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Abstract— One of the potential benefits of robotic systems
in cardiac surgery is that their use can increase the number
of possible off-pump (beating heart) coronary artery bypass
grafting procedures. Robotic systems can actively synchronize
the motion of surgical tools to the motion of the surface of the
heart, with the surgeon specifying only the relative motion of
the tool with respect to the heart. Accurate prediction of the
motion of the heart surface is obviously of crucial importance
for the safety and robustness of such a system.

This paper presents a novel approach to predict the motion
of the surface of a beating heart. We show how ECG and
respiratory information can be used to extract two periodic
components from the quasi-periodic motion of the heart sur-
face. Contrary to most existing literature, we consider the
full geometric motion, including rotation due to respiration.
We then show how to combine the periodic components to
accurately predict future motion of the heart surface, and how
this information can be used to design an explicit controller that
asymptotically stabilizes the relative motion of the surgical tool
to a desired relative distance and orientation.

I. INTRODUCTION

Robotic assisted surgery is becoming increasingly com-

mon, and advanced robotic systems are more widely avail-

able in hospitals. One of the advantages of robotic tools is

the potential to facilitate more advanced minimally invasive

surgery procedures, which have the benefits of shorter recov-

ery time and less invasive scarring. Although current robotic

tools are usually programmed to only follow the surgeon’s

movements, their true potential lies in the possibility to

control them in a more active way.

One of the applications in which this could make a

difference is in cardiac operations such as coronary artery

bypass grafting (CABG). Currently, many cardiac procedures

require the heart to be stopped (and a heart-lung machine to

be used) to allow surgery on a motionless surface. However,

the use of a heart-lung machine can have damaging effects

for the patient and should therefore be used as little as

possible. Actively controlled robotic tools could be employed

instead, and be synchronized to move at a fixed relative

distance and orientation with respect to the heart surface

(see [1], [2], [3] for more details on this idea). Through this

relative stabilization, together with stabilized visual feedback

[4], [5] from the operating area to the surgeon, a surgeon only

needs to provide the desired relative motion of the tool with

respect to the heart, thus possibly eliminating the need to

stop the heart.
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Fig. 1. Schematic system representation and definition of various coordi-
nate frames. The motion of a robotic tool (with attached frame Ψr) is to
be synchronized to the motion of a certain small area on the heart surface
(frame Ψh). The motion of the heart surface is caused by a combination
of motion of the diaphragm due to breathing (frame Ψd) and the beating
motion of the heart itself.

One of the most crucial (and in some sense most difficult)

aspects of such a motion synchronization system is the

accurate measuring and prediction of the motion of the heart

surface. First, it requires accurate sensors to measure the

motion of the surface, and several different technologies have

been proposed in literature, including high-speed cameras [6]

and piezoelectric crystals [7]. But secondly, and this is the

topic of the present paper, the motion of the heart surface

is quasi-periodic, which means it is the combination of two

periodic motions, as illustrated in Fig. 1. One periodic motion

is caused by the diaphragm, which moves at the frequency

of respiration, and the other periodic motion is caused by the

beating of the heart itself.

The approach in literature to predict this quasi-periodic

motion is to assume that it is simply the sum of two periodic

components, and then to separate these two components

using e.g. a low-pass filter [2], an adaptive harmonic filter

bank [1], or direct time series analysis [8]. As shown in

Section III, however, this implicitly assumes that the respi-



ration component does not contain a rotation, which may

not be accurate enough for high-precision applications [9].

In addition, the methods only consider the motion of points,

discarding rotational information, even though the orientation

of the heart surface needs to be known in order to properly

orient the surgical tool.

The purpose of this paper is to present a general method

to separate a quasi-periodic rigid 3-D motion into its two

periodic components, and to use the result in the design

of an asymptotically synchronizing controller. We assume

the frequencies of the two motion components to be known,

for example based on an ECG signal and information from

the mechanical ventilator used during surgery. The estimated

components are then combined to predict future motion of

the heart surface. This information, in turn, is used in the

design of an explicit controller that stabilizes the relative

motion of a surgical tool to a desired distance and orientation

with respect to the heart surface.

