the average heading of its neighboring particles. The
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analysis of the Vicsek model in different forms are reported
in [12], [13], [14]. In this paper, we extend NCSs to model
a distributed multi-agent system such as the Vicsek model.

In general, a single plant is assumed in an NCS and the
links between the plant and the estimator or controller is
closed by a common (unreliable) communication channel.
This paper extends this notion of NCSs by introducing a
distributed networked control system (DNCS) consisting of
multiple agents communicating over a lossy communication
channel. The best examples of such system include ad-hoc
wireless sensor networks and a network of mobile agents.
We first consider the estimation problem appears in DNCSs
and develop optimal linear filtering algorithms based on the
Kalman filter.

Then, we consider the problem of finding a communi-
cation control which stabilizes a DNCS. This problem is
called the stabilizing communication control problem and
its goal is to find the acceptable ranges of packet loss
rates at which the overall system is stable. We use the
stability results for jump linear systems by Costa and Fragoso
[15] to derive a sufficient condition for the stability of a
DNCS. We then develop an efficient algorithm for checking
the existence of stabilizing communication control using
linear programming and discuss a method for solving the
stabilizing communication control problem using geometric
programming, a convex optimization method [16], [17].

The remainder of this paper is structured as follows. The
dynamic models of DNCSs are described in Section II. The
filtering algorithms for DNCSs are described in Section III.
The stabilizing communication control problem is described
in Section IV.

II. DISTRIBUTED NETWORKED CONTROL SYSTEMS
WITH LOSSY LINKS

Let us first consider a distributed control system consisting
of N agents, in which there is no communication loss. The
discrete-time linear dynamic model of the agent j can be
described as following:

xj(k + 1) =
N∑

i=1

Aijxi(k) + Gjwj(k) (1)

where k ∈ Z+, xj(k) ∈ Rnx is the state of the agent j at time
k, wj(k) ∈ Rnw is a white noise process, Aij ∈ Rnx×nx , and
Gj ∈ Rnx×nw . Hence, the state of the agent j is governed
by the previous states of all N agents. We can also consider
Aijxi(k) as a control input from the agent i to the agent j
for i 6= j.



Now consider a distributed networked control system
(DNCS), in which agents communicate with each other over
a lossy communication channel, e.g. wireless channel. We
assume an erasure channel between a pair of agents. At each
time k, a packet sent by the agent i is correctly received by
the agent j with probability pij . We form a communication
matrix Pcom = [pij ]. Let Zij(k) ∈ {0, 1} be a Bernoulli
random variable, such that Zij(k) = 1 if a packet sent by
the agent i is correctly received by the agent j at time k,
otherwise, Zij(k) = 0. Since there is no communication loss
within an agent, pii = 1 and Zii(k) = 1 for all i and k. For
each (i, j) pair, {Zij(k)} are i.i.d. (independent identically
distributed) random variables such that P (Zij(k) = 1) = pij

for all k; and Zij(k) are independent from Zlm(k) for l 6= i
or m 6= j. Then we can write the dynamic model of the
agent j under lossy links as following:

xj(k + 1) =
N∑

i=1

Zij(k)Aijxi(k) + Gjwj(k). (2)

Let x(k) = [x1(k)T , . . . , xN (k)T ]T and w(k) =
[w1(k)T , . . . , wN (k)T ]T , where yT is a transpose of y. Let
Āij be a Nnx×Nnx block matrix. The entries of Āij are all
zeroes except the (j, i)-th block is Aij . For example, when
N = 2

Ā12 =
[

0nx
0nx

A12 0nx

]
,

where 0nx is a nx × nx zero matrix. Then the discrete-time
linear dynamic model of the DNCS with lossy links can be
represented as following:

x(k + 1) =

 N∑
i=1

N∑
j=1

Zij(k)Āij

 x(k) + Gw(k), (3)

where G is a block diagonal matrix of G1, . . . , GN .
For notational convenience, we introduce a new index n ∈

{1, . . . , N2} such that ij is indexed by n = N(i − 1) +
j. With this new index n, the dynamic model (3) can be
rewritten as

x(k + 1) =

 N2∑
n=1

Zn(k)Ān

 x(k) + Gw(k). (4)

