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Abstract. Determining the precise spatial extent of expression of genes

across different tissues, along with knowledge of the biochemical func-

tion of the genes is critical for understanding the roles of various genes

in the development of metazoan organisms. To address this problem, we

have developed high-throughput methods for generating images of gene

expression in Drosophila melanogaster imaginal discs and for the auto-

mated analysis of these images. Our method automatically learns tissue

shapes from a small number of manually segmented training examples

and automatically aligns, extracts and scores new images, which are ana-

lyzed to generate gene expression maps for each gene. We have developed

a reverse lookup procedure that enables us to identify genes that have

spatial expression patterns most similar to a given gene of interest. Our

methods enable us to cluster both the genes and the pixels that of the

maps, thereby identifying sets of genes that have similar patterns, and

regions of the tissues of interest that have similar gene expression profiles

across a large number of genes.

Primary keyphrases: Genomic imaging, Gene expression analysis, Clus-
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1 Introduction

We have developed a high-throughput pipeline for generating images of imag-
inal discs, stained with labeled probes that hybridize to individual genes, and
an automated system for analyzing a database of such images and for building
an atlas of gene expression patterns. Using these tools, we construct consensus
shape models of individual imaginal disc types which are used to automatically
extract imaginal disc shapes from new images and to align these features to
consensus shape models. In parallel, we extract the stain pattern for each disc
which is aligned to and overlaid on the consensus shape model, thereby yielding



a representation of the spatial extent of expression of a given gene in the context
of the consensus shape. These patterns are averaged to produce consensus gene
expression representations for each gene. The consensus representations are as-
sembled in a database and clustered to identify both genes and regions of the
discs with similar patterns of gene expression. New images can be used to search
the database to identify known patterns similar to a query pattern, which can
be automatically extracted from a new image. The data-flow of our approach is
shown in Figure

Previous work has identified the vast majority of the genes in Drosophila [11
2], shown how a large numbers of genes are dynamically expressed across the
entire organism throughout the life cycle [3], and shown how genes are expressed
across space and time in embryos [4]. DNA-microarrays have enabled parallel,
high-throughput analysis of gene expression from many different tissues under
different conditions or at different time points [5] [6]. However, these techniques
do not provide spatial information about where these genes are expressed within
these tissues.

Image processing techniques have been applied to the problem of quantita-
tive gene expression analysis by analyzing the hybridization of fluorescent probes
to specific spots on DNA microarrays [0l [7], and, recently, fully-automated ap-
proaches to this problem have been developed [§].

Large-scale studies of patterns of gene expression in Drosophila have been
performed using DNA microarrays both on whole organisms [9] 3] and individual
tissues such as imaginal discs [I0] [IT]. Klebes et al. compared differential gene
expression in different imaginal discs and between imaginal discs and non-disc
tissue. Butler et al. manually dissected imaginal discs and were able to identify
transcripts that were enriched in specific compartments of the wing discs [10].
However, these studies yield little information about the precise spatial patterns
of gene expression.

2 Pipeline Overview

Our pipeline, shown in Figure [I} begins with the acquisition and purification of
the biological material, followed by steps to select appropriate genes for inclusion
in the project. The next phase of the pipeline entails generation of labeled probes
for specific genes, hybridization of these probes to appropriate pools of imaginal
discs, and imaging of the resulting stained discs. The data analysis portion of
the pipeline consists of two main sections, a learning process in which a small
number of manually segmented examples are used to learn the shapes of the
imaginal discs and an automated analysis phase in which the learned shapes are
used to automatically isolate instances of imaginal discs in the complete set of
images. These aligned images are then scored for stain, and used to produce
consensus maps for each gene. The consensus maps are then used for a variety
of clustering and analysis procedures.

For the high-throughput pipeline, we needed a sufficient source of imaginal
discs such that we would have a number of each type of imaginal disc for each
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Fig. 1: Overview of the high-throughput process for determining spatial patterns
of expression of genes in Drosophila imaginal discs.

foreground feature extraction

probe. Moreover, it was desirable to be able to work in 96-well plates, following
the protocol of the Berkeley Drosophila Genome Project (BDGP) Drosophila
embryo gene expression pattern project [4]. We adapted the imaginal disc mass-
isolation protocol from Eugene et al. [12] for use in a 96-well format. We collected
eggs from Canton S stocks and grew larvae until the wandering third instar
larval stage, at which point the larvae were harvested and the discs isolated.
The mass-isolation procedure typically yielded 500,000 discs, including wing,
leg, eye-antennal, haltere and genital discs, but not the smaller disc types, as
these were not recovered in our purification process. Approximately 100,000 discs
were used per 96-well plate, yielding on the order of 1000 discs per probe.