After the necessary mathematical preliminaries in Sec-

tion II, we discuss in Section III that the total motion of the

heart surface is a (nonlinear) geometric phenomenon, and

show how the periodic respiratory and cardiac motions can

be extracted. We then present a control law (Section IV)

that uses the predicted motion to asymptotically stabilize

the motion of the surgical tool to a desired distance and

orientation with respect to the heart surface. We illustrate

the results in simulations.

II. MATHEMATICAL PRELIMINARIES

We first briefly summarize the theory and notation used to

represent rigid 3-D motions and velocities. We refer to [10]

and [11] for a more extensive background.

The relative configuration of a right-handed coordinate

frame Ψa with respect to a right-handed frame Ψb, meaning

their relative position and orientation, can be described by

an element of the Lie group SE(3), the Special Euclidean

group. Numerically, this configuration can be expressed by a

time-varying 4 × 4 homogeneous matrix Ha
b (t) of the form

Ha
b (t) :=

[

Ra
b (t) pa

b (t)
0 1

]

(1)

where Ra
b (t) is a 3× 3 orthogonal matrix with det(Ra

b ) = 1
that describes the relative orientation, and pa

b (t) is a 3 × 1
vector that describes the relative position of the origins.

A rotation can not only be described by an appropriate

3 × 3 matrix, but also by so-called unit quaternions, which

can be thought of as a set of four real numbers

(q0, q) := (q0, q1, q2, q3) ∈ R
4 (2)

satisfying (q0, q) ◦ (q0,−q) = (1, 0), with ◦ the (non-

commutative) Grassman product defined as

(q0, q) ◦ (p0, p) := (q0p0 − qT p, q0p + p0q + p̂q) (3)

with x̂ := x∧ for x ∈ R
3. Unit quaternion representa-

tions can be converted to matrix representations (and back)

through relatively straight-forward computations.

The relative velocity of two frames, meaning both the

linear and angular velocity, can be concisely represented by

an element of se(3), the Lie algebra of SE(3). Numerically,

it can be expressed as a 6 × 1 vector T
c,a
b or 4 × 4 matrix

T̂
c,a
b of the form

T
c,a
b :=

[

ω
c,a
b

v
c,a
b

]

or T̂
c,a
b :=

[

ω̂
c,a
b v

c,a
b

0 0

]

(4)

with ω
c,a
b , v

c,a
b ∈ R

3 the relative angular and linear velocity.

The vector T
c,a
b is called a twist and describes the relative

velocity of frame Ψb with respect to Ψa, expressed in frame

Ψc. It is related to the relative configuration (1) as

T̂
c,a
b = Hc

aḢa
b Hb

c (5)

with Ḣ denoting the time-derivative of H . Finally, the

following two relations are used in Section IV.

T
d,a
b = AdHd

c
T

c,a
b with AdHd

c
:=

[

Rd
c 0

p̂d
cR

d
c Rd

c

]

d

dt

(

AdHd
c

)

= ad
T

d,d
c

AdHd
c

with ad
T

d,d
c

:=

[

ω̂d,d
c 0

v̂d,d
c ω̂d,d

c

]

III. QUASI-PERIODIC MOTION PREDICTION IN SE(3)

The motion of the heart surface is caused by the combined

dynamics of respiration (mainly affecting the heart through

motion of the diaphragm) and cardiac muscle contractions.

The full dynamics are very complex and hard to predict, and

require many patient-specific parameters to be fitted [12].

To simplify the analysis and allow real-time prediction, we

do not take the cause of the motion into consideration, and

only consider the kinematics of a local area of interest on

the heart surface. Its motion is assumed to be a combination

of two periodic motions: one due to respiration (with period

Td, with d for ‘diaphragm’), and one due to heart beating

(with period Th, with h for ‘heart’). The combination of two

periodic motions is called a quasi-periodic motion.

Since the two periods Td and Th are generally not integer

multiples of each other, the period of the total motion (the

time after which it repeats itself) can be arbitrarily long.

As the frequencies of the two periodic motions are different

(typically Td ≈ 4 s and Th ≈ 1 s), a low-pass filter may

seem a relatively simple solution to separate the respiratory

component [2]. However, this assumes that the respiration

is a purely sinusoidal motion without higher harmonics, and

moreover, that the two signals mix linearly. As shown in

Section III-A, this second assumption does not hold when

rotation is taken into account. In addition, a (causal) low-pass

filter that cleanly distinguishes between two signals with Td

and Th in this close range will generally suffer from a large

phase shift that can cause stability and performance problems

in feedback loops.