By letting A(k) =
(∑N2

n=1 Zn(k)Ān

)
, we see that (4) is

a time-varying linear dynamic model:

x(k + 1) = A(k)x(k) + Gw(k). (5)

Until now we have assumed that Ān is fixed for each n.
We relax this assumption by letting A(k) = A(Z(k)), where
Z(k) = [Z1(k), . . . , ZN2(k)]T . This relaxed dynamical
system is

x(k + 1) = A(Z(k))x(k) + Gw(k). (6)

The dynamic model (6) or (4) is a special case of the linear
hybrid model or a jump linear system [15] since A(k) takes
an element from a set of a finite number of matrices. We will
call the dynamic model (4) as the “simple” DNCS dynamic
model and (6) as the “general” DNCS dynamic model.

III. STATE ESTIMATION

In this section, we describe recursive filtering algorithms
for the dynamic models (4) and (6) using the Kalman filter
(KF). Since Z(k) is independent from Z(t) for t 6= k, we
derive optimal linear filters for both cases. Notice that we
denote Z(k) by Z when there is no confusion.

A. KF for Simple DNCS

Consider the simple DNCS dynamic model (4), where
w(k) is a Gaussian noise with zero mean and covariance
Q, and the following measurement model:

y(k) = Cx(k) + v(k), (7)

where y(k) ∈ Rny is a measurement at time k, C ∈
Rny×Nnx , and v(k) is a Gaussian noise with zero mean and
covariance R. Hence, we are assuming that the measurements
are collected by a remote sensor or by a sensor in one of the
agents.

The following terms are defined to describe the modified
Kalman filter.

x̂(k|k) := E [x(k)|yk]
P (k|k) := E

[
e(k)e(k)T |yk

]
x̂(k + 1|k) := E [x(k + 1)|yk]
P (k + 1|k) := E

[
e(k + 1|k)e(k + 1|k)T |yk

]
,

where yk = {y(t) : 0 ≤ t ≤ k}, e(k|k) = x(k) − x̂(k|k),
and e(k + 1|k) = x(k + 1)− x̂(k + 1|k).

Suppose that we have estimates x̂(k|k) and P (k|k) from
time k. At time k+1, a new measurement y(k+1) is received
and our goal is to estimate x̂(k + 1|k + 1) and P (k + 1|k +
1) from x̂(k|k), P (k|k), and y(k + 1). First, we compute
x̂(k + 1|k) and P (k + 1|k).

x̂(k + 1|k) = E [x(k + 1)|yk]

= E

 N2∑
n=1

Zn(k)Ān

 x(k) + w(k)|yk


=

 N2∑
n=1

pnĀn

 x̂(k|k),

where pn = P (Zn(k) = 1). Let A(k) =
∑N2

n=1 Zn(k)Ān

and Â =
∑N2

n=1 pnĀn.

P (k + 1|k) = E
[
e(k + 1|k)e(k + 1|k)T |yk

]
= E[A(k)x(k)(A(k)x(k))T |yk]
− Âx̂(k|k)(Âx̂(k|k))T + GQGT

Since E[Zn(k)Zn(k)] = pn and E[Zn(k)Zm(k)] = pnpm

for m 6= n,

E[A(k)x(k)(A(k)x(k))T |yk]
= E[

∑N2

n=1

∑N2

m=1 Zn(k)Zm(k)Ānx(k)x(k)T ĀT
m|yk]

=
∑N2

n=1

∑N2

m=1 E[Zn(k)Zm(k)]ĀnE[x(k)x(k)T |yk]ĀT
m

=
∑N2

n=1 pnĀnE[x(k)x(k)T |yk]ĀT
n

+
∑N2

n=1

∑N2

m=1,m 6=n pnpmĀnE[x(k)x(k)T |yk]ĀT
m.



On the other hand,

Âx̂(k|k)(Âx̂(k|k))T

=
∑N2

n=1

∑N2

m=1 pnpmĀnx̂(k|k)x̂(k|k)T ĀT
m.

