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ABSTRACT | This paper considers the problem of pursuit

evasion games (PEGs), where the objective of a group of pur-

suers is to chase and capture a group of evaders in minimum

time with the aid of a sensor network. The main challenge in

developing a real-time control system using sensor networks is

the inconsistency in sensor measurements due to packet loss,

communication delay, and false detections. We address this

challenge by developing a real-time hierarchical control sys-

tem, named LochNess, which decouples the estimation of

evader states from the control of pursuers via multiple layers of

data fusion. The multiple layers of data fusion convert noisy,

inconsistent, and bursty sensor measurements into a consistent

set of fused measurements. Three novel algorithms are deve-

loped for LochNess: multisensor fusion, hierarchical multi-

target tracking, and multiagent coordination algorithms. The

multisensor fusion algorithm converts correlated sensor mea-

surements into position estimates, the hierarchical multitarget

tracking algorithm based on Markov chain Monte Carlo data

association (MCMCDA) tracks an unknown number of targets,

and the multiagent coordination algorithm coordinates pur-

suers to chase and capture evaders using robust minimum-

time control. The control system LochNess is evaluated in

simulation and successfully demonstrated using a large-scale

outdoor sensor network deployment.

KEYWORDS | Multiagent coordination; multisensor fusion;

multitarget tracking; networked control systems; pursuit eva-

sion games; sensor networks

I . INTRODUCTION

Recently we have been witnessing dramatic advances

in micro-electromechanical sensors (MEMS), digital sig-

nal processing (DSP) capabilities, computing, and low-
power wireless radios which are revolutionizing our

ability to build massively distributed, easily deployed, self-

calibrating, disposable, wireless sensor networks [1]–[3].

Soon, the fabrication and commercialization of inexpen-

sive millimeter-scale autonomous electromechanical de-

vices containing a wide range of sensors, including

acoustic, vibration, acceleration, pressure, temperature,

humidity, magnetic, and biochemical sensors, will be
readily available [4]. These potentially mobile devices,

called Bnodes,[ are provided with their own power supply

[5] and can communicate with neighboring sensor nodes

via low-power wireless communication to form a wireless

ad-hoc sensor network with up to 100 000 nodes [6], [7].

Sensor networks can offer access to an unprecedented

quantity of information about our environment, bringing

about a revolution in the amount of control an individual
has over his environment. The ever-decreasing cost of

hardware and steady improvements in software will make

sensor networks ubiquitous in many aspects of our lives [8]
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such as building comfort control [9], environmental moni-

toring [10], traffic control [11], manufacturing and plant

automation [12], service robotics [13], and surveillance

systems [14], [15].

In particular, wireless sensor networks are useful in

applications that require locating and tracking moving
targets and real-time dispatching of resources. Typical

examples include search-and-rescue operations, civil

surveillance systems, inventory systems for moving parts

in a warehouse, and search-and-capture missions in mili-

tary scenarios. The analysis and design of such applications

are often reformulated within the framework of pursuit

evasion games (PEGs), a mathematical abstraction which

addresses the problem of controlling a swarm of autono-
mous agents in the pursuit of one or more evaders [16],

[17]. The locations of moving targets (evaders) are un-

known and their detection is typically accomplished by

employing a network of cameras or by searching the area

using mobile vehicles (pursuers) with on-board high reso-

lution sensors. However, networks of cameras are rather

expensive and require complex image processing to prop-

erly fuse their information. On the other hand, mobile
pursuers with their on-board cameras or ultrasonic sensors

with a relatively small detection range can provide only

local observability over the area of interest. Therefore, a

time-consuming exploratory phase is required [18], [19].

This constraint makes the task of designing a cooperative

pursuit algorithm harder because partial observability

results in suboptimal pursuit policies [see Fig. 1(a)]. An

inexpensive way to improve the overall performance of a
PEG is to use wireless ad-hoc sensor networks [20]. With

sensor networks, global observability of the field and long-

distance communication are possible [see Fig. 1(b)].

Global pursuit policies can then be used to efficiently

find the optimal solution regardless of the level of in-

telligence of the evaders. Also, with a sensor network, the

number of pursuers needed is a function exclusively of the

number of evaders and not the size of the field.

In this paper, we consider the problem of pursuit

evasion games (PEGs), where the objective of a group of

pursuers is to chase and capture a group of evaders in
minimum time with the aid of a sensor network. The

evaders can either move randomly to model moving ve-

hicles in search-and-rescue and traffic control applications,

or can adopt evasive maneuvers to model search-and-

capture missions in military scenarios.

While sensor networks provide global observability,

they cannot provide high quality measurements in a timely

manner due to packet loss, communication delay, and false
detections. This has been the main challenge in developing

a real-time control system using sensor networks. In this

paper, we address this challenge by developing a real-time

hierarchical control system called LochNess (Large-scale

Bon-time[ collaborative heterogeneous Networked em-

bedded systems). LochNess decouples the estimation of

evader states from the control of pursuers via multiple

layers of data fusion. Although a sensor network generates
noisy, inconsistent, and bursty measurements, the multi-

ple layers of data fusion convert raw sensor measurements

into fused measurements in a compact and consistent

representation and forward the fused measurements to the

pursuers’ controllers in a timely manner.

The main contributions of this paper are: 1) a real-time

hierarchical control system LochNess for tracking and

coordination using sensor networks; 2) a demonstration
of the system on a large-scale sensor network deployment;

3) three new algorithms developed for LochNess.

• A multisensor fusion algorithm that combines

noisy and inconsistent sensor measurements

locally. The algorithm produces coherent evader

Fig. 1. (a) Sensor visibility in PEGs without sensor network. (b) Sensor visibility in PEGs with sensor network. Dots correspond to

sensor nodes, each provided with a vehicle detection sensor. Courtesy of [20].
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position reports and reduces the communication
load on the network.

• A multitarget tracking algorithm that tracks an

unknown number of targets (or evaders). The

algorithm is a hierarchical extension of the Markov

chain Monte Carlo data association (MCMCDA)

[21] algorithm for sensor networks to add scal-

ability. MCMCDA is a true approximation scheme

for the optimal Bayesian filter; i.e., when run with
unlimited resources, it converges to the Bayesian

solution [22]. MCMCDA is computationally effi-

cient and robust against measurement noise and

inconsistency (including packet loss and commu-

nication delay) [23]. In addition, MCMCDA

operates with no or incomplete classification in-

formation, making it suitable for sensor networks.

In fact, the performance of the algorithm can be
improved given additional measurements to help

identify the targets.

• A multiagent coordination algorithm that assigns

one pursuer to one evader such that the estimated

time to capture the last evader is minimized based

on the estimates computed by the multitarget

tracking algorithm.

Our control system LochNess was successfully demon-
strated using a large-scale sensor network. The system

correctly found the number of evaders and their tracks and

coordinated the pursuers to capture the evaders. Only a

handful of the tracking algorithms in the literature that are

designed for sensor networks have been demonstrated on a

real sensor network deployment. Of these demonstrations,

the algorithms are usually used to track a single target [14],

[24]–[26], or track multiple targets using classification
[15]. To our knowledge, this paper presents the first de-

monstration of multitarget tracking using a sensor network

without relying on classification.

The remainder of this paper is structured as follows.

The overall architecture of LochNess for a PEG using a

sensor network and formulations of multitarget tracking

and multiagent coordination are described in Section III.

The components of LochNess are described in Section IV.
The experimental results from the sensor network deploy-

ment are given in Section V.

II . RELATED WORK: TARGET TRACKING
IN SENSOR NETWORKS

One of the main applications of wireless ad-hoc sensor

networks is surveillance. However, considering the
resource constraints on each sensor node, the well-known

multitarget tracking algorithms such as joint probabilistic

data association filter (JPDAF) [27] and multiple hypoth-

esis tracker (MHT) [28], [29] are not feasible for sensor

networks due to their exponential time and space

complexities. As a result, many new tracking algorithms

have been developed recently.

Most of the algorithms developed for sensor net-
works are designed for single-target tracking [14], [15],

[24]–[26], [30]–[36] and some of these algorithms are

applied to track multiple targets using classification [15],

[30], [36] or heuristics, such as the nearest-neighbor filter

(NNF)1 [14]. A few algorithms are designed for multitarget

tracking [37]–[39] where the complexity of the data

association problem2 inherent to multitarget tracking is

avoided by classification [37], [39] or heuristics [38]. When
tracking targets of a similar type or when reliable classi-

fication information is not available, the classification-

based tracking algorithm behaves as the NNF. Considering

the fact that the complexity of the data association problem

is NP-hard [41], [42], a heuristic approach breaks down

under difficult circumstances. Furthermore, the measure-

ment inconsistencies common in sensor networks, such as

false alarms and missing measurements (due to missing
detection or packet loss), are not fully addressed in many

algorithms. On the contrary, the multitarget tracking algo-

rithm developed in this paper is based on a rigorous

probabilistic model and based on a true approximation

scheme for the optimal Bayesian filter.