Fortunately, in this application, we have a reasonably good

estimate of the phase1 and frequency of the two motion

1The precise definition of phase is not important in this context; we can
choose any number that indicates the ‘part’ of the cycle as a function of
time. For example, it is sufficient to choose a linear interpolation from zero
to one between every two consecutive QRS-complexes in the ECG cycle.



components: the respiratory phase and frequency can be

obtained from the mechanical ventilator, and the cardiac

phase and frequency are detected by an ECG monitor. We

can exploit this prior knowledge to extract the two periodic

components from measurements of the combined motion.

A. Heart motion as a group product

As the first step to characterize the motion of the heart

surface, we define what we mean exactly by ‘combination’

of two motions. Since both the respiratory motion and

the cardiac motion generally contain translation as well as

rotation, we can write the relative displacement of the heart

surface as a group product of two homogeneous matrices H0

d

and Hd
h , as illustrated in Fig. 1. The matrix H0

d describes

the relative motion of the diaphragm Ψd with respect to an

inertial frame Ψ0, and Hd
h describes the relative motion of

the area of interest Ψh on the heart surface with respect to

Ψd. Each component is assumed to have a (roughly constant)

period but unknown shape, i.e.

H0

d(t + Td) = H0

d(t) Hd
h(t + Th) = Hd

h(t) (6)

The ‘combination’ of the two motions is the product of the

two matrices, i.e.

H0

h = H0

dHd
h =

[

R0

dR
d
h p0

d + R0

dp
d
h

0 1

]

(7)

It is important to note that, even if we are only interested

in the relative positions, the combination of the positions

is not a simple linear sum of the vectors p0

d and pd
h, but

also nonlinearly depends on the rotation of the diaphragm

R0

d. As shown in research on cardiac image registration [9],

even though the rotation of the diaphragm is generally only

a few degrees, it can still cause substantial deviations if not

properly taken into account. For that reason, we consider

in this paper both rotation and translation components. The

orientation of the heart surface in itself is also a useful signal

to predict, since generally we want to stabilize both the

relative position and the relative orientation of the surgical

tool with respect to the heart surface.

Note that the physical location of the intermediate frame

Ψd is not clearly defined, which results in ambiguities. More

precisely, given any combination (H0

d ,Hd
h) that satisfies (7),

the combination (H0

dH̃, H̃−1Hd
h) also satisfies (7), for any

H̃ of the form (1). This ambiguity can be resolved by

choosing a convenient initial position and orientation for Ψd,

e.g. such that pd
h(0) = 0 and R0

d(0) = I .

B. Filtering periodic components

Given a general quasi-periodic signal x(t), composed of

two periodic components x1(t) and x2(t). Suppose we have

sufficient measurements of x(t) and of the two phases φ1(t)
and φ2(t) of the composing signals, then we can estimate

the periodic components x1(φ1) and x2(φ2) themselves as

functions of their respective phases. The approach we take

is illustrated in Fig. 2. We parameterize each periodic signal
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Fig. 2. Schematic representation of the algorithm. Based on measurements
of a quasi-periodic signal x and the phase trajectories of its two periodic
components, and given a choice of basis functions Bij , the optimal pa-
rameters aij are computed. The resulting representation of the components
xi(φi) can be used to predict future x(t).

as a sum of basis elements Bij(φi) and write the total signal

x(t) at time t as

x(t) = x1(φ1(t)) ⊕ x2(φ2(t)) ⊕ ǫ(t) (8)

=

(

∑

k

a1kB1k(φ1(t))

)

⊕

(

∑

m

a2mB2m(φ2(t))

)

⊕ ǫ(t)

where ⊕ denotes the composition of the two periodic signals,

ǫ(t) is a measurement error, and aij are the weights for

the basis elements. Given sufficient measurements, we can

estimate the parameters aij such that ǫ(t) is minimized,

e.g. in the least-squares sense. Depending on the choice of

basis functions Bij , the coefficients may not be uniquely

determined. For example, the two periodic components can

only be determined up to a constant: if ⊕ denotes the

regular sum operator, then adding a constant to one of the

components and subtracting the same constant from the other

component does not change their composition, and similarly

when ⊕ is multiplication. Other ambiguities will occur if the

basis functions are chosen in an unfortunate way that makes

them ‘fit’ in both periodic components.