Combining previous two results into the equation for
P (k + 1|k), we get

P (k + 1|k)
= GQGT +

∑N2

n=1 pnĀnE[x(k)x(k)T |yk]ĀT
n

+
∑N2

n=1

∑N2

m=1,m 6=n pnpmĀnE[x(k)x(k)T |yk]ĀT
m

−
∑N2

n=1

∑N2

m=1 pnpmĀnx̂(k|k)x̂(k|k)T ĀT
m

= GQGT +
∑N2

n=1 pnĀnE[x(k)x(k)T |yk]ĀT
n

−
∑N2

n=1 p2
nĀnE[x(k)x(k)T |yk]ĀT

n

+
∑N2

n=1

∑N2

m=1 pnpmĀnP (k|k)ĀT
m

= GQGT +
∑N2

n=1 pn(1− pn)ĀnE[x(k)x(k)T |yk]ĀT
n

+
∑N2

n=1

∑N2

m=1 pnpmĀnP (k|k)ĀT
m.

We can also write it as

P (k + 1|k)
= GQGT + ÂP (k|k)ÂT

+
∑N2

n=1 pn(1− pn)Ān(P (k|k) + x̂(k|k)x̂(k|k)T )ĀT
n .

Given x̂(k + 1|k) and P (k + 1|k), x̂(k + 1|k + 1) and
P (k +1|k +1) are computed as in the regular Kalman filter.

x̂(k + 1|k + 1)
= x̂(k + 1|k) + K(k + 1)(y(k + 1)− Cx̂(k + 1|k))

P (k + 1|k + 1)
= P (k + 1|k)−K(k + 1)CP (k + 1|k),

where K(k +1) = P (k +1|k)CT (CP (k +1|k)CT +R)−1.

B. KF for General DNCS

Now let us consider the general DNCS dynamic model (6)
with the measurement model described in (7). We have

x̂(k + 1|k) = E [x(k + 1)|yk]
= E [A(Z)x(k) + Gw(k)|yk]
= Âx̂(k|k),

where
Â =

∑
z∈Z

pzA(z)

is the expected value of A(Z). Here, pz = P (Z = z), and
Z is a set of all possible outcome vectors for Z.

The prediction covariance can be computed as following.

P (k + 1|k)
= E[e(k + 1|k)e(k + 1|k)T |yk]
= E[A(Z)x(k)x(k)T A(Z)T |yk]
−Âx̂(k|k)x̂(k|k)T ÂT + GQGT

=
∑

z∈Z pzA(z)E[x(k)x(k)T |yk]A(z)T

−Âx̂(k|k)x̂(k|k)T ÂT + GQGT

= GQGT +
∑

z∈Z pzA(z)P (k|k)A(z)T

+
∑

z∈Z pzA(z)x̂(k|k)x̂(k|k)T (A(z)− Â)T .

Lastly, x̂(k + 1|k + 1) and P (k + 1|k + 1) are computed
as shown in the simple DNCS case.

C. Simulation Results
The simulation results of the modified Kalman filtering

algorithms are summarized in this section. We first compare
the performance of the KF for the simple DNCS system
against independent KFs. Then we compare the performance
of the KF for the general DNCS system against independent
KFs.

1) Simple DNCS: Consider the simple DNCS dynamic
model (4) and the measurement model (7). Let N = 3 and
the state vector of each agent is x = [x, y, ẋ, ẏ]T , where
(x, y) and (ẋ, ẏ) are the position and the velocity components
of the vehicle along the x and y axes, respectively. For i =
1, 2, 3,

Aii =

 1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 Gi =

 δ/2 0
0 δ/2
δ 0
0 δ

 ,

where δ is the sampling interval, while

A12 =

 0 0 0 0
0 0 0 0
0 0 0.1 0
0 0 0 0.1

 ,

A13 = −A12, A21 = −A12, A23 = A12, A31 = A12, and
A32 = −A12. The communication matrix is

Pcom =

 1 0.75 0.75
0.75 1 0.75
0.75 0.75 1

 .

