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Abstract— Given a large collection of videos containing ac-
tivities, we investigate the problem of organizing it in an
unsupervised fashion into a hierarchy based on the similarity of
actions embedded in the videos. We use spatio-temporal volumes
of filtered motion vectors to compute appearance-invariant action
similarity measures efficiently - and use these similarity measures
in hierarchical agglomerative clustering to organize videos into
a hierarchy such that neighboring nodes contain similar actions.
This naturally leads to a simple automatic scheme for selecting
videos of representative actions (exemplars) from the database
and for efficiently indexing the whole database. We compute
a performance metric on the hierarchical structure to evaluate
goodness of the estimated hierarchy, and show that this metric
has potential for predicting the clustering performance of various
joining criteria used in building hierarchies. Our results show
that perceptually meaningful hierarchies can be constructed
based on action similarities with minimal user supervision,
while providing favorable clustering performance and retrieval
performance.

I. INTRODUCTION

Given the growing popularity of online video databases and
the ease of recording and storing videos, access to video
data will only increase. Even in special scenarios such as
surveillance or environmental habitat monitoring where net-
works of cameras are deployed, it is typical to record large
amounts of video data. We are interested in video data that
contains actions or movements of human beings or objects.
The notion of action similarity induces a perceptual hierarchy
on the database of videos (see Figure 1 for example). A system
that can efficiently generate such a hierarchy of the videos
based on action similarity would be very useful in facilitating
efficient navigation of the database thus improving its utility.
Building such a system is very challenging if we consider
videos containing actions of articulated structures like humans
and animals moving in the visual scenes. It is preferable to
assume no metadata (e.g. labels), no segmentation and no
prior alignment for the video collections.

It is very useful to have a measure of clustering performance
given a set of videos in an unsupervised setting. While this is
straight-forward in the supervised scenario, it is not clear how
the quality of the database organization can be judged in the
absence of labels. We propose a solution to this problem by
computing a performance measure on the estimated hierarchy.

Fig. 1. A qualitative example of an action hierarchy for the activity video
collection ΦX , with associated exemplars for the subtree under each node,
shown up to 6 clusters. This was generated using our proposed approach with
NCNC as the action similarity measure and Ward linkage as the neighbor-
joining criterion. The 6 clusters from left to right: Jogging, Walking, Running,
Boxing, Handclapping, Handwaving. See Section III for further discussion.

A. Problem Statement

Given a set of videos and a user-defined space-time scale
of actions, we would like the system to: (a) automatically and
efficiently organize the videos into a hierarchy based on action
similarity; (b) estimate clusters; (c) compute a performance
measure on the estimated hierarchy (even without access to
the labels); and (d) select one representative exemplar for each
cluster.

B. Related Work

One of the key components in efficient grouping of actions
is the ability to quickly localize and recognize actions. In our
previous work [1], we used the motion vector information to
compute frame-to-frame motion similarity between a query
video and a target video with a similarity measure that takes
into account differences in both orientation and magnitude of
motion vectors. Shechtman et al.’s approach for estimating
action similarity [2] is computationally complex compared to
our method and may be unsuitable for use in organizing large
video databases. Babu et al. [3] use codewords based on the
histogram of motion vector components of the whole frame;
this approach cannot localize actions very well in the video.

For large databases of videos, techniques that operate di-
rectly on compressed domain features offer a significant speed-
up in processing time. Dimitrova et al. [4] assume that motion
vectors are coarse approximations of optical flow but unlike
our approach, they estimate object trajectories explicitly using



Fig. 2. Data flow for our proposed approach. Given a set of videos ΦX

and a user-defined space-time scale for actions, we compute pair-wise action
similarity scores between all pairs of videos, and then convert them to
symmetric action distances, DSIM . We use DSIM in hierarchical agglomerative
clustering to produce a dendrogram, which is a binary hierarchical tree
representing the videos, and the pair-wise cophenetic distances DCOPH , which
are distances computed from the constructed dendrogram. The cophenetic
correlation coefficient, Θ, is the correlation coefficient between DSIM and
DCOPH , and can be used to evaluate the goodness of the hierarchy.

motion vectors. Chang et al. assume that objects can be
segmented and tracked easily in order to compute features [5].
Some approaches segment a single video into shots and
organize neighboring shots into a hierarchy for browsing the
video but they do not build action based hierarchies across a
large collection of videos [6], [7].