Tracking algorithms for sensor networks can be

categorized according to their computational structure:

centralized [15], [24], [33], hierarchical [34], [35], or
distributed [14], [25], [26], [30]–[32], [36]–[39]. How-

ever, since each sensor has only local sensing capability

and its measurements are noisy and inconsistent, mea-

surements from a single sensor and its neighboring sensors

are not sufficient to initiate, maintain, disambiguate, and

terminate tracks of multiple targets in the presence of

clutter; it requires measurements from distant sensors.

Considering the communication load and delay when ex-
changing measurements between distant sensors, a com-

pletely distributed approach to solve the multitarget

tracking problem is not feasible for real-time applications.

On the other hand, a completely centralized approach is

not robust and scalable. In order to minimize the com-

munication load and delay while being robust and scalable,

a hierarchical architecture is considered in this paper.

III . PROBLEM FORMULATION AND
CONTROL SYSTEM ARCHITECTURE

In this paper, we consider the problem of pursuing mul-

tiple evaders over a region of interest (or the surveillance

region). Evaders (or targets) arise at random in space and

1The NNF [27] processes the new measurements in some predefined
order and associates each with the target whose predicted position is
closest, thereby selecting a single association. Although effective under
benign conditions, the NNF gives order-dependent results and breaks
down under more difficult circumstances.

2In multitarget tracking, the associations between measurements and
targets are not completely known. The data association problem is to work
out which measurements were generated by which targets; more
precisely, we require a partition of measurements such that each element
of a partition is a collection of measurements generated by a single target
or clutter [40].
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time, persist for a random length of time, and then cease to
exist. When evaders appear, a group of pursuers is required

to detect, chase and capture the group of evaders in min-

imum time with the aid of a sensor network. In order to

solve this problem, we propose a hierarchical real-time

control system LochNess which is shown in Fig. 2. LochNess
is composed of seven layers: the sensor network, the multi-
sensor fusion (MSF) module, the multitarget tracking (MTT)
modules, the multitrack fusion (MTF) module, the multi-
agent coordination (MAC) module, the path planner mod-

ule, and the path follower modules.

Sensors are spread over the surveillance region and

form an ad-hoc network. The sensor network detects

moving objects in the surveillance region and the MSF

module converts the sensor measurements into target po-

sition estimates (or reports) using spatial correlation. This

paper considers a hierarchical sensor network. In addition
to regular sensor nodes (BTier-1[ nodes), we assume the

availability of BTier-2[ nodes which have long-distance

wireless links and more processing power. We assume that

each Tier-2 node can communicate with its neighboring

Tier-2 nodes. Examples of a Tier-2 node include high-

bandwidth sensor nodes such as iMote and BTnode [43],

gateway nodes such as Stargate, Intrinsyc Cerfcube, and

PC104 [43], and the Tier-2 nodes designed for our exper-

iment [44]. Each Tier-1 node is assigned to its nearest Tier-2
node and the Tier-1 nodes are grouped by Tier-2 nodes. We

call the group of sensor nodes formed around a Tier-2 node

a Btracking group.[ When a node detects a possible target,

it listens to its neighbors for their measurements and

fuses the measurements to forward to its Tier-2 node.

Each Tier-2 node receives the fused measurements from

its tracking group and the MTT module in each Tier-2

node estimates the number of evaders, the positions and
velocities of the evaders, and the estimation error bounds.

Each Tier-2 node communicates with its neighboring

Tier-2 nodes when a target moves away from the region

monitored by its tracking group. Finally, the tracks es-

timated by the Tier-2 nodes are combined hierarchically

by the MTF module at the base station.

The estimates computed by the MTF module are then

used by the MAC module to estimate the expected capture
times of all pursuer-evader pairs. Based on these estimates,

the MAC module assigns one pursuer to one evader by

solving the bottleneck assignment problem [45] such that

the estimated time to capture the last evader is minimized.

Once the assignments are determined, the path planner

module computes a trajectory for each pursuer to capture

its assigned evader in the least amount of time without

colliding into other pursuers. Then, the base station

Fig. 2. LochNess: a hierarchical real-time control system architecture using sensor networks for multitarget tracking and

multiagent coordination.
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transmits each trajectory to the path following controller
of the corresponding pursuer. The path following control-

ler modifies the pursuer’s trajectory on the fly to avoid any

obstacles sensed by the pursuer’s on-board sensors. The

path planning and path follower modules can be imple-

mented using dynamic programming [46] or model pre-

dictive control [47]. In the paper, we focus on MSF, MTT,

MTF, and MAC modules and they are described in

Section IV. In the remainder of this section, we describe
the sensor network model and the problem formulations of

multitarget tracking and multiagent coordination.

A. Sensor Network and Sensor Models
In this section, we describe the sensing modelsVthe

signal-strength and binary sensor modelsVand the sensor

network model considered in this paper. A signal-strength

sensor reports the range to a nearby target while a binary
sensor reports only a binary value indicating whether an

object is detected near the reporting sensor. The signal-

strength sensor model is used for the development and

analysis of our system while the binary sensor model is

used in our experiments. While the signal-strength sensors

provide better accuracy, our evaluation of the sensors de-

veloped for the experiments showed that the variability in

the signal strength of the sensor reading prohibited ex-
traction of ranging information. However, we found that

the sensors were still effective as binary sensors. We also

found that binary sensors were much less sensitive to time

synchronization errors than signal-strength sensors.

Let Ns be the number of sensor nodes, including both

Tier-1 and Tier-2 nodes, deployed over the surveillance

regionR � R2. Let si 2 R be the location of the ith sensor

node and let S ¼ fsi : 1 � i � Nsg. Let Nss � Ns be the
number of Tier-2 nodes and let ss

j 2 S be the position of the

jth Tier-2 node, for j ¼ 1; . . . ;Nss.

Signal-Strength Sensor Model: Let Rs 2 R be the sensing

range. If there is an object at x 2 R, a sensor can detect the

presence of the object. Each sensor records the sensor’s

signal strength

zi ¼
�

1þ�ksi�xk� þ ws
i ; if ksi � xk � Rs

ws
i ; if ksi � xk 9 Rs

�
(1)

where �, �, and � are constants specific to the sensor type,

and we assume that zi are normalized such that ws
i has the

standard Gaussian distribution. This signal-strength based

sensor model is a general model for many sensors available

in sensor networks, such as acoustic and magnetic sensors,
and has been used frequently [14], [25], [26], [39].

Binary Sensor Model: For each sensor i, let Ri be the

sensing region of i. Ri can have an arbitrary shape but we

assume that it is known to the system. Let zi 2 f0; 1g be

the detection made by sensor i, such that sensor i reports
zi ¼ 1 if it detects a moving object in Ri, and zi ¼ 0 other-

wise. Let pi be the detection probability and qi be the false

detection probability of sensor i.

Sensor Network Model: Let G ¼ ðS; EÞ be a communica-

tion graph such that ðsi; sjÞ 2 E if and only if node i can

communicate directly to node j. Let g : f1; . . . ;Nsg !
f1; . . . ;Nssg be the assignment of each sensor to its
nearest Tier-2 node such that gðiÞ ¼ j if ksi � ss

jk ¼
mink¼1;...;Nss

ksi � ss
kk. For a node i, if gðiÞ ¼ j, the shortest

path from si to ss
j in G is denoted by spðiÞ. In this paper, we

assume that the length of spðiÞ, i.e., the number of com-

munication links from node i to its Tier-2 node, is smaller

when the physical distance between node i and its Tier-2

node is shorter. But if this is not the case, we can assign a

node to the Tier-2 node with the fewest communication
links between them.

Local sensor measurements are fused by the MSF

module described in Section IV-A. Let ẑi be a fused

measurement originated from node i. Node i transmits the

fused measurement ẑi to the Tier-2 node gðiÞ via the

shortest path spðiÞ. A transmission along an edge ðsi; sjÞ on

the path fails independently with probability pte and the

message never reaches the Tier-2 node. Transmission fail-
ures along an edge ðsi; sjÞ may include failures from re-

transmissions from node i to node j. We can consider

transmission failure as another form of a missing

observation. If k is the number of hops required to relay

data from a sensor node to its Tier-2 node, the probability

of successful transmission decays exponentially as k
increases. To overcome this problem, we use k indepen-

dent paths to relay data if the reporting sensor node is k
hops away from its Tier-2 node. The probability of suc-

cessful communication pcs from the reporting node i to

its Tier-2 node gðiÞ can be computed as pcsðpte; kÞ ¼
1� ð1� pteÞkÞ

k
, where k ¼ jspðiÞj and jspðiÞj denotes the

cardinality of the set spðiÞ.
We assume each node has the same probability pde of

delaying a message. If di is the number of (additional)

delays on a message originating from the sensor i, then di is
distributed as

pðdi ¼ dÞ ¼ spðiÞj j þ d� 1

d

� �
ð1� pdeÞ spðiÞj jðpdeÞd: (2)

We are modeling the number of (additional) delays by the

negative binomial distribution. A negative binomial ran-

dom variable represents the number of failures before
reaching a fixed number of successes from Bernoulli trials.