The measurement matrix C = [ci,j ] is a 2N × 4N matrix,
where all entries are zeroes except c1,1 = c2,2 = c3,5 =
c4,6 = c5,9 = c6,10 = 1. So we are observing only the posi-
tions of the agents. In addition, δ = 1, Qi = diag(0.01, 0.01),
and R is a 2N × 2N identity matrix. The initial states of
the agents are x1(0) = [10, 10, 1, 1]T , x2(0) = [10, 0, 1, 1]T ,
and x3(0) = [0, 10, 1, 1]T . The simulation is run from k = 0
to k = 200.

The performance of the modified KF for the simple DNCS
is compared against N independent KFs where each KF
is used to track each agent. The trajectories and estimates
from both approaches are shown in Figure 1. The mean
square error (MSE) of N independent KFs was 7.57 while
the MSE of the modified KF for the simple DNCS was
1.85. This example illustrates how the knowledge of the
communication matrix can improve the state estimation when
the communication links are lossy. Also notice that due to
the interaction among agents in the DNCS dynamic model,
the dynamics of each agent shows high nonlinearity.

2) General DNCS: This is an example inspired by the
model by Vicsek et al. [11]. Consider a general DNCS
system (6) consisting of N = 5 agents. The same state
vector as in Section III-C.1 is assumed for each agent. The
communication matrix is

Pcom =


1 0.967 0 0 0.141

0.337 1 0.248 0 0
0 0.732 1 0.426 0
0 0 0.088 1 0.135

0.189 0 0 0.046 1

 .



(a) (b)

Fig. 1. (a) Trajectories of the agents are shown in solid lines and estimates from N independent KFs are shown in dotted lines. (b) Trajectories of the
agents are shown in solid lines and estimates from the modified KF for the simple DNCS are shown in dotted lines. The estimates of the modified KF
almost overlap with the actual trajectories. (This figure is best viewed in color.)

The dynamics of the agent i is

xi(k + 1) =
i+1∑

j=i−1

Aκ(j)i(Z)xκ(j)(k) + Giwi(k),

where κ(j) = (j − 1 mod N) + 1. For κ(j) = i,

Aii(Z) =

 1 0 δ 0
0 1 0 δ
0 0 1/S(i) 0
0 0 0 1/S(i)

 ,

and, for κ(j) 6= i,

Aκ(j)i(Z) =


0 0 0 0
0 0 0 0
0 0 Zκ(j)i/S(i) 0
0 0 0 Zκ(j)i/S(i)


with S(i) =

∑i+1
m=i−1 Zκ(m)i. Hence, when the agent i

communicates with its neighboring agents κ(i − 1) and
κ(i + 1), its new velocity is the average of its velocity and
velocities received from its neighboring agents.

The measurement matrix C = [ci,j ] is a (2·3)×4N matrix,
where all entries are zeroes except c1,1 = c2,2 = c3,9 =
c4,10 = c5,13 = c6,14 = 1. So we are observing the positions
of agents 1, 3 and 4 and the positions of agents 2 and 5
are not observed. In addition, δ = 1, Qi = diag(0.04, 0.04),
and R = diag(25, 25, 25, 25, 25, 25). The initial states
of the agents are x1(0) = [50, 50, 1, 1]T , x2(0) =
[50, 0,−0.9, 0.989]T , x3(0) = [0,−50, 0.227, 0.665]T ,
x4(0) = [−50, 0, 0.161,−0.188]T , and x5(0) =
[0, 50,−0.83, 0.617]T . The simulation is run from k = 0 to
k = 500.

We compared the performance of the modified KF for
the general DNCS against the regular KF which assumes
no lossy links. The trajectories and estimated by KFs are
shown in Figures 2. Figure 2(a) shows the estimates from
the regular KF which assumes no lossy links, Figure 2(b)
shows the estimates from the modified KF for the general

DNCS. The MSE of the KF which assumes no lossy links
was 64.89 while the MSE of the modified KF for the general
DNCS was 22.12. Notice that although the positions of the
agent 2 and 5 were not observed, the KF designed for the
general DNCS was able to estimate their positions better.

