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Abstract— We present a compressed domain scheme that is
able to recognize and localize actions in real-time. The recognition
problem is posed as performing a video query on a test video
sequence. Our method is based on computing motion similarity
using compressed domain features which can be extracted with
low complexity. We introduce a novel motion correlation measure
that takes into account differences in motion magnitudes. Our
method is appearance invariant, requires no prior segmentation,
alignment or stabilization, and is able to localize actions in both
space and time. We evaluated our method on a large action video
database consisting of 6 actions performed by 25 people under 3
different scenarios. Our classification results compare favorably
with existing methods at only a fraction of their computational
cost.

I. INTRODUCTION

The use of video cameras has become increasingly common
as their costs decrease. In personal applications, it is common
for people to record and store personal videos that comprise
various actions. In security applications, multiple video cam-
eras record video data across a designated surveillance area.
This proliferation of video data naturally leads to information
overload. It would not only be incredibly helpful but also
necessary to be able to perform rudimentary action recognition
in order to assist users in focusing their attention on actions
of interest.

In this paper, we would like to solve the following problem:
given a query video sequence of a particular action, we would
like to detect all occurrences of it in a test video, and thereby
recognizing an action as taking place at some specific time and
location in the video. We want our method to be appearance
invariant, and we want a solution that can operate in real-time.

There has been prior work in action recognition using raw
video without the use of body landmark points. Efros et. al. [1]
require the extraction of a stabilized image sequence before
using a rectified optical flow based normalized correlation
measure for measuring similarity. Shechtman and Irani [2]
exhaustively test motion-consistency between small space-time
(ST) patches to compute a correlation measure between a
query video and a test video. Schiildt et. al. [3] use a local
feature based approach in which Support Vector Machines
(SVM) were used to classify actions in a large database of
action videos that they collected.

Any practical system that records and stores digital video
is likely to employ video compression. It has long been
recognized that some of the video processing for compression
can be reused in video analysis or transcoding; this has been

an area of active research (see for example [4], [5]) in the last
decade or so.

There has also been prior work in performing action recog-
nition in the compressed domain. Ozer et. al. [6] applied
Principal Component Analysis (PCA) on motion vectors from
segmented body parts for dimensionality reduction before
classification. They require that the sequences must have a
fixed number of frames and be temporally aligned. Babu et.
al. [7] trained a Hidden Markov Model (HMM) to classify
each action, where the emission is a codeword based on the
histogram of motion vector components of the whole frame. In
later work [8], they extracted Motion History Image (MHI) and
Motion Flow History (MFH) [9] compressed domain features,
before computing global measures for classification.

Our proposed method makes use of motion vector infor-
mation to capture the salient features of actions which are ap-
pearance independent. It then computes frame-to-frame motion
similarity with a measure that takes into account differences in
both orientation and magnitude of motion vectors. The scores
for each ST candidate are then aggregated over time using a
method similar to [1]. Our approach is able to localize actions
in space and time by checking all possible ST candidates,
much like in [2], except that it is more computationally
tractable since the search space is greatly reduced from the
use of compressed domain features. Our novelty lies in our
ability to perform real-time localization of actions in space
and time by a novel combination of signal processing and
computer vision techniques. The proposed method requires
no prior segmentation, no temporal or spatial alignment and
minimal training.

II. PROPOSED METHOD

Given a query video template and a test video sequence,
we carry out the following steps to compute a score for
how confident we are that the action presented in the query
video template is happening in each space-time location (to
the nearest macroblock and frame) in the test video. We will
elaborate on each of these steps in the following subsections.

1) Estimate optical flow from motion vectors.

2) Compute frame-to-frame motion similarity.

3) Aggregate similarities over a series of frames.

4) Repeat the above steps for all possible space-time loca-
tions to localize queried action.



A. Estimation of coarse optical flow

Motion compensation is an integral component of modern
video compression technology and motion vectors are by-
products of the process. Motion vectors are obtained from
block matching and can be interpreted as crude approximations
of the underlying motion field or optical flow. In addition, the
DCT coefficients can also be used to provide a confidence
measure on the estimate. We follow the approach outlined by
Coimbra and Davies [10] for computing a coarse estimate and
a confidence map of the optical flow.

We then threshold the confidence map to keep only the
optical flow estimates with high confidence measures. This
step removes unreliable estimates and greatly improves the
performance of our algorithm.

B. Computation of frame-to-frame motion similarity

For the purpose of discussion in this section, both the
test frame and query frame are assumed to have a spatial
dimension of N x M macroblocks (the equal size restriction
will be lifted later). We would like to measure the motion
similarity between the motion field of the ith test frame,
Vie(n,m), and that of jth query frame, quuery(n,m). We
denote the horizontal and vertical components of a motion
field V (n,m) by Vi (n,m) and Vy(n, m) respectively.