In our case, it is the number of delays before jspðiÞj suc-

cessful delay-free transmissions.

If the network is heavily loaded, the independence as-

sumptions on transmission failure and communication

delay may not hold. However, the model is realistic under

Oh et al. : Tracking and Coordination of Multiple Agents Using Sensor Networks

238 Proceedings of the IEEE | Vol. 95, No. 1, January 2007



moderate conditions and we have chosen it for its
simplicity.

B. Multitarget Tracking
The MTT and MTF modules of LochNess estimate the

number of targets, positions and velocities of targets, and

estimation error bounds. Since the number of targets is

unknown and time-varying, we need a general formulation

of the multitarget tracking problem. This section describes
the multitarget tracking problem and two possible

solutions.

Let Ts 2 Zþ be the duration of surveillance. Let K be

the number of targets that appear in the surveillance

region R during the surveillance period. Each target k
moves in R for some duration ½tk

i ; tk
f � � ½1; Ts�. Notice that

the exact values of K and ftk
i ; tk

f g are unknown. Each target

arises at a random position inR at tk
i , moves independently

aroundR until tk
f , and disappears. At each time, an existing

target persists with probability 1� pz and disappears with

probability pz. The number of targets arising at each time

over R has a Poisson distribution with a parameter �bV
where �b is the birth rate of new targets per unit time, per

unit volume, and V is the volume ofR. The initial position

of a new target is uniformly distributed over R.

Let Fk : Rnx ! Rnx be the discrete-time dynamics of
the target k, where nx is the dimension of the state variable,

and let xkðtÞ 2 Rnx be the state of the target k at time t for

t ¼ 1; . . . ; Ts. The target k moves according to

xkðtþ 1Þ ¼ Fk xkðtÞ
� �

þ wkðtÞ; for t ¼ tk
i ; . . . ; tk

f � 1 (3)

where wkðtÞ 2 Rnx are white noise processes. When a

target is present, a noisy observation (or measurement)3

of the state of the target is measured with a detection

probability pd. Notice that, with probability 1� pd, the

target is not detected and we call this a missing
observation. There are also false alarms and the number

of false alarms has a Poisson distribution with a parameter

�f V, where �f is the false alarm rate per unit time, per

unit volume. Let nðtÞ be the number of observations at

time t, including both noisy observations and false alarms.

Let yjðtÞ 2 Rny be the jth observation at time t for

j ¼ 1; . . . ; nðtÞ, where ny is the dimension of each

observation vector. Each target generates a unique ob-
servation at each sampling time if it is detected. Let

Hj : Rnx ! Rny be the observation model. Then the obser-

vations are generated as follows:

yjðtÞ ¼ Hj xkðtÞð Þ þ vjðtÞ; if yjðtÞ is from xkðtÞ
ufðtÞ; otherwise

�
(4)

where vjðtÞ 2 Rny are white noise processes and ufðtÞ �
UnifðRÞ is a random process for false alarms. We assume

that the targets are indistinguishable in this paper, but if

observations include target type or attribute information,

the state variable can be extended to include target type

information as done in [48].

The main objective of the multitarget tracking problem

is to estimate K, ftk
i ; tk

f g and fxkðtÞ : tk
i � t � tk

f g, for

k ¼ 1; . . . ;K, from noisy observations.
Let YðtÞ ¼ fyjðtÞ : j ¼ 1; . . . ; nðtÞg be all measure-

ments at time t and Y ¼ fYðtÞ : 1 � t � Tsg be all mea-

surements from t ¼ 1 to t ¼ Ts. Let � be a collection of

partitions of Y such that, for ! 2 �, ! ¼ f�0; �1; . . . ; �Kg,
where �0 is a set of false alarms and �k is a set of mea-

surements from target k for k ¼ 1; . . . ;K. Note that ! is

also known as a joint association event in literature. More

formally, ! is defined as follows.
1) ! ¼ f�0; �1; . . . ; �Kg;
2)
SK

k¼0 �k ¼ Y and �i \ �j ¼ ; for i 6¼ j;
3) �0 is a set of false alarms;

4) j�k \ YðtÞj � 1 for k ¼ 1; . . . ;K and t ¼ 1; . . . ; Ts;

5) j�kj � 2 for k ¼ 1; . . . ;K.

An example of a partition is shown in Fig. 3. Here, K is the

number of tracks for the given partition ! 2 �. We call �k

a track when there is no confusion although the actual
track is the set of estimated states from the observations

�k. This is because we assume there is a deterministic

function that returns a set of estimated states given a set

of observations. A track is assumed to contain at least two

observations since we cannot distinguish a track with a

single observation from a false alarm, assuming �f 9 0.

For special cases in which pd ¼ 1 or �f ¼ 0, the definition

of � can be adjusted accordingly.
Let neðt� 1Þ be the number of targets at time t� 1,

nzðtÞ be the number of targets terminated at time t and

ncðtÞ ¼ neðt� 1Þ � nzðtÞ be the number of targets from

time t� 1 that have not terminated at time t. Let nbðtÞ be

the number of new targets at time t, ndðtÞ be the number

of actual target detections at time t and nuðtÞ ¼ ncðtÞ þ
nbðtÞ � ndðtÞ be the number of undetected targets. Finally,

let nfðtÞ ¼ nðtÞ � ndðtÞ be the number of false alarms.

3Note that the terms observation and measurement are used
interchangeably in this paper.

Fig. 3. (a) An example of observations Y (each circle represents

an observation and numbers represent observation times).

(b) An example of a partition ! of Y.
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Using the Bayes rule, it can be shown that the posterior of
! is [22]

Pð!jYÞ / Pð!Þ � PðYj!Þ

/
YTs

t¼1

pnzðtÞ
z ð1� pzÞncðtÞp

ndðtÞ
d ð1� pdÞnuðtÞ

�
YTs

t¼1

ð�bVÞnbðtÞð�fVÞnfðtÞ � PðYj!Þ (5)

where PðYj!Þ is the likelihood of observations Y given !,

which can be computed based on the chosen dynamic and

measurement models.4 For example, the computation of

PðYj!Þ for the linear dynamic and measurement models
can be found in [21].

There are two major approaches to solve the multi-

target tracking problem [22]: maximum a posteriori (MAP)

and Bayesian approaches. The MAP approach finds a

partition of observations such that Pð!jYÞ is maximized

and estimates the states of the targets based on this par-

tition. A Bayesian approach called minimum mean square
error (MMSE) finds an estimate which minimizes the ex-
pected square error. For instance, EðxkðtÞjYÞ is the MMSE

estimate for the state xkðtÞ of target k. However, when the

number of targets is not fixed, a unique labeling of each

target is required to find EðxkðtÞjYÞ under the MMSE

approach. In this paper, we take the MAP approach to the

multitarget tracking problem for its convenience.

C. Agent Dynamics and Coordination Objective
In a situation where multiple pursuers and evaders are

present, several assignments are possible and some criteria
need to be chosen to optimize performance. In this work,

we focus on minimizing the time to capture all evaders.

However, other criteria might be possible, such as mini-

mizing the pursuer’s energy consumption while guaran-

teeing capture of all evaders or maximizing the number of

captured evaders within a certain amount of time. Since

the evaders’ motions are not known, an exact time to cap-

ture a particular evader is also not known. Therefore, we
need to define a metric to estimate the time to capture the

evaders. Let us define the state vector of a vehicle as

x ¼ ½x1; x2; _x1; _x2�T , where ðx1; x2Þ and ð _x1; _x2Þ are the posi-

tion and the velocity components of the vehicle along the

x and y axes, respectively. We denote by xp and xe the

state of a pursuer and an evader, respectively. We will use

the following definition of time-to-capture:

Definition 3.1 (Time-to-Capture): Let xeðt0Þ be the posi-
tion and velocity vector of an evader in a plane at time t0,

and xpðtÞ be the position and velocity vector of a pursuer at

the current time t � t0. We define the (constant speed)

time-to-capture as the minimum time Tc necessary for the

pursuer to reach the evader with the same velocity, as-

suming that the evader will keep moving at a constant

velocity, i.e.,

Tc :¼ min Tjxpðtþ TÞ ¼ xeðtþ TÞ½ �

where xe
1;2ðtþ TÞ ¼ xe

1;2ðt0Þ þ ðtþ T � t0Þ _xe
1;2ðt0Þ, _xe

1;2ðtþ
TÞ ¼ _xe

1;2ðt0Þ, and the pursuer moves according to its

dynamics.

This definition allows us to quantify the time-to-

capture in an unambiguous way. Although an evader can

change trajectories over time, it is a more accurate esti-

mate than, for example, some metric based on the distance
between an evader and a pursuer, since the time-to-

capture incorporates the dynamics of the pursuer.