II. PROPOSED APPROACH

Let ΦX
.= {Xp}P

p=1 be the given set of videos, where
P ∈ Z+ is the cardinality of the set, and let Ñ × M̃ × T̃
be the user-specified space-time scale of interest. Each video
Xp has an action label yp ∈ {1, ..,K}, where K is the
number of actions in the collection. Assume that Xp is a
video with T p frames, with each frame containing Np ×Mp

macroblocks. We assume that an action induces a motion
field that can be observed as a spatio-temporal pattern; let
~V p be the spatio-temporal pattern (motion field) associated
with video Xp. Furthermore, ~V p

n,m(i) = [V p,u
n,m(i) V p,v

n,m(i)]
denotes the motion vector at location (n, m) in frame i
of Xp. We assume that similar actions will induce similar
motion fields - i.e., yp = yq ⇐⇒ D(Xp, Xq) < γ for
some acceptance threshold γ, where D(., .) is the distance
metric defined between the videos based on their motion fields
(defined in Section II-B). We will use (u)+ as a shorthand for
max(0,u).

Figure 2 shows the flow of our algorithm for organizing the
videos (ΦX ) with minimal user input. For an extensive discus-
sion on the intuition behind the steps involved in computation
of action similarity, please refer to [1].

A. Computation of efficient pair-wise action similarity scores

In order to compute non-symmetric pair-wise action similar-
ity scores between X test and Xquery, we carry out the following
steps [1].

1) Obtain the motion field estimate, ~V , for a video X
from its compressed-domain motion vectors, keeping
only the reliable estimates as indicated by a confidence
map computed from DCT AC coefficients [8]. Motion
vectors have been found to be a coarse but reasonable
estimate of the motion field, and using them allows our
approach to be computationally efficient.

2) At a particular macroblock location (n, m) of the test
video, compute the frame-to-frame motion similarity
measure, S̃n,m(i, j), between the ith test video frame
and the jthth query video frame (cropped to Ñ × M̃
macroblocks). In our experiments, we used two methods
to compute S̃n,m(i, j): Normalized Correlation between
Non-negative motion Channels (NCNC), and Non-Zero
Motion block Similarity (NZMS) (discussion follows).

3) To enforce temporal consistency of the similarity be-
tween X test and Xquery, we convolve S̃n,m(i, j) with a
smoothing kernel Hα ∈ RT×T . The resultant aggregated
similarity matrix is Sn,m(i, j) = (S̃n,m ? Hα)(i, j)1. α
is a parameter that allows us to control how tolerant we
are to different action rates [1].

4) After repeating the above two steps over space and time
we compute a confidence score at the (n, m) macroblock
of test video frame i by taking the maximum of the
aggregated similarity matrix over a space-time window:

C(n, m, i) = max
max(i−T

2 ,0)≤k≤min(i+ T
2 ,T test−1)

0≤j≤T̃−1

Sn,m(k, j)

(1)
5) Compute the similarity, ρ(X test, Xquery), of the test video

to the query video by:

ρ(X test, Xquery) =
∑T test−1

i=0 η(i) (maxn,m C(n, m, i))∑T test−1
i=0 η(i)

(2)
where η(i) is an indicator function which returns one
if at least T frames in the 2T -length temporal neigh-
borhood centered at frame i have significant motion
and returns zero otherwise. A frame is asserted to
have significant motion if at least δ proportion of the
macroblocks have reliable motion vectors of magnitude
greater than ε.

In our experiments, we used α = 2.0, Ñ = M̃ = 6, T = 17,
T̃ = 2T + 1 = 35, δ = 1

30 and ε = 0.5 pixels/frame.
Let us elaborate on the methods for computing S̃n,m(i, j):
1) Normalized Correlation between Non-negative motion

Channels (NCNC): Each ~Vn,m is first split into non-negative
motion channels (e.g. left, right, up and down) [1], [9]. An
Ñ × M̃ patch of these motion channels with top-left corner
at (n, m) is stacked into a single vector ~Un,m ∈ R4ÑM̃ .
S̃NCNC

n,m (i, j) is then computed as follows:

S̃NCNC
n,m (i, j) =

〈~U test
n,m(i), ~U query(j)〉

‖~U test
n,m(i)‖‖~U query(j)‖

(3)

1Note that the convolution is performed separately for each (n, m), and is
only over the (i, j) frame indices.