One way of measuring similarity is to follow the ap-
proach taken by Efros et. al. [1]. Each motion field is first
split into non-negative motion channels, e.g. (V;(n,m)),
(~Vi(nm))s, (Vy(n,m))s and (~Vi(n,m))s. where
(z)+ = max(0,z). We can then vectorize these channels and
stack them into a single vector U. The similarity between
frame 7 of the test frame and frame j of the query frame,
S(i,7), is then computed as a normalized correlation:
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However, this does does not take into account the difference
in magnitudes of the motion vectors. We propose a novel
measure of similarity:
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Fig. 1. An example similarity matrix and the effects of applying aggregation.
In these graphical representations, bright areas indicate a high value. (a)
Aggregation kernel, (b) Similarity matrix before aggregation, (c) Similarity
matrix after aggregation.

In other words, we want to ignore macroblocks in both the
query and test video which agree on having no motion. This
has the effect of not penalizing corresponding zero-motion
regions in both the query and test video. We term this novel
measure NZMS (Non-Zero Motion Block Similarity).

C. Aggregation of frame-to-frame similarities

Section II-B tells us how to compute S(i,j). To take
temporal dependencies into account, we need to perform an
aggregation step. We do this by convolving the S(i,j) with
aT x T filter H(i,j) to get an aggregated similarity matrix
Sa(i,7) = (S * H)(i,5) [1]. Sa(i,7) tells us how similar a
T-length sequence centered at frame ¢ of the test video is to
a T-length sequence centered at frame j of the query video.
H(i,7) can be interpreted as a bandpass filter that “passes”
actions in the test video that occur at approximately the same
rate as in the query video. We use the following filter [1]:

) =" exp(

reR

—a(r=1)x(6rj) , =T/2<i,j <T/2

)]
where

L 1 if ¢ =sign(rj) - ||rj
©iuri) = . (rg) - LIril)
0 otherwise

R is the set of rates to allow for and « is a parameter
(av > 1) that allows us to control how tolerant we are to slight
differences in rates; the higher « is, the less tolerant it is to
changes in the rates of actions. Figure 1(a) shows this kernel
graphically.

Figure 1(b) shows a pre-aggregation similarity matrix,
S(i,7). Note the presence of near-diagonal bands, which is
a clear indication that the queried action is taking place in
those frames. Figure 1(c) shows the post-aggregation similarity
matrix, S, (4, 7), which has much smoother diagonal bands.
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Fig. 2. Illustration of space-time localization. The query video space-time
patch is shifted over the entire space-time volume of the input video, and the
similarity, C(n, m,¢) is computed for each space-time location.

D. Space-time localization

Sections II-B and II-C tell us how to compute an aggregated
similarity between each frame of a Ty -frames test sequence
and each frame of a Tyuey-frames query sequence, both of
which are N x M macroblocks in spatial dimensions. To
compute an overall score on how confident we are that frame
1 of the test frame is from the query sequence, we use:
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Maximizing S, (k,j) over j of the query video allows us to
pick up the best response that a particular frame of the test
video has to the corresponding frame in the query video. We
also maximize S, (k, j) over k in a T-length temporal window
centered at ¢. The rationale is that if a 7-length sequence
centered at frame k of the test video matches well with the
query video, then all frames in that 7T-length sequence should
also have at least the same score.

The above steps can be easily extended to the case where
the test video and query video do not have the same spatial
dimensions. In that case, as proposed by Shechtman and
Irani [2], we simply slide the query video template over all
possible spatial-temporal locations (illustrated in figure 2),
and compute a score for each space-time location using (7).
This results in a action confidence volume, C(n,m, ), which
represents the score for the (n,m) location of the ith frame
of the test video. A high value of C(n,m,i) can then be
interpreted as the query action being likely to be occurring at
spatial location (n,m) in the ith frame.

While this exhaustive search seems to be computationally
intensive, operating it in the compressed domain allows for a
real-time implementation.

III. EXPERIMENTAL RESULTS

We evaluate our proposed algorithm on a comprehensive
database compiled by Schiildt et. al. [3]. Their database
captures 6 different actions (boxing, handclapping, handwav-
ing, running, jogging and walking), performed by 25 people,
over 4 different environments (outdoors, outdoors with scale
variations, outdoors with different clothes and indoors). Within

each environment, we compute the similarity, p, of each video
(as the test video) to each of the other videos (as the query
video) by first computing C'(n,m, i) as mentioned in section
II-D, and then using:
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where the normalization factor L is given by:
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and 7(¢) is an indicator function which returns one if at least
T frames in the 27'-length temporal neighborhood centered at
frame ¢ have significant motion and returns zero otherwise.
A frame is asserted to have significant motion if at least ¢
proportion of the macroblocks have reliable motion vectors
of magnitude greater than e. We then use leave-one-out K-
nearest neighbor classification to label each of the videos.