2.1 Gene Selection and Microarray Gene Expression Analysis

While it would be desirable to examine the spatial pattern of every gene, this is
prohibitively expensive and time-consuming. For the current project, we had the
resources to produce probes for only a few hundred genes. Many genes have no
detectable spatial expression pattern, or, on the other hand, are ubiquitously ex-
pressed and we would like to avoid making probes for these genes. Therefore, we
have developed a protocol to examine the over 13,000 genes in the Drosophila
genome using gene expression microarrays to analyze the levels of expression
across multiple tissues. The central idea is that by examining the quantitative
level of gene expression across multiple tissues, including Drosophila embryos at
multiple time points, distinct classes of imaginal discs, and adults, we could iden-



tify genes that were differentially expressed in imaginal discs and therefore more
likely to have a non-trivial spatial pattern of gene expression than genes that
were expressed at a constant level across all tissues. In particular, we identified
genes that were expressed at a higher level in certain imaginal disc types, relative
to the other disc types, or that were more highly expressed in all imaginal discs
relative to the embryo and adult samples.

2.2 Disc Annotation Database

In order to facilitate the process of automatic segmentation, the operator records
meta-data about the images, as they are being captured, in a database [4].
The annotations include the orientation of the peripodial epithelium and the
handedness of the disc, from which we deduce whether or not the disc needs to
be reflected about the vertical axis with respect to the canonical orientation.

All imaginal discs except the genital discs occur in pairs, one on each side
of the larval body, yielding a left disc and a right disc of each type. When
the discs are placed on a microscope slide for imaging, the can be found in
on of two orientations, with the peripodial epithelium, which exists on only
one side of the disc, either on the top or the bottom. The combination of the
handedness of the disc and the orientation of the peripodial epithelium gives
us 4 possibilities for the combined state and orientation of the disc. We make a
simplifying assumption and assume that the left and right discs are mirror images
of each other and that the stain pattern of a gene in a right disc will be equivalent
to the mirror image of the stain pattern of that gene from the left disc of the
same type. This assumption gives us two handedness/orientation combinations
that are considered to be in the canonical orientation, and two combinations
that are mirror images of these. The shapes corresponding to the two mirror
image handedness/orientation combinations are automatically reflected about
the vertical axis by the congealing pipeline after manual segmentation, to bring
the images into the canonical orientation.

2.3 Shape Representation and Learning

The results of our manual segmentation process are a set of binary image masks
that represent shapes from individual images. From these shapes we learn a shape
representation in the form of a canonical binary image in which pixels are either
1 for foreground or 0 for background, or a canonical grayscale image in which
pixels values are between 0 and 1 and where the value represents the probability
that a given pixel is on in an element of that particular shape. This simple
shape model for each imaginal disc type serves as the reference map upon which
comparisons regarding patterns of gene expression will be made. While there are
many possible approaches to this task, including parameterizing the curve that
defines the borders of the shapes, we use a simple non-parametric method called
Congealing [13], [14], that iteratively learns a set of affine transformations that
minimize the overall pixelwise entropy of a stack of images to learn a canonical
shape model for each disc type [15].
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Fig. 2: (a) Raw RGB image file of a wing imaginal disc. (b) Discrete approx-
imation of the second derivative of a wing imaginal disc image, produced by
convolution with a Laplacian filter kernel. (c) The previous image after a round
of morphological closing by dilation and erosion. (d) Resulting image after ap-
plying the 3-4 distance transform.

Fig. 3: (a) Canonical wing disc shape model. (b) 3-4 distance transform of the
wing disc shape model.