Given Definition 3.1 and the constraints on the dyna-

mics of the pursuer, it is possible to calculate explicitly the

time-to-capture Tc, as well as the optimal trajectory xe�ðtÞ
for the pursuers as shown in Section IV-C.

We assume the following dynamics for both pursuers

and evaders:

xðtþ 	Þ ¼ A	xðtÞ þ G	uðtÞ (6)


ðtÞ ¼ xðtÞ þ vðtÞ (7)

where 	 is the sampling interval, u ¼ ½u1; u2�T is the con-

trol input vector, 
ðtÞ is the estimated vehicle state pro-

vided by the MTF module, vðtÞ is the estimation error, and

A	 ¼

1 0 	 0

0 1 0 	
0 0 1 0

0 0 0 1

2
664

3
775 G	 ¼

	2

2
0

0 	2

2

	 0

0 	

2
664

3
775

which correspond to the discretization of the dynamics of a

decoupled planar double integrator. Although this model

appears simplistic for modeling complex motions, it is

widely used as a first approximation in path-planning

[51]–[53]. Moreover, there exist methodologies to map
such a simple dynamic model into a more realistic model

via consistent abstraction as shown in [54], [55]. Finally,

any possible mismatch between this model and the true

vehicle dynamics can be compensated for by the path-

follower controller implemented on the pursuer [47].

The observation vector 
 ¼ ½
1; 
2; _
1; _
2�
T

is inter-

preted as a measurement, although in reality it is the

4Our formulation of (5) is similar to MHT [49] and the derivation of
(5) can be found in [50]. The parameters pz, pd, �b and �f have been
widely used in many multitarget tracking applications [27], [49]. Our
experimental and simulation experiences show that our tracking algorithm
is not sensitive to changes in these parameters in most cases. In fact, we
used the same set of parameters for all our experiments.
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output from the MTF module shown in Fig. 2. The estima-
tion error vt ¼ ½v1; v2; _v1; _v2�T can be modeled as a Gaussian

noise with zero mean and covariance Q or as an unknown

but bounded error, i.e., jv1j G V1, jv2j G V2, j _v1j G _V1,

j _v2j G _V2, where V1, V2, _V1 and _V2 are positive scalars that

are possibly time-varying. Both modeling approaches are

useful for different reasons. Using a Gaussian noise ap-

proximation allows a closed-form optimal filter solution such

as the well-known Kalman filter [56]. On the other hand
using the unknown but bounded error model allows for the

design of a robust controller such as the robust minimum-

time control of pursuers proposed in Section IV-C.

We also assume that the control input to a pursuer is

bounded, i.e.,

u
p
1j j � Up; u

p
2j j � Up (8)

where Up 9 0. We consider two possible evader dynamics

ue
1 �Nð0; qeÞ; ue

2 � Nð0; qeÞ ðrandom motionÞ (9)

ue
1

�� �� �Ue; ue
2

�� �� � Ue ðevasive motionÞ (10)

where Nð0; qeÞ is a Gaussian distribution with zero mean
and variance qe 2 Rþ. Equation (9) is a standard model for

the unknown motion of vehicles, where the variation in a

velocity component is a discrete-time white noise accel-

eration [57]. Equation (10) allows for evasive maneuvers

but places bounds on the maximum thrust. The multiagent

coordination scheme proposed in Section IV-C is based on

dynamics (10) as pursuers choose their control actions to

counteract the best possible evasive maneuver of the
evader being chased. However, in our simulations and

experiments, we test our control architecture using the

dynamics (9) for evaders where we set qe ¼ 2Ue.

Since the definition of the time-to-capture is related to

relative distance and velocity between the pursuer and

the evader, we consider the state space error � ¼ xp � xe

which evolves according to the following error dynamics:

�ðtþ 	Þ ¼ A	�ðtÞ þ G	upðtÞ � G	ueðtÞ

�ðtÞ ¼ �ðtÞ þ v�ðtÞ (11)

where the pursuer thrust upðtÞ is the only controllable

input, while the evader thrust ueðtÞ acts as a random or

unknown disturbance, and v�ðtÞ is the measurement error

which takes into account the uncertainties on the states of

both the pursuer and the evader. According to the defi-

nition above, an evader is captured if and only if �ðtÞ ¼ 0,

and the time-to-capture Tc corresponds to the time nec-

essary to drive �ðtÞ to zero assuming ueðtÞ ¼ 0 for t � t0.
However, this assumption is relaxed in Section IV-C.

According to the definition of time-to-capture above
and the error dynamics (11), given the positions and velo-

cities of all the pursuers and evaders, it is possible to

compute the time-to-capture matrix C ¼ ½cij� 2 RNp�Ne ,

where Np and Ne are the total number of pursuers and

evaders, respectively, and the entry cij of the matrix C
corresponds to the expected time-to-capture between pur-

suer i and evader j. When coordinating multiple pursuers to

chase multiple evaders, it is necessary to assign pursuers to
evaders. Our objective is to select an assignment that mi-

nimizes the expected time-to-capture of all evaders, which

correspond to the global worst case time-to-capture. In this

paper, we focus on a scenario with the same number of

pursuers and evaders, i.e., Np ¼ Ne. When there are more

pursuers than evaders, then only a subset of all the pursuers

can be dispatched and the others are kept on alert in case

more evaders appear. Alternatively, more pursuers can be
assigned to a single evader. When there are more evaders

than pursuers, one approach is to minimize the time to

capture the Np closest evaders. Obviously, many different

coordination objectives can be formulated as they are

strongly application-dependent. We have chosen the de-

finition of global worst case time-to-capture as it enforces

strong global coordination to achieve high performance.

IV. CONTROL SYSTEM IMPLEMENTATION

A. Multisensor Fusion Module

1) Signal-Strength Sensor Model: Consider the signal-

strength sensor model described in Section III-A. Recall

that zi is the signal strength measured by node i. For each

node i, if zi � �, where � is a threshold set for appropriate

values of detection and false-positive probabilities, the

node transmits zi to its neighboring nodes, which are at

most 2Rs away from si, and listens to incoming messages

from neighboring nodes within a 2Rs radius. We assume
that the communication range of each node is larger than

2Rs. For a node i, if zi is larger than all incoming messages,

zi1
; . . . ; zik�1

, and zik
¼ zi, then the position of an object is

estimated by

ẑi ¼
Pk

j¼1 zij
sijPk

j¼1 zij

: (12)

The estimate ẑi corresponds to a center of mass of the node

locations weighed by their measured signal strengths.

Node i transmits ẑi to the Tier-2 node gðiÞ. If zi is not the

largest compared to the incoming messages, node i simply

continues sensing. Although each sensor cannot give an

accurate estimate of the object’s position, as more sensors

collaborate, the accuracy of the estimates improves as

shown in Fig. 4.
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2) Binary Sensor Model: In order to obtain finer position

reports from binary detections, we use spatial correlation
among detections from neighboring sensors. The idea

behind the fusion algorithm is to compute the likelihood of

detections assuming there is a single target. This is only an

approximation since there can be more than one target.

However, any inconsistencies caused by this approxi-

mation are fixed by the tracking algorithm described in

Section IV-B using spatio-temporal correlation.

Consider the binary sensor model described in
Section III-A. Let x be the position of an object. For the

purpose of illustration, suppose that there are two sensors,

sensor 1 and sensor 2, and R1 \ R2 6¼ ; [see Fig. 5(a)]. The

overall sensing region R1 [ R2 can be partitioned into a set

of nonoverlapping cells (or blocks) as shown in Fig. 5(b).

The likelihoods can be computed as follows:

Pðz1; z2jx 2 S1Þ ¼ pz1
1 ð1�p1Þ1�z1 qz2

2 ð1�q2Þ1�z2

Pðz1; z2jx 2 S2Þ ¼ qz1
1 ð1�q1Þ1�z1 pz2

2 ð1�p2Þ1�z2

Pðz1; z2jx 2 S3Þ ¼ pz1
1 ð1�p1Þ1�z1 pz2

2 ð1�p2Þ1�z2 (13)

where S1 ¼ R1 n R2, S2 ¼ R2 n R1, and S3 ¼ R1 \ R2 [see

Fig. 5(b)]. Hence, for any deployment we can first parti-
tion the surveillance region into a set of nonoverlapping

cells. Then, given detection data, we can compute the

likelihood of each cell as shown in the previous example.

An example of detections of two targets by a 10 � 10

sensor grid is shown in Fig. 6. In this example, the sensing

region is assumed to be a disk with radius of 7.62 m (10 ft).

We have assumed pi ¼ 0:7 and qi ¼ 0:05 for all i. These

parameters are estimated from measurements made with
the passive infrared (PIR) sensor of an actual sensor node

described in Section V. From the detections shown in

Fig. 6, the likelihood can be computed using equations

similar to (13) for each nonoverlapping cell (see Fig. 7).