2) Non-Zero Motion block Similarity (NZMS): S̃NZMS
n,m (i, j)

is computed as follows [1]:

S̃NZMS
n,m (i, j) =

1
Zn,m(i, j)

Ñ−1∑
k=0

M̃−1∑
l=0

f(~V test
k+n,l+m(i), ~V query

k,l (j))

(4)

f( ~V1, ~V2) =


(〈 ~V1, ~V2〉)+

max(‖~V2‖2,‖~V1‖2) if ‖ ~V1‖ > 0 and ‖ ~V2‖ > 0

0 otherwise.
(5)

The normalizing factor, Zn,m(i, j), in (4) is:

Zn,m(i, j) =
Ñ−1∑
k=0

M̃−1∑
l=0

I
[
‖~V test

k+n,l+m(i)‖ > 0 or

‖~V query
k,l (j)‖ > 0

] (6)

B. Computation of pair-wise action distances

Using the similarity scores computed from Section II-A, we
compute the pair-wise symmetric action distances for videos
Xp and Xq as follows:

DSIM(Xp, Xq) =
1

max
(

1
2 (ρ(Xp, Xq) + ρ(Xq, Xp)) , β

)
(7)

where β represents the smallest value of ρ(., .) admissible. In
our experiments, we choose β = 0.01.

C. Hierarchical agglomerative clustering of actions

We apply hierarchical agglomerative clustering (HAC) [10]
to construct a binary tree (also called dendrogram) containing
all the elements of ΦX as leaf nodes. Divisive methods (e.g.
K-means, K-medoids) for constructing dendrogram are usually
sensitive to initialization [10]. To address this sensitivity
with divisive methods, typically one needs to perform many
randomly initialized trials in order to obtain a good clustering
solution, thus resulting in loss of computational efficiency.
In contrast, HAC constructs the dendrogram in a sequential
and deterministic fashion using a neighbor-joining (also called
linkage) criterion. We use four different linkage criteria in
our experiments: Single linkage, Complete linkage, Average
linkage and Ward linkage [11].

The user defines a stopping condition for the agglomera-
tion, LSTOP, which is the farthest allowable merging distance
between clusters. LSTOP is used to cut the dendrogram at an
appropriate level and obtain the clusters. After computing
the matrix of pair-wise action distances DSIM ∈ RP×P as
described in Section II-B, we apply HAC to obtain the
hierarchy. The cophenetic distance between videos Xp and
Xq, DCOPH(Xp, Xq), computed in the HAC procedure, is their
linkage distance when first merged into the same cluster [10].

D. Measuring the goodness of the estimated hierarchy

Different choices in clustering parameters, such as distance
metric or linkage criteria, lead to different hierarchies (dendro-
grams). For a good hierarchy, the cophenetic distances, DCOPH,
should obey the input pair-wise distance relationships speci-
fied by DSIM [12]. The Cophenetic Correlation Coefficient,

Θ ∈ [0, 1], for a dendrogram is defined as the correlation
coefficient between DCOPH obtained from the dendrogram,
and DSIM used to construct the dendrogram [13]. Thus Θ
is a measure of how faithfully the dendrogram represents
the dissimilarities among videos in the given set ΦX ; its
magnitude should be close to 1 for a high-quality solution.
Θ is useful in comparing alternative dendrograms obtained by
using different neighbor joining strategies.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We use a publicly available2 comprehensive dataset com-
piled by [14] to perform our evaluations. This dataset consists
of different actions (boxing, handclapping, handwaving, run-
ning, jogging and walking) performed by 25 different people
over 4 different environments (outdoors [d1], outdoors with
scale variations [d2], outdoors with different clothes [d3] and
indoors [d4]). Since the two similarity measures we used are
not designed for scale-varying actions, we considered only the
three non-scale-varying environments.

From each action video, we create a query video by crop-
ping out a space-time volume in an automatic fashion. Since
automatic determination of space-time scale is very hard, we
let the user specify the size of an approximate space-time
bounding box, Ñ × M̃ macroblocks by T̃ frames, for the
entire collection of videos3. The system then looks in each
action video for a M̃×Ñ×T̃ space-time volume that contains
the most number of significant motion vectors, where ~V is
significant if ‖~V ‖ > ε (as defined in Section II-A).