In our experiments, we used K = 9, § = %, e = 0.5
pels/frame, o = 2.0 and 7" = 17. For comparison, we also
tested both normalized correlation (1) and NZMS (2). In
addition, because our system does not handle scale-varying
actions, we considered only the three environments that do
not have significant scale variations.

A. Classification performance

The confusion matrix for NZMS is shown in table I, while
that for normalized correlation [1] is shown in table II. Each
entry of the matrix gives the fraction of videos of the action
corresponding to its row that were classified as an action
corresponding to the column. Our overall percentage of correct
classification is 86%, which compares favorably to Schiildt et.
al.’s [3] best reported result (just under 80%) on the same data
set.

Looking at the confusion matrices, we see that our proposed
NZMS measure vastly outperforms the simple normalized
correlation measure. This is due to the fact that our measure
looks at each corresponding pair of macroblocks separately
instead of looking across all of them. NZMS also considers
both differences in motion vector orientations and norms, and
ignores matching zero-motion macroblocks.

Using NZMS, most of the confusion is between “Running”
and “Jogging”, with a significant proportion of “Jogging”
videos being erroneously classified as “Running”. Looking
at the actual videos visually, we find it hard to distinguish
between some “Running” and “Jogging” actions. There are
cases where the speed of one subject’s “Jogging” is faster
than the speed of another subject’s “Running”!!

B. Localization performance

Unlike most other methods, with the notable exception of
[2], we are able to localize an action in space and time and as
well as detect multiple and simultaneous occurring activities
in the test video. Figure 3 shows an example (the “beach” test
sequence and walking query sequence from Shechtman and



TABLE I
CONFUSION MATRIX USING NZMS

Box | Hc | Hw | Run [ Jog [ Walk

Boxing 0.82 | 0.11 | 0.00 | 0.00 | 0.00 | 0.07

Handclapping || 0.01 | 0.95 | 0.04 | 0.00 | 0.00 | 0.00

Handwaving 0.07 | 0.04 | 0.89 | 0.00 | 0.00 | 0.00

Running 0.00 | 0.00 | 0.00 | 091 | 0.00 | 0.09

Jogging 0.00 | 0.00 | 0.00 | 0.41 | 0.58 | 0.01

Walking 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00
TABLE II

CONFUSION MATRIX USING NORMALIZED CORRELATION [1]

Box | Hc | Hw | Run [ Jog [ Walk

Boxing 0.80 | 0.00 | 0.03 | 0.00 | 0.00 | 0.17
Handclapping || 0.88 | 0.11 | 0.01 | 0.00 | 0.00 | 0.00
Handwaving 0.09 | 0.00 | 0.87 | 0.00 | 0.00 | 0.00
Running 0.00 | 0.00 | 0.00 | 0.75 | 0.25 | 0.00
Jogging 0.01 | 0.00 | 0.00 | 0.01 | 098 | 0.00
Walking 0.00 | 0.00 | 0.00 | 0.55 | 0.00 | 0.45

Irani [2]) which demonstrates our algorithm’s ability to detect
multiple people walking in the test video.

C. Computational costs

On a Pentium-4 2.6 GHz machine with 1 GB of RAM, it
took just under 11 seconds to process a test video of 368 x 184
pixels with 835 frames on a query video that is of 80 x 64
pixels with 23 frames. We extrapolated the timing reported in
[2] to this case; it would have taken about 11 hours. If their
multi-grid search was adopted, it would still have taken about
22 minutes. Our method is able to perform the localization,
albeit with a coarser spatial resolution, up to 3 orders of
magnitude faster. On the database compiled in [3], each video
has a spatial resolution of 160 x 120 pixels, and has an average
of about 480 frames. For each environment, we would need
to perform 22500 cross-comparisons. Yet, each run took an
average of about 8 hours. In contrast, [2] would have taken
an extrapolated run time of 3 years!

IV. CONCLUSION

We have designed, implemented and tested a system for
performing action recognition and localization by making use
of compressed domain features such as motion vectors and
DCT coefficients which can be obtained with minimal decod-
ing. The inherent reduction in search space makes real-time
operation feasible. We combined existing tools in a novel way
in the compressed domain for this purpose and also proposed
NZMS, a novel frame-to-frame motion similarity measure. Our
results compare favorably with existing techniques [3] on a
publicly available database.

We plan to extend this to a multi-grid platform which would
allow us to approach the spatial resolution of existing method
at a lower computational cost. While our method is robust
to small variations in scale, we would like to explore a truly
scale-invariant approach in future work.

Fig. 3. Localization Results. The false color in (d) and (e) denotes detection
responses, with blue and red indicating a low and high response respectively.
(a) A frame from the query video, (b) An input video frame with one person
walking, (c) An input video frame with two people walking, (d) Detection of
one person walking, (e) Detection of two people walking.
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