Notice that it is a time-consuming task to find all

Fig. 5. (a) Sensing regions of two sensors 1 and 2. Ri is the sensing

region of sensor i. (b) A partition of the overall sensing region R1 [ R2

into nonoverlapping cells S1, S2 and S3, where S1 ¼ R1 n R2, S2 ¼ R2 n R1,

and S3 ¼ R1 \ R2.

Fig. 6. Detections of two targets by a 10� 10 sensor grid (targets in�,

detections in disks, and sensor positions in small dots).

Fig. 7. Likelihood of detections from Fig. 6.

Fig. 4. Single target position estimation error as a function of

sensing range. See Section IV-B3 for the sensor network setup used

in simulations (Monte Carlo simulation of 1000 samples, unity

corresponds to the separation between sensors).
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nonoverlapping cells for arbitrary sensing region shapes

and sensor deployments. Hence, we quantized the

surveillance region and the likelihoods are computed for
a finite number of points as shown in Fig. 7.

There are two parts in this likelihood computation: the

detection part (terms involving pi) and the false detection

part (terms involving qi). Hereafter, we call the detection

part of the likelihood as the detection-likelihood and the

false detection part of the likelihood as the false-detection-
likelihood. Notice that the computation of the false-

detection-likelihood requires measurements from all
sensors. However, for a large wireless sensor network, it

is not feasible to exchange detection data with all other

sensors. Instead, we use a threshold test to avoid com-

puting the false-detection-likelihood and distribute the

likelihood computation. The detection-likelihood of a cell

is computed if there are at least �d detections, where �d is a

user-defined threshold. Using �d ¼ 3, the detection-

likelihood of the detections from Fig. 6 can be computed
as shown in Fig. 8. The computation of the detection-

likelihood can be done in a distributed manner. Assign a

set of nonoverlapping cells to each sensor such that no two

sensors share the same cell and each cell is assigned to a

sensor whose sensing region includes the cell. For each

sensor i, let fSi1
; . . . ; SimðiÞg be a set of nonoverlapping cells,

where mðiÞ is the number of cells assigned to sensor i.
Then, if sensor i reports a detection, it computes the
likelihoods of each cell in fSi1

; . . . ; SimðiÞg based on its own

measurements and the measurements from neighboring

sensors. A neighboring sensor is a sensor whose sensing

region intersects the sensing region of sensor i. Notice that

no measurement from a sensor means no detection.

Based on the detection-likelihoods, we compute target

position reports by clustering. Let S ¼ fS1; . . . ; Smg be a

set of cells whose detection-likelihoods are computed, i.e.,

the number of detections for each Si is at least �d. First,
randomly pick Sj from S and remove Sj from S. Then

cluster around Sj the remaining cells in S whose set-

distance to Sj is less than the sensing radius. The cells

clustered with Sj are then removed from S. Now repeat the

procedure until S is empty. Let fCk : 1 � k � Kclg be the

clusters formed by this procedure, where Kcl is the total

number of clusters. For each cluster Ck, its center of mass

is computed to obtain a a fused position report, i.e., an
estimated position of a target. An example of position

reports is shown in Fig. 8.

The multisensor fusion algorithm described above runs

on two levels: Algorithm 1 on the Tier-1 nodes and

Algorithm 2 on the Tier-2 node. Each Tier-1 node

combines detection data from itself and neighboring nodes

using Algorithm 1 and computes detection-likelihoods.

The detection-likelihoods are forwarded to its Tier-2 node
and the Tier-2 node generates position reports from the

detection-likelihoods using Algorithm 2. The position

reports are then used by the MTT module described in

Section IV-B to track multiple targets.

Algorithm 1 Multisensor Fusion: Sensor i
Input: detections from sensor i and its neighbors

Output: detection-likelihoods

1: for each Sij
, j ¼ 1; . . . ;mðiÞ do

2: if number of detections for Sij
� �d then

3: compute detection-likelihood ẑiðjÞ of Sij
;

4: forward ẑiðjÞ to Tier-2 node gðiÞ;
5: end if

6: end for

B. Multitarget Tracking and Multitrack
Fusion Modules

Our tracking algorithms are based on MCMCDA [21].

We first describe the MCMCDA algorithm and then de-

scribe the MTT and MTF modules of LochNess.

Algorithm 2 Multisensor Fusion: Tier-2 Node

Input: detection-likelihoods Z ¼ fẑiðjÞg received from its

tracking group

Output: position reports y
1: S ¼ fSij

: ẑiðjÞ 2 Zg;
2: y ¼ ;;
3: find clusters fCk : 1 � k � Kclg from S as described in

the text;

4: for each Ck, k ¼ 1; . . . ;Kcl do

5: compute the center of mass yk of Ck;

6: y ¼ y [ yk;

7: end for

Markov chain Monte Carlo (MCMC) plays a significant

role in many fields such as physics, statistics, economics,
and engineering [58]. In some cases, MCMC is the only

Fig. 8. Detection-likelihood of detections from Fig. 6 with threshold

�d ¼ 3. Estimated positions of targets are shown in circles.
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known general algorithm that finds a good approximate
solution to a complex problem in polynomial time [59].

MCMC techniques have been applied to complex proba-

bility distribution integration problems, counting prob-

lems such as #P-complete problems, and combinatorial

optimization problems [58], [59].

MCMC is a general method to generate samples from

a distribution 
 on a space � by constructing a Markov

chain M with states ! 2 � and stationary distribution

ð!Þ. We now describe an MCMC algorithm known as the

Metropolis-Hastings algorithm [60]. If we are at state

! 2 �, we propose !0 2 � following the proposal distri-

bution qð!; !0Þ. The move is accepted with an acceptance

probability Að!; !0Þ where

Að!; !0Þ ¼ min 1;

ð!0Þqð!0; !Þ

ð!Þqð!; !0Þ

� �
(14)

otherwise, the sampler stays at !, so that the detailed
balance is satisfied. If we make sure thatM is irreducible

and aperiodic, then M converges to its stationary distri-

bution by the ergodic theorem [61].

The MCMC data association (MCMCDA) algorithm is

described in Algorithm 3. MCMCDA is an MCMC algo-

rithm whose state space is �, as described in Section III-B,

and whose stationary distribution is the posterior (5). The

proposal distribution for MCMCDA consists of five types
of moves (a total of eight moves). They are: 1) a birth/death

move pair; 2) a split/merge move pair; 3) an extension/

reduction move pair; 4) a track update move; 5) a track

switch move. The MCMCDA moves are illustrated in

Fig. 9. We index each move by an integer such that m ¼ 1

for a birth move, m ¼ 2 for a death move and so on. The

move m is chosen randomly from the distribution qm
K ðmÞ

where K is the number of tracks of the current partition !.
When there is no track, we can only propose a birth

move, so we set qm
0 ðm ¼ 1Þ ¼ 1 and qm

0 ðm ¼ m0Þ ¼ 0 for

m0 > 1. When there is only a single target, we cannot

propose a merge or track switch move, so qm
1 ðm ¼ 4Þ ¼

qm
1 ðm ¼ 8Þ ¼ 0. For the other values of K and m, we as-

sume qm
K ðmÞ 9 0. For a detailed description of each move,

see [21]. The inputs for MCMCDA are the set of all ob-

servations Y, the number of samples nmc, the initial state
!init, and a bounded function X : �! Rn. At each step of

the algorithm, ! is the current state of the Markov chain.

The acceptance probability Að!; !0Þ is defined in (14)

where 
ð!Þ ¼ Pð!jYÞ from (5). The output X̂ approx-

imates the MMSE estimate E
X and !̂ approximates the

MAP estimate arg max Pð!jYÞ. The computation of !̂ can

be considered as simulated annealing at a constant tem-

perature. Notice that MCMCDA can provide both MAP
and MMSE solutions to the multitarget tracking problem.

In this paper, we use the MAP estimate !̂ to estimate the

states of the targets.5

Algorithm 3 MCMCDA

Input: Y, nmc, !init, X : �! Rn

Output: !̂, X̂
1: ! ¼ !init; !̂ ¼ !init; X̂ ¼ 0:

2: for n ¼ 1 to nmc do

3: propose !0 based on ! (see text);

4: sample U from Unif[0,1];
5: ! ¼ !0, if U G Að!; !0Þ;
6: !̂ ¼ !, if pð!jYÞ=pð!̂jYÞ 9 1;

7: X̂ ¼ ðn=ðnþ 1ÞÞX̂ þ ð1=ðnþ 1ÞÞXð!Þ;
8: end for

It has been shown that MCMCDA is an optimal
Bayesian filter in the limit [22]. In addition, in terms of

Fig. 9. Graphical illustration of MCMCDA moves (associations are

indicated by dotted lines and hollow circles are false alarms). Each

move proposes a new joint association event !0 which is a modification

of the current joint association event !. The birth move proposes !0

by forming a new track from the set of false alarms ððaÞ ! ðbÞÞ.
The death move proposes !0 by combining one of the existing tracks

into the set of false alarms ððbÞ ! ðaÞÞ. The split move splits a track

from ! into two tracks ððcÞ ! ðdÞÞwhile the merge move combines two

tracks in ! into a single track ððdÞ ! ðcÞÞ. The extension move extends

an existing track in ! ððeÞ ! ðfÞÞ and the reduction move reduces an

existing track in! ððfÞ ! ðeÞÞ. The track update move chooses a track in

! and assigns different measurements from the set of false alarms

ððgÞ $ ðhÞÞ. The track switch move chooses two track from ! and

switches some measurement-to-track associations ððiÞ $ ðjÞÞ.