IV. STABILIZING COMMUNICATION CONTROL

In this section, we consider the problem of finding a
communication control which stabilizes the general DNCS
(6) for given {A(z) : z ∈ Z}, i.e., finding a communication
matrix Pcom such that the general DNCS (6) is stable. For
example, in wireless communication, one can control the
transmission power to increase or decrease entries of Pcom.
We use the stability results for jump linear systems by Costa
and Fragoso [15]. We use the notation A � 0 if A is
a positive definite matrix and A � 0 if A is a positive
semidefinite matrix. The spectral radius of A is denoted by
ρ(A).

Definition 1: The DNCS model (6) is mean square stable
(MSS) if, for any initial condition x0 and second-order
independent wide sense stationary random process {w(k)},
there exist x∗ and P ∗ independent of x0 such that:
(a) ‖ E[x(k)]− x∗ ‖ → 0 as k →∞
(b) ‖ E[x(k)x(k)T ]− P ∗ ‖ → 0 as k →∞.

Theorem 1 (Corollary 1 of [15]): The DNCS model (6)
is MSS if and only if there exists G � 0 such that

G−
∑
z=Z

pzA(z)T GA(z) � 0.

Theorem 2: The DNCS model (6) is MSS if∑
z∈Z

pzρ(A(z)T A(z)) < 1.

Proof: Fix α > 0 and let G = αIn where n = Nnx

and In is a n× n identity matrix. Clearly, G � 0.

G−
∑

z=Z pzA(z)T GA(z)
= αIn − α

∑
z=Z pzA(z)T A(z)

� α
(
1−

∑
z=Z pzρ(A(z)T A(z))

)
In

� 0,



(a) (b)

Fig. 2. (a) Trajectories of the agents are shown in solid lines and estimates from the KF which assumes no lossy links are shown in dotted lines. (b)
Trajectories of the agents are shown in solid lines and estimates from the modified KF for the general DNCS are shown in dotted lines. (This figure is
best viewed in color.)

since
∑

z=Z pzρ(A(z)T A(z)) < 1. Hence, by Theorem 1,
(6) is MSS. �

Using Theorem 2, one can easily check if there exists a sta-
bilizing communication control. Let ρ(z) = ρ(A(z)T A(z))
and consider the following linear programming (LP) prob-
lem.

minimize c =
∑

z∈Z pzρ(z)
subject to

∑
z∈Z pz = 1

0 ≤ pz ≤ 1, z ∈ Z.
(8)

Notice that we can add restrictions on pz to reflect physical
constraints in the DNCS. If there exists a feasible solution
with c < 1, we know for sure that there exists a stabilizing
communication control based on Theorem 2. However, it
is important to note that Theorem 2 is only a sufficient
condition. Hence, when the LP (8) does not have a feasible
solution with c < 1, we can not say there is no communica-
tion control which stabilizes the DNCS model (6).

Example 1: Consider a 2-agent DNCS system where

A11 =
[
−.138 .414
.598 .219

]
A12 =

[
−.075 −.006
−.505 −.34

]
A21 =

[
−.35 −.245
−.495 .049

]
A22 =

[
.185 −.137
−.298 −.653

]
.

Note that Z1 = Z11 = 1, Z2 = Z12, Z3 = Z21, and Z4 =
Z22 = 1. Let z1 = [1, 0, 0, 1]T , z2 = [1, 0, 1, 1]T , z3 =
[1, 1, 0, 1]T , and z4 = [1, 1, 1, 1]T . Then Z = {z1, z2, z3, z4}
and ρ(z1) = 0.517, ρ(z2) = 1.038, ρ(z3) = 1.044, and
ρ(z4) = 0.925. We also have constraints on pz: 0 ≤ pz1 ≤
0.6, 0.1 ≤ pz2 ≤ 0.5, 0.1 ≤ pz3 ≤ 0.5, and 0.1 ≤ pz4 ≤ 0.3.
Since not all ρ are less than 1, it is not clear that the DNCS
system is MSS with the constraints on pz . By solving the LP
(8) for this problem, one finds that there is a feasible solution:
p∗ = [pz1 , pz2 , pz3 , pz4 ]

T = [0.6, 0.1, 0.1, 0.2]T with c =
0.704. Hence, the DNCS system is MSS with p∗.