3 Parallel Alignment and Automatic Feature Extraction

Our approach to identifying imaginal discs in images is based on extraction of
simple foreground features and subsequent alignment of the foreground features
to a shape model by optimizing the parameters of an affine transformation be-
tween the foreground features and the shape model. This approach was initially
proposed by Barrow et al. [I6] for use with manually extracted point features
which were aligned to a traced boundary. In order to avoid becoming trapped in
local minima during the optimization process, a process known as “Chamfering”
is used to generate a map of the distance of foreground features to the near-
est edge. Borgefors called this map of the distance to the foreground features a
“Distance Transform” and proposed a hierarchical method for performing this
style of alignment in a coarse-to-fine manner [I7].

3.1 Foreground Feature Extraction

Foreground biological material has substantially more variability than the back-
ground. While the measured intensity values of the background change across the
image, these values generally change smoothly. The biological material present
in the image, on the other hand, contains substantial pixel intensity variabil-
ity due to changes in the scattering and absorption of light by the material.
Therefore, we use the absolute value of a discrete approximation of the second



derivative of the image, produced by discrete convolution with a laplacian filter
kernel [I8], to detect the foreground biological material. An example image is
shown in Figure (b) After applying the Laplacian operation, the image is then
morphologically closed by first dilating the image, then eroding the image using
a square structuring element. The resulting image is shown in Figure c).

The Distance Transform is a transformation of an image in which edge (or
foreground) pixels are assigned a value of zero and non-edge (or non-foreground)
pixels are assigned a value proportional to the distance to the nearest edge
pixel [I7, 19]. The true Euclidean distance is somewhat computationally expen-
sive. Fortunately, Borgefors provides an efficient approach, known as the 3-4
Distance Transform, for approximating the true Euclidean distance using a two-
pass, forward and backward, algorithm that analyzes the backward and forward
8-neighbors, respectively, of each pixel and computes an approximation of the
distance of each pixel to the nearest edge pixel. A visual inspection of this ap-
proach and the L;-based approximation provided by Soille [I9] shows that the
3-4 Distance Transform yields substantially better results.

Just as we apply the distance transform to the target image, we apply the
distance transform to the model to produce a smoothed-out representation of the
model, suitable for template matching. The results of the distance transformed
model can be seen in Figure

3.2 Distance Metrics

There are multiple instances in our pipeline where it is necessary to compare
one template with another template, and assign a score based on a distance
measure that measures how dissimilar they are to each other. Depending on
the scenario, the template can be a real-valued vector or a real-valued or bi-
nary two-dimensional image patch. Common distance choices include the L,
and Lo distance metrics. However the L; and Ly distances are not invariant to
scalings and shifts in image intensities. Therefore, we used the Normalized Cross-
Correlation distance[20] to compare images. To compare two image patches, X
and Y, where X, Y € RM*N_ we use the following formula:

Y i (X = X) (Vi — )

NCC(X,Y) = = ~
VEE SN (X, - X2 S (v - V)

(1)

where X denotes the mean value of the template X. The value returned by NCC
always ranges between -1 and +1, irrespective of the size of the template. When
NCC=+1, the two templates match perfectly. If the templates X and Y take
only binary values 0, 1, we define the set of pixels on in both templates as A =
Eij‘il Z;\le 1(X;; =1,Y;; = 1), the sets of pixels on in either template as B =
Y Y 1(Xiy =1,Y;5=0),and C =30, 327 1(X;5=0,Ys5=1),and
the set of pixels off in both templates as D = 31, ;\121 1(X;; =0,Y;;=0)
where 1(p) is an indicator function that takes value 1 if the condition p is sat-



isfied. The Jaccard metric can then be defined in terms of A, B, C, D.

A
J d(X,Y)= —— 2
accard(X,Y) A1 BLC (2)
The NCC measure is equivalent to the Jaccard metric when D >> (A + B +
(). While the Jaccard metric explicitly avoids computing distance between the
features that are absent in both X and Y templates — and is thus desirable, it
doesn’t extend well to real-valued templates.

3.3 Coordinate Descent from Multiple Starting Configurations

Given the distance-transformed model, an image corresponding to the identi-
fied foreground features, and an appropriate distance metric, we seek an affine
transformation that, when applied to the target image, minimizes the distance
between the (affine) transformed target features and the model. We use a rea-
sonable set of starting configurations, such as the identity affine transform, and
90 degree rotations of the identity transform, and perform coordinate descent
on the parameters of the affine transformation. This procedure quickly yields
an acceptable match between the target and the imaginal disc model over 85%
of the time. The procedure can fail to find a good match when the image is
cluttered or contains multiple discs. Poorly performing instances are manually
removed from the atlas prior to further processing.