We now apply this general approach separately to the

rotation and translation components of the quasi-periodic

motion H0

h(t), as given by (7). We start with rotation and

choose to use a representation in unit quaternion coordinates,

as described in Section II. Unit quaternions provide a good

balance between minimizing the dimension of the signal

space (four for quaternions) and simplifying the expression

for ‘combining’ two rotations (defined by the Grassman

product for quaternions). Although choosing exponential

coordinates [13] would further reduce the dimension of the

signal space to three, writing the product of two rotations

in terms of their exponential coordinates produces a quite

involved expression, which is much harder to optimize than

the simple bi-linear expression for quaternions:

Q(t) = ǫ(t) ◦ Qh(φh(t)) ◦ Qd(φd(t)) (9)

in which Q(t) is the quaternion expression for the measured

total rotation at time t, Qd and Qh are the quaternion expres-

sions for the rotations R0

d and Rd
h, respectively, ǫ(t) describes



the measurement error (close to the (1, 0) quaternion), and

◦ is the Grassman product defined in (3).

We parameterize each component in (9) as in (8) by choos-

ing a set of basis functions Bij for the quaternions Qd(φd)
and Qh(φh). With this choice and sufficient measurements

Q(t), the next step is to estimate the coefficients aij . An extra

complication arises here because of the constraint that Qd

and Qh should have unit length at all times, and hence their

four components cannot be chosen arbitrarily. This can be

solved by including constraints in the optimization process,

or, more pragmatically though not mathematically sound, to

just freely optimize over all quaternions and normalize the

result afterwards. A second aspect is the choice of metric for

the optimization, i.e. how to judge what ǫ in (9) is minimal.

The simplest solution is to minimize (Q−1◦Qd◦Qh)−(1, 0)
in the least squares sense, or even just Q − Qd ◦ Qh. Both

are not proper metrics on SO(3) but are easy to optimize

and give good results in simulations.

Once the rotation components, in particular R0

d, have been

determined, we can write the estimation problem (8) for the

translational components as follows.

p0

h(t0) = R0

d(t0)p
d
h(φh(t0)) + p0

d(φd(t0)) + ǫ(t0) (10)

with p0

h and R0

d known and pd
h and p0

d to be estimated. This

relation is unconstrained and linear in the unknowns and can

be solved e.g. by a standard linear least squares computation.

For both rotation and translation components, several

design choices have to be made. First, the number of basis

functions Bij(φi) and their shapes need to be determined.

Secondly, a metric on the data space needs to be chosen, i.e. a

mapping that weighs the relative influence of older and newer

samples in the estimation of the coefficients aij and hence

in the prediction of the future signal. If the signal is highly

periodic, then older samples should be weighed as well as

new samples, such that any random noise is averaged and

thus reduced. If the shape of the signal changes significantly

over several periods, then only the newer samples should be

taken into account. Studying experimental data from various

patients should help make these choices.

Once the coefficients aij for rotation and translation have

been determined and hence the shapes of the two periodic

components of H0

h are known, future values of H0

h can be

predicted by combining the values of the two components

H0

d(φd) and Hd
h(φh), evaluated at their predicted phases.

The prediction of the phases φd and φh can be a simple

extrapolation at the current respiration and heart beat rate,

respectively. These rates are stabilized by a mechanical

ventilator and by medication and generally only vary quite

slowly.

Fig. 3 shows a simulation of the extraction of the periodic

diaphragm motion (with period 4 s) and the periodic cardiac

motion (with period 1.1 s) from an artificial combined motion

signal, contaminated with zero-mean Gaussian noise with a

standard deviation of 0.1. We used 20 equally spaced trian-

gular windows as the basis functions for each component.

From the measurements (noisy signals in the top graphs)

between 0 and 6 seconds, the coefficients aij were optimized
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Fig. 3. Extraction of diaphragm (period 4 s) and cardiac (period 1.1 s)
motions from noisy measurements of the combined motion. The figures
show the three degrees of freedom for rotation and translation, with x (solid),
y (dashed), and z (dotted) components. Reconstructed signals are shown on
top of measured noisy signals.

and the periodic signals reconstructed (clean signals in the

bottom graphs, overlaid on the noisy real periodic source

components, which are unknown to the algorithm). Using the

obtained parameters and the basis functions, the combined

signal can be reconstructed (t < 6 s) and its future values

(t > 6 s) can be accurately predicted. Note that Fig. 3(a)

shows three components for each rotation (exponential coor-

dinates) although the optimization was performed using four

components (quaternions).