5The states of the targets can be easily computed by any filtering
algorithm since, given !̂, the associations between the targets and the
measurements are completely known.
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time and memory, MCMCDA is more computationally
efficient than MHT and outperforms MHT with heuristics

(i.e., pruning, gating, clustering, N-scan-back logic and

k-best hypotheses) under extreme conditions, such as a

large number of targets in a dense environment, low

detection probabilities, and high false alarm rates [21].

1) Multitarget Tracking Module: At each Tier-2 node, we

implement the online MCMCDA algorithm with a sliding
window of size ws using Algorithm 3 [21]. This online

implementation of MCMCDA is suboptimal because it

considers only a subset of past measurements. But since

the contribution of older measurements to the current

estimate is much less than recent measurements, it is still a

good approximation. At each time step, we use the pre-

vious estimate to initialize MCMCDA and run MCMCDA

on the observations belonging to the current window. Each
Tier-2 node maintains a set of observations Y ¼ fyjðtÞ :
1 � j � nðtÞ; tcurr � ws þ 1 � t � tcurrg, where tcurr is the

current time. Each yjðtÞ is either a fused measurement ẑi

from some signal-strength sensor i or an element of the

fused position reports y from some binary sensors. At time

tcurr þ 1, the observations at time tcurr � ws þ 1 are

removed from Y and a new set of observations is appended

to Y. Any delayed observations are inserted into the
appropriate slots. Then, each Tier-2 node initializes the

Markov chain with the previously estimated tracks and

executes Algorithm 3 on Y. Once a target is found, the next

state of the target is predicted. If the predicted next state

belongs to the surveillance area of another Tier-2 node, the

target’s track information is passed to the corresponding

Tier-2 node. These newly received tracks are then in-

corporated into the initial state of MCMCDA for the next
time step. Finally, each Tier-2 node forwards its track in-

formation to the base station.

2) Multitrack Fusion Module: Since each Tier-2 node

maintains its own set of tracks, there can be multiple

tracks from a single target maintained by different Tier-2

nodes. To make the algorithm fully hierarchical and scal-

able, the MTF module performs the track-level data asso-
ciation at the base station to combine tracks from different

Tier-2 nodes. Let !j be the set of tracks maintained by

Tier-2 node j 2 f1; . . . ;Nssg. Let Yc ¼ f�iðtÞ 2 !j : 1 �
t � tcurr; 1 � i � j!jj; 1 � j � Nssg be the combined ob-

servations only from the established tracks. We form a

new set of tracks !init from f�i 2 !j : 1 � i � j!jj; 1 �
j � Nssg while making sure that the constraints defined in

Section III-B are satisfied. Then, we run Algorithm 3 on
this combined observation set Yc with the initial state !init.

An example in which the multitrack fusion corrects

mistakes made by Tier-2 nodes due to missing observa-

tions at the tracking group boundaries is shown in

Section IV-B3.

The algorithm is autonomous and shown to be robust

against packet loss, communication delay and sensor

localization error. In simulation, there is no performance
loss up to an average localization error of 0.7 times the

separation between sensors, and the algorithm tolerates up

to 50% lost-to-total packet ratio and 90% delayed-to-total

packet ratio [23].

3) An Example of Surveillance Using Sensor Networks:
Here, we give a simulation example of surveillance using

sensor networks. The surveillance region R ¼ ½0; 100�2
was divided into four quadrants and sensors in each

quadrant formed a tracking group, where a Tier-2 node

was placed at the center of each quadrant. The scenario is

shown in Fig. 10(a). We assumed a 100 � 100 sensor grid,

in which the separation between sensors was normalized

to 1. Thus, the unit length in simulation was the length of

the sensor separation. For MCMCDA, nmc ¼ 1000 and

ws ¼ 10. The signal-strength sensor model was used with
parameters � ¼ 2, � ¼ 1, � ¼ 2, and � ¼ 3ð1þ �R�

s Þ. In

addition, pte ¼ :3 and pde ¼ :3. The surveillance duration

was Ts ¼ 100.

The state vector of a target is x ¼ ½x1; x2; _x1; _x2�T as

described in Section III-C. The simulation used the dy-

namic model in (6) and the evader control inputs were

modeled by the random motion (9) with qe ¼ :152 and Q
set according to Fig. 4. Since the full state is not ob-
servable, the measurement model (7) was modified as

follows:

yðtÞ ¼ DxðtÞ þ vðtÞ; where D ¼ 1 0 0 0

0 1 0 0

� �
(15)

and y is a fused measurement computed by the MSF
module in Section IV-A.

Fig. 10(b) shows the observations received by the Tier-2

nodes. There were a total of 1174 observations and 603

of these observations were false alarms. A total of 319

packets out of 1174 packets were lost due to transmission

failures and 449 packets out of 855 received packets were

delayed. Fig. 10(c) shows the tracks estimated locally by

the MTT modules on the Tier-2 nodes while Fig. 10(d)
shows the tracks estimated by the MTF module using

track-level data association. Fig. 10(d) shows that the MTF

module corrected mistakes made by Tier-2 nodes due to

missing observations at the tracking group boundaries.

The algorithm is written in C++ and MATLAB and run

on PC with a 2.6-GHz Intel Pentium 4 processor. It takes

less than 0.06 seconds per Tier-2 node, per simulation

time step.

C. Multiagent Coordination Module
The time-to-capture is estimated using the abstract

model of pursuer and evader dynamics given in
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Section III-C. Let us consider the error between the pur-

suer and the evader � ¼ ½�1; �2; _�1; _�2�T whose dynamics is

given in (11). The time-to-capture problem is equivalent to

the following optimization problem:

minu
p
1 ðtÞ;u

p
2ðtÞ T

subject to

�ðtþ 	Þ ¼ A	�ðtÞ þ G	upðtÞ

u
p
1ðtÞj j � Up; u

p
2ðtÞj j � Up

�ðtþ TÞ ¼ 0:

8>><
>>:

(16)

Recently, Gao et al. [62] solved the previous problem as an

application of minimum-time control for the discretized

double integrator. An extension to minimum-time control

for the discretized triple integrator is also available [63].

Despite its simplicity and apparent efficacy, minimum-
time control is rarely used in practice, since it is highly

sensitive to small measurement errors and external dis-

turbances. Although, in principle, minimum-time control

gives the best performance, it needs to be modified to cope

with practical issues such as the quantization of inputs,

measurement and process noise, and modeling errors. We

propose an approach that adds robustness while preserving

the optimality of minimum-time control.
Since the state error dynamics is decoupled along the

x- and y-axes, the solution of the optimization problem

(16) can be obtained by solving two independent

minimum-time problems along each axis. When 	! 0

in (11), the minimum-time control problem restricted to

one axis reduces to the well-known minimum-time control

problem of a double integrator in continuous time, which

can be found in many standard textbooks on optimal
control such as [64], [65]. The solution is given by a bang-

bang control law and can be written in state feedback form

as follows:

u
p
1 ¼

�Up; if 2Up
_�1 9 � �1j�1j

þUp; if 2Up
_�1 G � �1j�1j

�Upsignð�1Þ; if 2Up
_�1 ¼ ��1j�1j

0; if _�1 ¼ �1 ¼ 0:

8>>>><
>>>>:

(17)

Fig. 10. (a) Tracking scenario, where the numbers are target appearance and disappearance times, the initial positions are marked by circles,

and the stars are the positions of Tier-2 nodes. (b) Accumulated observations received by Tier-2 nodes with delayed observations circled.

(c) Tracks estimated locally by the MTT modules at Tier-2 nodes, superimposed. (d) Tracks estimated by the MTF module.
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The minimum time required to drive �1 to zero in the
x-axis can be also written in terms of the position and

velocity error as follows:

Tc;1ð�1; _�1Þ ¼
� _�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _�

2

1�4Up�1

p
Up

; if 2Up
_�1 � ��1j�1j

_�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _�

2

1þ4Up�1

p
Up

; otherwise.

8><
>:

(18)

Fig. 11 shows the switching curve 2Up
_�1 ¼ ��1j�1j and the

level curves of the time-to-capture Tc for different values.