While the correct alignment between two images generally yields a local
minimum, this is not the only minimum to be found in the space described by
the parameters of the affine transformation. In congealing, we avoid settling on
an incorrect local minimum which may be found by reducing the scale of both
images towards zero or infinity, essentially matching two all black or all white
images, by rescaling the affine transformations in each iteration of the algorithm.
In the case of the distance transforms of the foreground features and the model,
we occasionally find that a better score is found via an incorrect alignment
of two images that have undergone substantial transformations to achieve this
alignment. To address this problem, we constrain the affine transformations such
that the log-space parameters for x- and y-scaling are never allowed to go below
-0.35 or above 0.35, constraining the minimum size of the figure to be 70% of
the original size and the maximum to be 142% of the original size. Similarly, the
log scale x- and y-shear parameters are never allowed to go below -0.2 or above
0.2. Finally, as an additional constraint on the transformations, we never allow
the absolute value of the difference between the x-scale and y-scale log-space
parameters to go over 0.2. This drives the alignment procedure to local minima
that are more likely to represent the true biologically relevant alignment, even
if the procedure would otherwise a find a lower-scoring alignment by using a
radical deformation of the shapes.

3.4 Stain Scoring

Imaginal discs are stained with digoxigenin labeled mRNA or DNA probes. The
labeled discs were then treated with anti-digoxigenin coupled to alkaline phos-
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Fig. 4: (a) An image of Drosophila melanogaster wing imaginal discs with areas
of heavy stain. (b) The result from the stain-scoring algorithm using Equation
producing clipped areas in the center where no stain is reported. (c¢) The im-
proved stain-scoring result obtained by using Equation

phatase, an enzyme that catalyzes a reaction that generates a blue dye from a
colorless substrate. The presence of labeled probe is indicated by a blue color,
resulting from the absorption of non-blue photons by the dye. We have devel-
oped a quantitative stain-scoring heuristic that uses the difference between the
pixel intensity values of the blue channel and the average of the red and green
channels. We compute the stain intensity for a given pixel as shown below.

sij = bij — T X9 3)
2

As shown in Figure[d] this approach yields satisfactory results except in areas
of very high staining, at which point the pixel values become very dark gray with
no discriminating values between the blue channel and red and green channel
average. Therefore, we set a minimum value for the blue channel and treat values
in the red and green channels beneath this threshold as evidence of staining and
use the difference between the value in the average of the red and green channels
and the minimum as the value for the stain intensity in these areas.

Tij t Gij
Iy (4)

$i; = max (bmin, bij) — 2

Ideally, we would be able to use the measured stain intensity as a direct
measure of the abundance of a particular transcript at a given location. Unfor-
tunately, this is not the case as there is substantial variability for the effectiveness
of individual probes. While the current method does not yield directly compa-
rable measures of abundance that are valid for comparisons between different
genes, the measures of abundance for a single gene, over the spatial extent of
the disc should be more directly comparable. In order to maximize the measured
differences in expression of a single gene across the entire disc, one can normal-
ize the recorded values, such that the highest measured stain value is assigned
to a predetermined value, and other values scaled, linearly, such that the high-
est measured value is assigned to the highest value on the new scale, and the
zero values on the original scale are assigned to zero values on the new scale.
By performing this kind of normalization, we expand the dynamic range of the
measured pixel values for given genes.



Fig. 5: Images of Drosophila melanogaster wing (first row), leg (second row), and
eye/antenna (third row) imaginal discs, automatically segmented and aligned to
the model. The original grayscale image is shown in the blue channel, the outline
of the disc model is shown in red and the scored stain is shown in green.

In Figure 5] we show images of imaginal discs that have been automatically
aligned, extracted from background. We have aligned over 800 images from over
130 different genes across the four main imaginal disc types.