We adopt two different criteria for evaluating the perfor-
mance of our organization scheme. The first is based on the
ability of the hierarchy to infer meaningful exemplars from
the dataset and the second is based on the F-score [15] used
in information-retrieval literature.

A. Inferring action exemplars

In each cluster, an exemplar is defined as the element that
has the minimum pair-wise distance with respect to all the
other elements in the cluster. A meaningful hierarchy would
organize the videos in such a way that exemplars from each
cluster would represent a distinct action from the dataset. In
Figure 1, we show the estimated action hierarchy constructed
using NCNC action similarity measure with Ward linkage
neighbor-joining criterion. Notice that the actions such as
running, walking and jogging were grouped separately com-
pared to actions such as boxing, handwaving or handclapping.
Intuitively, this fits well with what a human operator would do
given the same task. Among the 4 linkage criteria we used, we
found qualitatively that the combination of NCNC and Ward
linkage gives the best inference for exemplars of actions in
the database.

B. Evaluating clustering performance

Treating the action video Xp (with label yp and in cluster
Cp ∈ {1, · · · ,K}) as a query video, we define the following:

2http://www.nada.kth.se/cvap/actions/
3This implicitly constrains the system to consider actions of approximately

similar space-time scale.



Fig. 3. Plots (top: NZMS, bottom: NCNC) showing positive correlation
between Cophenetic Correlation Coefficient (Θ) and the Balanced F-score
(F1), suggesting that the goodness of hierarchy correlates well with clustering
performance.

1) Np
1 is the number of videos in cluster Cp with label yp,

2) Np
2 is the number of videos in cluster Cp,

3) Np
3 is the number of videos in ΦX with label yp.

For the query video Xp, we compute precision as Prp =
Np

1 /Np
2 and its recall as Rcp = Np

1 /Np
3 . The Balanced F-

score [15], F p
1 , for this query is the harmonic mean of its

precision and recall: F p
1 = 2·Prp·Rcp

Prp+Rcp . We average F p
1 to

get F1 =
PP

p=1 F p
1

P . Since the labels in our dataset are for
six actions, for the purpose of making comparisons, we only
consider F1 using a value of LSTOP such that the number of
estimated clusters is 6. We also compute Θ as described in
Section II-D. Figure 3 shows the variation of F1 with Θ for
different neighbor joining criteria and action environments.
The correlation coefficient between F1 and Θ is 0.77 for
NZMS and 0.73 for NCNC respectively - suggesting that Θ
can be used to predict clustering performance across various
linkage criteria even in the absence of labels.

We also compare F1 scores of our proposed approach
with those of a baseline clustering scheme, K-medoids [10],
with K = 6. We run K-medoids with 200 different random
initializations and pick the best F1 score over all the runs. Due
to space constraints, we show only results for HAC using Ward
linkage and K-medoids in Table I. It is clear from the results
that HAC almost always gives favorable clustering results,
without any initialization issues while efficiently producing
a useful hierarchy.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We have demonstrated an efficient unsupervised approach
for organizing large collections of videos into a meaningful
hierarchy based on the similarity of actions embedded in the
videos. The database can be quickly indexed by assigning a
unique action tag to each cluster4 and these derived action
tags can then be combined with other features (such as color,
texture etc.) to build more complex queries or to develop

4User can easily label a cluster simply by identifying the cluster exemplar.

TABLE I
F1 SCORES FOR DIFFERENT ENVIRONMENTS AND CLUSTERING METHODS

Environment
NZMS /

HAC Ward
NCNC /

HAC Ward
NZMS /

K-medoids
NCNC /

K-medoids
d1 0.7384 0.8496 0.8089 0.7514
d3 0.7220 0.6659 0.7122 0.6480
d4 0.7774 0.7614 0.7515 0.6601

organizational principles for managing video databases. Based
on the evidence of high correlation between Θ and F1 for a
given DSIM, we conjecture that the unsupervised hierarchical
solution for actions that has high Θ would also be a solution
with high F1, thus hinting at good clustering performance. We
plan to extend this framework to include features from raw
video and investigate other clustering criteria in the future.
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