Similar equations can be written for the control u
p
2

along the y-axis. Therefore the minimum time-to-capture

is given by

Tc ¼ maxðTc;1; Tc;2Þ: (19)

According to the previous analysis, given the state error

�ðtÞ at current time t, we can compute the corresponding

constant velocity time-to-capture Tc, the optimal input

sequence up�ðt0Þ and the optimal trajectory ��ðt0Þ for

t0 2 ½t; tþ Tc�.
However, the optimal input (17) is the solution when

	! 0 in (11) with no measurement errors and no change
in the evader’s trajectory. In order to add robustness to

take into account the quantization in the digital implemen-

tation, the measurement errors, and the evasive maneuvers

of the evader, we analyze how the time-to-capture can be
affected by these terms. Let us first rewrite the error

dynamics given by (11) explicitly for the x-axis

�1ðtþ 	Þ ¼ �1ðtÞ þ 	 _�1ðtÞ þ
1

2
	2u

p
1ðtÞ þ

1

2
	2ue

1ðtÞ
_�1ðtþ 	Þ ¼ _�1ðtÞ þ 	u

p
1ðtÞ þ 	ue

1ðtÞ

�1ðtÞ ¼ �1ðtÞ þ v�1ðtÞ
_
�1ðtÞ ¼ _�1ðtÞ þ _v�1ðtÞ

:

If we substitute the last two equations into the first two

we get

�1ðtþ 	Þ ¼ 
�1ðtÞ þ 	 _
�1ðtÞ þ
1

2
	2u

p
1ðtÞ

� v�1ðtÞ � 	 _v�1ðtÞ þ
1

2
	2ue

1ðtÞ (20)

_�1ðtþ 	Þ ¼ _
�1ðtÞ þ 	u
p
1ðtÞ � _v�1ðtÞ þ 	ue

1ðtÞ (21)

where ð
�1 ; _

�
1Þ are output estimates from the MTF mod-

ule, u
p
1 is the controllable input, and ðue

1; v�1; _v
�
1Þ play the

role of external disturbances. Our goal now is to choose

u
p
1 , i.e., the thrust of the pursuer, in such a way as to

minimize the time-to-capture under the worst possible

choice of ðue
1; v�1; _v

�
1Þ, which are not known in advance but

are bounded. Fig. 11 illustrates this approach graphically:
the hexagon in the figure represents the possible position

of the true state error ð�1; _�1Þ at the next time step tþ 	
which accounts for all possible evasive maneuvers of the

evader, i.e., jue
1j G Ue, and accounts for the estimation

errors on the position and velocity of the pursuer and the

evader, i.e., jv�1j G V1, j _v�1j G _V1, for a given choice of u
p
1 .

Since the center of the hexagon ð
�1 þ 	 _
�1 þ ð1=2Þ	2u
p
1 ;

_
�1 þ 	u
p
1Þ depends on the pursuer control u

p
1 , one could

try to choose u
p
1 in such a way that the largest time-to-

capture Tc;1 of the hexagon is minimized. This approach

is common in the literature for noncooperative games

[66]. More formally, the feedback control input will be

chosen based on the following min-max optimization

problem

u
p
1
�ðtÞ ¼ arg min

u
p
1j j�Up

max
v
�
1j j�V1 ; _v

�
1j j� _V1 ;

ue
1j j�Ue

Tc;1 �1ðtþ	Þ; _�1ðtþ	Þ
� �

0
BBB@

1
CCCA:

(22)

This is, in general, a nonlinear optimization prob-

lem. However, thanks to the specific structure of the

Fig. 11. Optimal switching curve for the continuous minimum-time

control of the double integrator (thick solid line) and curves of

constant time-to-capture (thin solid lines) in the phase space ð�1; _�1Þ.
The hexagon represents the set of all possible locations of the

true error state ð�1ðtþ 	Þ; _�1ðtþ 	ÞÞ at the next time step tþ 	 given

measurement ð
1; _
1Þ and pursuer control input up
1 at time t.
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time-to-capture function Tc;1, it is possible to show that
(22) is equivalent to

u
p
1
� ¼ arg min

u
p
1j j�Up

max Tc;1 �þ1 ;
_�
þ
1

� �
; Tc;1 ��1 ;

_�
�
1

� �� �

�#1 :¼ 
�1 þ 	 _
�1 # V1 # 	 _V1 #
1

2
	2Ue þ

1

2
	2u

p
1

_�
#
1 :¼ _
�1 # _V1 # 	Ue þ 	u

p
1 (23)

i.e., it is necessary to compute only the time-to-capture of

the top right and the bottom left corner of the hexagon in

Fig. 11 since all points inside the set always have smaller

values of Tc;1. Once the expected minimum time-to-

capture control input up�ðt0Þ, t0 2 ½t; tþ Tc� is computed,

then the corresponding optimal trajectory for the pursuer
xp�ðt0Þ, t0 2 ½t; tþ Tc� can be easily obtained by substitut-

ing up�ðt0Þ into the pursuer dynamics (6). The robust

minimum-time path planning algorithm is summarized in

Algorithm 4.

Algorithm 4 Robust Minimum-Time Path Planning

Input: xpðtÞ, xeðtÞ, and bounds V1; V2; _V1; _V2;Ue;Up

Output: optimal trajectory xp�ðt0Þ, t0 2 ½t; tþ Tc�
1: compute up�ðt0Þ, t0 2 ½t; tþ Tc� using (23) ;
2: compute xp�ðt0Þ, t0 2 ½t; tþ Tc� given up�ðt0Þ using (6).

Fig. 12 shows the performance of the proposed robust

minimum time-to-capture control feedback for a scenario

where the evader moves with random motion and the

evader’s position and velocity estimates are noisy. It is

compared with the discrete-time minimum-time controller

proposed in [63] and [62]. Our controller feedback design
outperforms the discrete-time minimum-time controller

since the latter one does not take into account process and

measurement noises. Note how both controllers do not

direct pursuers toward the actual position of evader, but to

the estimated future location of the evader to minimize the

time-to-capture.
As introduced in Section III-C, given the positions and

velocities of all pursuers and evaders and bounds on the
measurement error and evader input, it is possible to
compute the expected time-to-capture matrix C ¼ ½cij� 2
RNp�Ne using the solution to the optimal minimum-time
control problem. The entry cij of the matrix C corresponds
to the expected time for pursuer i to capture evader j,
Tcði; jÞ, that can be computed as described in (18) and
(19). As motivated in Section III-C, we assume the same
number of pursuers as the number of evaders, i.e.,
Np ¼ Ne ¼ N.

An assignment can be represented as a matrix � ¼
½�ij� 2 RN�N, where the entry �ij of the matrix � is equal
to 1 if pursuer i is assigned to evader j, and equal to 0

otherwise. The assignment problem can therefore be writ-

ten formally as follows:

min�ij2f0;1g maxi;j¼1;...;Nðcij � �ijÞ

subject to
XN
i¼1

�ij ¼ 1; 8i

XN
j¼1

�ij ¼ 1; 8j: (24)

As formulated in (24), the assignment problem is a com-

binatorial optimization problem.

The optimization problem given in (24) can be

reformulated as a linear bottleneck assignment problem
and can be solved by any of the polynomial-time algo-

rithms based on network flow theory. Here we give a brief

description of one algorithm and we direct the interested

reader to the survey [45] for a detailed review of these

algorithms. For our implementation, we use a randomized

threshold algorithm that alternates between two phases. In

the first phase, we list the cost elements cij in increasing

order and we choose a cost element c�, i.e., a threshold.
Then we construct the matrices �Cðc�Þ ¼ ½�cij� 2 RN�N and

CTutteðc�Þ 2 R2N�2N as follows:

�cij ¼
aij; if cij 9 c�

0; if cij � c�

�
; CTutte ¼

0 �C
��C 0

� �
(25)

where aij’s are independent random numbers sampled

from a uniform distribution in the interval [0,1], i.e.,

Fig. 12. Trajectories of pursuers and evaders on the x-y plane.

The feedback control is based on noisy measurements (thin solid line)

of the true evader positions (thick solid line). The robust minimum

time-to-capture feedback proposed in this paper (dot-solid line)

is compared with the discrete-time minimum time-to-capture

feedback (dashed line) proposed in [63].
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aij � Uð½0; 1�Þ. Using Tutte’s Theorem [45], it is possible to
show that if detðCTutteðc�ÞÞ 6¼ 0, then there exists an

assignment that achieves c�.6 Therefore, we search for the

smallest c�min in the ordered list of costs cij which guar-

antees an assignment. Once we find c�min, we find the

pursuer-evader pair corresponding to that cost. Then, we

remove its row and column from the cost matrix C and

repeat the procedure until all pursuers are assigned. The

assignment algorithm is summarized in Algorithm 5.