4 Gene Expression Maps and Map Clustering

We would like to construct maps of gene expression that incorporate multiple
samples, when possible. Two simple approaches are to use the mean and the
median of the available maps. For each gene and disc-type pair, if there is only
one image, we treat this image as the map. If there is more than one image, we
construct maps where the value of each pixel is the median of the values from
each aligned, stain-scored image at the given pixel, which are shown in Figure [6]
In addition to the median, we construct maps of the pixelwise standard deviation
of the stain scored image, yielding a measure of the variability at for a given pixel
across the samples (data not shown).

4.1 Reverse Lookup to Find Similar Expression Patterns

Having built a data set of images and maps, one can interrogate new images
to automatically extract a disc of a given type, score the image for stain and
compare the stain pattern to either the individual stain patterns in the database
or, perhaps more importantly, the median maps for each gene, thereby allowing
one to discover to which genes the new pattern is most similar. In Figure [7| we
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Fig. 6: Gene expression maps of imaginal discs in Drosophila melanogaster. The
maps are made by taking the median expression value at each pixel from the stack
of images for each gene. (a) Maps of MESR3, dpp, drl, CG4914, and CG9057 in
the wing. (b) Maps of CG9747, nub, dpp, fd96Cb, and drm in the leg. (¢) Maps
of Rapgapl, EG:EG0007.7, dpp, btd, and Trafl in the eye/antenna disc.

(c)

Fig. 7: Reverse lookup procedure to search the database of average gene ex-
pression maps for patterns most similar to the Docl gene. (a) Image of a wing
imaginal disc stained for Docl gene expression. (b) Automatically aligned and
extracted stain pattern for Docl. (c) Average gene expression maps of Doc3,
Doc2, nub, Cyp310al and Pepck.
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Fig. 8: Comparative gene expression maps. The expression patterns of multiple
genes in Wing imaginal discs are shown overlaid on a common reference map.
(a) MESR3 (red), CG9057 (green) and Sp558 (blue). (b) BG:DS00180-3 (red),
drm (green) and Timp (blue).

see a new image which is then automatically segmented, extracted and scored
for stain. The resulting stain pattern is then searched against the median maps
using a simple Lo distance metric and the 5 resulting maps most similar to this
pattern are shown.

4.2 Comparative Maps of Multiple Genes

By registering the images to a common global template for each shape, we are
able to make comparisons between expression patterns determined in different
experiments and we are able to create overlay maps that contain a representation
of the spatial patterns of more than one gene. While one can use biological
techniques to image multiple genes simultaneously [21], 22] 23], one must know
which genes to look for . Using our methods, we can computationally construct
virtual comparative maps of arbitrary sets of genes. Example overlay maps are
shown in Figure

In addition to the reverse lookup and image overlay capabilities, we can look
for common features between different genes by clustering them together using
any number of standard clustering techniques. We have chosen to use simple
clustering techniques to perform two classes of clustering, a clustering of the
genes and a clustering of vectors of gene expression for all of the genes that can
be computed for each pixel.

4.3 Gene Clustering

The k-means clustering algorithm clusters n points in a d-dimensional space
around k cluster centers [24]. We denote the data points x,, and establish a
variable z, which contains the value of the current cluster in which point x,,
resides. The assignment to clusters stored in z is computed by the following
equation:
zn = argmin ||z, — p;l| (5)
J



Fig. 9: Representative clusters from gene clustering. The first column contains
a cluster center from an eye/antenna disc cluster (top row) and a haltere disc
cluster (bottom row). Other columns contain cluster members for the given clus-
ter centers: CG14516, Trafl, Rapgapl, stan, Nrt, CG9335, CG8965, Aplipl, and
SP555 for the eye/antenna cluster; Rel, MESR3, Fas2, tld, and SP558 for the
haltere cluster.