IV. EXPLICIT ASYMPTOTIC CONTROL FOR RELATIVE

MOTION SYNCHRONIZATION

After computing a prediction of the motion of the heart

surface, the next step is to synchronize the motion of the



surgical tool to the motion of the area of interest. This prob-

lem is usually cast as a three-dimensional position tracking

problem and often solved using a form of (adaptive) model

predictive control [1], [2]. In this section, we generalize the

problem to include not only position, but also orientation

information, and we present an alternative explicit model-

based controller.

A. Choice of objective function

The objective of the controller is to stabilize the relative

configuration of the robot with respect to a certain area on

the heart surface. This relative configuration is described by

a homogeneous matrix of the form

Hh
r =

[

Rh
r ph

r

0 1

]

=:

[

rx ry rz p

0 0 0 1

]

(11)

with index r for ‘robot’. To quantify the control objective,

we choose an error function J(Hh
r ) as follows

J(Hh
r ) := Jtran + Jrot :=

1

2
kp(p − ∆rz)

T (p − ∆rz)

+ kx(1 − eT
x rx) + ky(1 − eT

y ry) + kz(1 − eT
z rz)

(12)

with ∆ the desired relative distance between the tool and the

heart, E :=
[

ex ey ez

]

a rotation matrix describing the

desired orientation of the tool frame (with ez = (0, 0, 1)),
and kp, kx, ky, kz > 0 constant parameters. The function J

has a minimum equal to zero only if p = ∆rz and Rh
r = E,

i.e. the origin of Ψr is ∆ along the surface normal away from

the origin of Ψh, and the axes of the tool frame are properly

aligned. The error function increases for distances different

from ∆ and for deviations from the desired orientation

specified by E. Note that when kx = ky = kz , Jrot is

proportional to 3 − trace(ET Rh
r ) = 1 − cos(θ), with θ the

angle of rotation away from E.

One of the advantages of the cost function (12) is that its

time-derivative along the trajectories of the system takes a

particularly simple form, as shown below.

J̇ = kp(p − ∆rz)
T (vh,h

r − p̂ωh,h
r + ∆r̂zω

h,h
r )

+ kxeT
x r̂xωh,h

r + kyeT
y r̂yωh,h

r + kze
T
z r̂zω

h,h
r

=

[

kxêxrx + ky êyry + kz êzrz

kp(p − ∆rz)

]T [

ωh,h
r

vh,h
r

]

=: (dJ)T Th,h
r (13)

Where we used the fact that, from (5) and (11), we have

Ḣh
r =

[

ω̂h,h
r rx ω̂h,h

r ry ω̂h,h
r rz ω̂h,h

r p + vh,h
r

0 0 0 0

]

(14)

and that (p̂ − ∆r̂z)(p − ∆rz) = 0. Equation (13) is used

in the following sections, as is the expression for the time-

derivative of dJ given below.

˙(dJ) =

[

−kxêxr̂xωh,h
r − ky êy r̂yωh,h

r − kz êz r̂zω
h,h
r

kp(v
h,h
r − p̂ωh,h

r + ∆r̂zω
h,h
r )

]

=

[

−kxêxr̂x − ky êy r̂y − kz êz r̂z 0
−kp(p̂ − ∆r̂z) kpI

]

Th,h
r (15)

B. Asymptotically stabilizing control law

Using the error function (12), we propose the following

explicit control law for the robot that moves the surgical

tool. We do not consider specific robot dynamics at this

point and only specify the desired inertial acceleration Ṫ 0,0
r

of its end effector frame Ψr. For a particular robot, this

desired acceleration should be achieved by a suitable lower

level controller. The proposed desired acceleration is the

following.
(

Ṫ 0,0
r

)

des
= Ṫ

0,0
h − AdH0

h
K1

˙(dJ) + ad
T

0,0

h

T 0,h
r

− AdH0

h
K2

(

Th,h
r + K1dJ

)

(16)

with K1,K2 > 0 two symmetric positive-definite matrices,

and H0

h, T
0,0
h , and Ṫ

0,0
h the estimated configuration, velocity,

and acceleration of the frame Ψh at the area of interest on

the heart surface. Intuitively, this controller drives Th,h
r to

−K1dJ (by a gain K2), which makes the configuration move

along the direction of steepest descent of J (defined using K1

as a metric). To prove asymptotic stability of the equilibrium

J = 0 for the closed loop system, we consider the following

candidate Lyapunov function.