Now consider the same example as before except 1.5A22

is used instead of A22. Then ρ(z1) = 1.164, ρ(z2) = 1.56,

ρ(z3) = 1.558, and ρ(z4) = 1.531 and there is no feasible
solution to the LP (8) with c < 1 and the system is not
MSS. The state evolutions of these two systems are shown
in Figure 3. �

The LP (8) is an efficient way to check the existence of
a stable communication control. But it does not provide the
solution in the form we want. We want to find the communi-
cation matrix Pcom, not {pz}. For the notational convenience,
we again use the index n ∈ {1, . . . ,M = N2} described in
Section II, where ij is indexed by n = N(i− 1) + j. Then

pz =
∏
i,j

p
zN(i−1)+j

ij (1− pij)1−zN(i−1)+j

=
M∏
n

pzn
n (1− pn)1−zn .

The problem we want to solve is:

find {pn}
subject to

∑
z∈Z ρ(z)

∏M
n pzn

n (1− pn)1−zn < 1
0 ≤ pn ≤ 1, ∀n ∈ {1, . . . ,M}.

(9)

The problem (9) is a special case of signomial program-
ming which is non-convex and only a locally optimal solution
can be computed efficiently [17]. Instead of solving the
problem (9) directly, we relax the problem and use geometric
programming (GP), which is a convex optimization problem
[16], [17].

The relaxed GP is

max 1
ε

∏2M
m=1 qn

subject to
∑

z∈Z ρ(z)
∏M

n qzn

2(n−1)+1q
1−zn
2n + ε ≤ 1

q2(n−1)+1 + q2n ≤ 1, ∀n ∈ {1, . . . ,M}
0 ≤ qm ≤ 1, ∀m ∈ {1, . . . , 2M}

(10)
As in the LP (8), we can add restrictions on qn to reflect
physical constraints in the DNCS. Using the GP (10), we



(a) (b)

Fig. 3. (a) The state evolution of the MSS system given in Example 1. (b) The state evolution of the non-MSS system given in Example 1.

can find ranges of Pcom by running (10) multiple times with
different upper bounds on qm.

Example 2: Consider the DNCS system described in Ex-
ample 1 but replace A22 by 1.35A22. When the upper
bounds p12 ≤ 0.4 and p21 ≤ 0.4 are used, the GP finds
q = [0.4, 0.6, 0.4, 0.6]T and

∑
z∈Z pzρ(z) = 0.987. Since

q1 + q2 = q3 + q4 = 1, this is a feasible communication
control. However, when the upper bounds p12 ≤ 1 and p21 ≤
1 are used, the GP finds q = [0.426, 0.571, 0.436, 0.562]T .
But q1 +q2 6= 1 and q3 +q4 6= 1, hence, this is not a feasible
communication control. �

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a distributed networked
control system (DNCS) consisting of multiple agents com-
municating over a lossy communication channel, e.g. wire-
less channel. A DNCS is an extension of an NCS to model
a distributed multi-agent system such as the Vicsek model.
Optimal linear filtering algorithms based on the Kalman filter
are developed to estimate the states of DNCSs. Due to the
interaction among agents in the DNCS dynamic model, the
dynamics of each agent can show high nonlinearity. But the
filtering algorithm was able to estimate the states correctly
using the knowledge of the communication matrix. In the
second part of this paper, the stabilizing communication
control problem is described, where one finds the acceptable
ranges of packet loss rates at which the overall system is
stable. We developed algorithms based on convex optimiza-
tion to check the existence of stabilizing communication
control and for solving the stabilizing communication control
problem.

We have assumed that the communication matrix is inde-
pendent from other parameters. In our future work, we will
relax this assumption by making the matrix a function of
the states of the agents. This is a valid model for wireless
communication, since the transmission power decreases with
an increasing distance between a transmitter and a receiver.
We are currently extending the stabilizing communication
control problem using the necessary condition for stability.
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