Fig. 10: Wing, leg, haltere and eye/antenna pixel clusters with 32 clusters (color-
coded) in each image. This figure shows which pixels in the imaginal disc are
similar to each other based on the gene expression profiles across all the genes
measured in that particular disc.

where ||.|| is an appropriate distance metric. The new cluster means p are com-
puted by:

20 0(znsn)Tn
qu B Zn 5(271’ n)

where ¢ is the Kronecker delta function. Thus, for a given a set of gene maps, =z,
with x,, indicating the nth gene map, and p; representing the jth cluster, we run
the k-means clustering as in Equations[5land[6] In our experiments, we found that
using normalized cross correlation (NCC) produced better results than using Lo
distance metric. Some representative clusters are shown in Figure [9]

(6)
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4.4 Pixel Clustering

Given a set of gene maps, we want to cluster the pixels based on a vector of
gene expression across all of the genes at each pixel. Given the set of all pixels
P and p € P, we want to cluster the zP vectors. We refer to the cluster centers
as m;. To cluster the pixels, instead of the genes, we use the k-means clustering
equations as follows:

zp = argmin |[|z? — ;|| (7
je{l,...,P}
where ||.|| is an appropriate distance metric for comparing the vectors, in our

experiments we used the Ly distance. The new cluster means 7 are computed

by:
I SR O
t 2, 0(z,p)

The results of pixel clustering of wing, leg, haltere and eye/antenna imaginal
discs with 32 clusters are shown in Figure

(®)

5 Discussion

In this paper, we have presented a method of generating a large number of spatial
patterns of gene expression in Drosophila melanogaster imaginal discs, and for
using shapes learned from the data, rather than using a single exemplar, as a
global model of the shape of interest, to which a set of patterns can be aligned.
We have presented methods for automatically detecting an imaginal disc in an
image and for aligning this image to the learned shape model, for automatically
scoring these images for stain, and for registering these stain patterns to the
global model. Our representation of stain patterns as a quantitative measure of
gene expression, aligned to a global model, enables us to efficiently cluster both
the patterns of the genes themselves, and the regions of the tissues, as represented
by the pixels in the global model. Finally, we have developed a reverse-lookup
procedure, that enables us to take a new image, stained for a gene of interest,
and to search our database of patterns to find genes with similar spatial patterns
of gene expression.

Using our methods, we have determined the patterns of over 130 genes in
some or all of the four largest and most well-characterized imaginal disc types,
the wing, leg, haltere and eye/antenna discs. Our parallel automated alignment
and feature extraction method works adequately over 85% of the time, but may
fail when presented with images containing multiple imaginal discs or substantial
amounts of biological clutter.

Our method of pixel clustering represents a novel way of viewing spatial gene
expression data. By clustering the pixels, we are able to identify regions of the
discs that are, on the basis of their gene expression profiles of on the order of
100 genes, more similar to the other pixels in that region than to the other
regions. The pixel clusters identified are reminiscent of the zones of development
identified in the classical imaginal disc fate maps in the literature. We look
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forward to exploring the relationships between these clusters and genetically-
identified regions of the discs for which the eventual fates of the cells have been
determined.

Future work may include extending the procedure to be able to identify
multiple discs in a single image, to be more robust to biological noise such as the
presence of trachea or other larval material in the image, and to use hierarchical
clustering methods for the gene and pixel clustering.
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A  Appendix

A.1 Foreground Feature Extraction

Algorithm A.l: EXTRACT-FOREGROUND-FEATURES(img)

laplacian «— LAPLACIAN(img)

absLaplacian — ABS(laplacian)

dilated «— DILATE(absLaplacian, SquareStructuring Element)
eroded — ERODE(dilated, SquareStructuring Element)
foregroundFeatures « DISTANCE-TRANSFORM (eroded)
return (foregroundFeatures)

A.2 Aligning Target Image to Model

Algorithm A.2: ALIGN-TARGET-TO-MODEL(target, model)

feat «— EXTRACTFOREGROUNDFEATURES (target)
for each x € initialCon fgurationList
for iteration « 0 to maxlterations
origScore «— NCC( feat, model)
for r € x
r_ «— x — stepSize
stepDownlImage < AFFINETRANSFORMIMAGE( feat, x_,X)
stepDownScore «— NCC(stepDownImage, model)
if stepDownScore > origScore
then z «— x_
T4 «— x + stepSize
stepUpImage «— AFFINETRANSFORMIMAGE( feat, x4 ,X)
stepUpScore «— NCC(stepUpImage, model)
if stepUpScore > MAX(origScore, stepDownScore)
then z «— x,
X < UPDATE(Z, X)
alignedT arget «— AFFINETRANSFORMIMACGE( feat, x)
return (alignedTarget)
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