V := κ1J +
1

2

(

Th,h
r + K1dJ

)T
K−1

2

(

Th,h
r + K1dJ

)

with 0 < κ1 < 4σmin(K1), i.e. κ1 is strictly less than four

times the smallest singular value of K1 (which is strictly

positive since K1 > 0). Assuming the robot achieves perfect

tracking of (Ṫ 0,0
r )des, we can compute the time-derivative of

V along system trajectories as follows.

V̇ = κ1(dJ)T Th,h
r + (Th,h

r + K1dJ)T K−1

2
(Ṫh,h

r + K1
˙dJ)

= κ1(dJ)T Th,h
r − (Th,h

r + K1dJ)T
(

Th,h
r + K1dJ

)

= −
(

Th,h
r + (K1 −

κ1

2
I)dJ

)T (

Th,h
r + (K1 −

κ1

2
I)dJ

)

− κ1(dJ)T
(

K1 −
κ1

4
I
)

dJ (17)

This expression is non-positive since we chose κ1 such that

K1 −
κ1

4
is strictly positive definite. Thus, V̇ = 0 only when

Th,h
r = 0 and dJ = 0. From (13), we see that dJ = 0 when

the following two equations are satisfied.

0 = p − ∆rz (18)

0 = kxêxrx + ky êyry + kz êzrz (19)

The first equation has only one solution, p = ∆rz . The

second equation, together with the constraint that (rx, ry, rz)
defines an orthonormal frame, gives rise to several possible

solutions. Only the solution Rh
r = E is stable, all other

solutions are unstable and oriented at least 90 degrees away

from E, hence they can be safely ignored for practical

purposes. By La Salle’s Principle [14], this proves that

the proposed control law (16) semi-globally asymptotically

stabilizes the system to the desired state.

Fig. 4 shows a simulation of the proposed controller

applied to the ideal robot system

Ṫ 0,0
r =

(

Ṫ 0,0
r

)

des
(20)
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Fig. 4. Simulation of the control law applied to an ideal robot.

with all control gains set to unity. Starting from some initial

configuration and velocity, and with H0

h(t) an arbitrary

motion similar to Fig. 3, the position and orientation of

the robot tool converge to the desired relative distance and

orientation. At t = 7, the desired orientation of the tool,

specified by E, is changed by 90 degrees around the vertical

axis (the viewing direction). At t = 14, the desired distance

∆ is reduced. In both cases, the system recovers from the step

change in the reference signals and converges asymptotically

to the new equilibrium.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel method to extract periodic 3-D

motion signals from noisy measurements of a quasi-periodic

motion and knowledge of the phase of the composing signals.

The total quasi-periodic motion of a region on the surface of

a beating heart is a nonlinear combination of respiratory and

cardiac motions, if rotation of the diaphragm due to respira-

tion is taken into account. Using a quaternion representation,

the nonlinear signal estimation problem can be formulated as

a reasonably simple optimization problem, from which the

periodic respiratory and cardiac motions can be extracted and

future heart surface motions can be predicted.

The predicted motion signal can then be used in the design

of an explicit model based controller that asymptotically

synchronizes the motion of a surgical tool to the motion

of a region on the heart surface. This controller provides an

alternative to the (implicit) model-based control algorithms

known from literature.

In future work, we plan to extend the motion separation

algorithm to a recursive version that can quickly recompute

the optimal motion parameters when a few new samples

arrive. We will also further investigate what sensors and

sensing techniques can most reliably and robustly extract the

heart motion, which is the input for the presented algorithm.

When measurements of the full rigid motion of the heart

surface are available, we can verify the signal estimation and

control approach presented in this paper on real experimental

data, and tune the various parameters in the algorithms.
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