Algorithm 5 Pursuers-to-evaders Assignment

Input: x
p
i , xe

j , i; j ¼ 1; . . . ;N
Output: assignment ði! jÞ for i ¼ 1; . . . ;N
1: compute matrix C ¼ ½cij�, cij ¼ Tcði; jÞ;
2: for n ¼ 1 to N do

3: ½i�; j�� ¼ arg minijfcijj detðCTutteðcijÞÞ 6¼ 0g, using (25);

4: assign pursuer i� to evader j�, i.e., ði� ! j�Þ;
5: C fCjremove row i� and column j�g;
6: end for

It is important to note that an assignment based on the

solution to the global optimization problem described

above is necessary for good performance. For example, let

us consider the greedy assignment algorithm. This algo-

rithm looks for the smallest time-to-capture entry in the

matrix C, assigns the corresponding pursuer-evader pair,

and removes the corresponding row and column from the

matrix C. The dimensions of the resulting matrix C become
ðN � 1Þ � ðN � 1Þ and the algorithm repeats the same

process until each pursuer is assigned to an evader. This

algorithm is very simple and can be implemented in a fully

distributed fashion. However, it is a suboptimal algorithm

since there are cases where the greedy assignment finds

the worst solution. Consider the time-to-capture matrix

C ¼ 1 2

3 100

� �
. The optimal assignment that minimizes

the time-to-capture of all evaders for this matrix is (1! 2)

and (2 ! 1), which gives Tc;max ¼ 3, where Tc;max is the

time-to-capture of all evaders. The greedy assignment

would instead assign pursuer 1 to evader 1 and pursuer 2 to

evader 2, with the time-to-capture of all evaders equal to

Tc;max ¼ 100.

V. EXPERIMENTS

Multitarget tracking and a pursuit evasion game using the

control system LochNess were demonstrated at the Defense

Advanced Research Projects Agency (DARPA) Network

Embedded Systems Technology (NEST) final experiment

on August 30, 2005. The experiment was performed under

warm sunny conditions on a large-scale, long-term, out-
door sensor network testbed deployed on a short grass field

at U.C. Berkeley’s Richmond Field Station (see Fig. 13). A

total of 557 sensor nodes were deployed and 144 of these

nodes were allotted for the tracking and PEG experiments.

However, six out of the 144 nodes used in the experiment

were not functioning on the day of the demo, reflecting the

difficulties of deploying large-scale, outdoor systems.

The 144 nodes used for the tracking and PEG exper-
iments were deployed at approximately 5 meter spacing in

a 12� 12 grid (see Fig. 14). Each node was elevated using a

camera tripod to prevent the PIR sensors from being

obstructed by grass and uneven terrain [see Fig. 13(a)].

The locations of the nodes were measured during deploy-

ment using differential GPS and stored in a table at the

base station for reference and for generating Fig. 14. How-

ever, in the experiments the system assumed the nodes
were placed exactly on a 5-m spacing grid to highlight the

robustness of the system with respect to localization error.

The deployment of LochNess contained some modifi-

cations to the architecture described in Section III. Due to

the time constraint, the Tier-2 nodes were not fully func-

tional on the day of the demo. Instead, we used a mote

connected to a personal computer as the Tier-2 node. Only

one such Tier-2 node was necessary to maintain con-
nectivity to all 144 nodes used for the tracking exper-

iment. In the experiment, simulated pursuers were used

since it was difficult to navigate a ground robot in the

field of tripods.

A. Platform
A new sensor network hardware platform called the

Trio mote was designed by Dutta et al. [44] for the outdoor
testbed. The Trio mote is a combination of the designs of

the Telos B mote, eXtreme Scaling Mote (XSM) sensor

board [67], and Prometheus solar charging board [68],

6In reality, since the algorithm is randomized, there is a small
probability equal to ð1=NÞr that there exists a feasible assignment if
detðCTutteÞ ¼ 0 for r random Tutte’s matrices CTutte. In the rare cases
when this event happens, the algorithm simply gives a feasible assignment
with a higher cost to capture.

Fig. 13. Hardware for the sensor nodes. (a) Trio sensor node on

a tripod. On top is the microphone, buzzer, solar panel, and

user and reset buttons. On the sides are the windows for the

passive infrared sensors. (b) A live picture from the 2 target PEG

experiment. The targets are circled.
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with improvements. Fig. 15 shows the Trio node com-

ponents and Fig. 13(a) shows the assembled Trio node in a

waterproof enclosure sitting on a tripod.

The Telos B mote [69] is the latest in a line of wireless
sensor network platforms developed by U.C. Berkeley for

the NEST project. It features an 8 MHz Texas Instru-

ments MSP430 microcontroller with 10 kB of RAM and

48 kB of program flash and a 250 kbps, 2.4 GHz, IEEE

802.15.4 standard compliant, Chipcon CC2420 radio. The

Telos B mote provides lower power operation than pre-

vious motes (5.1 �A sleep, 19 mA on) and a radio range of

up to 125 meters (m), making it the ideal platform for
large-scale, long-term deployments.

The Trio sensor board includes a microphone, a pie-

zoelectric buzzer, x-y axis magnetometers, and four PIR

motion sensors. For the multitarget tracking application,

we found that the PIR sensors were the most effective at

sensing human subjects moving through the sensor field.

The magnetometer sensor had limited range even detect-
ing targets with rare earth magnets and the acoustic sensor

required complex signal processing to pick out the various

acoustic signatures of a moving target from background

noise. The PIR sensors provided an effective range of ap-

proximately 8 m, with sensitivity varying depending on

weather conditions and time of day. The variability in the

signal strength of the PIR sensor reading prohibited

extraction of ranging information from the sensor, so the
PIR sensors were used as binary detectors.

The software running on the sensor nodes are written

in NesC [70] and run on TinyOS [71], an event-driven

operating system developed for wireless embedded sensor

platforms. The core sensor node application is the

DetectionEvent module, a multimode event generator for

target detection and testing node availability. The sensor

node application relies on a composition of various TinyOS
subsystems and services that facilitate management and

interaction with the network (see Fig. 16).

The DetectionEvent module provides four modes of

event generation from the nodeVevents generated peri-

odically by a timer; events generated by pressing a button

on the mote; events generated by the raw PIR sensor value

crossing a threshold; and events generated by a three-stage

filtering, adaptive threshold, and windowing detection
algorithm for the PIR sensor signal developed by the

University of Virginia [75]. The timer generated events

were parsed and displayed at the base station to help

visualize which nodes in the network were alive. The

three-stage PIR detection filter code was used during the

development cycle. While it had potential to be more

Fig. 16. Software services on the sensor network platform. The core

network management services are Deluge for network reprogramming

[72] and Marionette for fast reconfiguration of parameters on the

nodes [73]. The DetectionEvent application relies on the Drip and

Drain routing layer for dissemination of commands and collection of

data [74]. For more details on the software architecture used in the

outdoor testbed, see [44], [73].

Fig. 14. Sensor network deployment (not all deployed sensor nodes

are shown). The disks and circles represent the positions of

the sensor nodes. The network of 144 nodes used in the multitarget

tracking and PEG experiments is highlighted.

Fig. 15. (a) Telos B. (b) Trio sensor board, based off the XSM sensor

board and Prometheus solar power circuitry. See [44] for details.
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robust to different environmental conditions, during the

day of the demo we reverted to the simple threshold PIR

detector because the simple threshold detector was easy to
tune and performed well.

The algorithms for the MSF, MTT, MTF, and MAC

modules are all written in MATLAB and C++ and run on

the base station in real-time. The same implementation of

the tracking algorithm and the robust minimum time

controller used in the simulations shown in Figs. 10 and 12

are used in the experiments. The data was timestamped at

the base station.

B. Live Demonstration
The multitarget tracking algorithm was demonstrated

on one, two, and three human targets, with targets en-

tering the field at different times. In all three experiments,

the tracking algorithm correctly estimated the number of

targets and produced correct tracks. Furthermore, the

algorithm correctly disambiguated crossing targets in the
two and three target experiments without classification

labels on the targets, using the dynamic models and target

trajectories before crossing to compute the tracks.

Fig. 17 shows the multitarget tracking results with

three targets walking through the field. The three targets

entered and exited the field around time 10 and 80, res-

pectively. During the experiment, the algorithm correctly

rejected false alarms and compensated for missing detec-
tions. There were many false alarms during the span of the

experiments, as can be seen from the false alarms before

time 10 and after time 80 in Fig. 18. Also, though not

shown in the figures, the algorithm dynamically corrected

previous track hypotheses as it received more sensor read-

ings. Fig. 18 also gives a sense of the irregularity of net-
work traffic. The spike in traffic shortly after time 50 was

approximately when two of the targets crossed. It shows

that the multitarget tracking algorithm is robust against

missing measurements, false measurements, and the ir-

regularity of network traffic.

In the last demonstration, two simulated pursuers were

dispatched to chase two crossing human targets. The

pursuer-to-target assignment and the robust minimum
time-to-capture control law were computed in real-time, in

tandem with the real-time tracking of the targets. The

simulated pursuers captured the human targets, as shown

in Fig. 19. In particular, note that the MTT module is able

to correctly disambiguate the presence of two targets [right

panel of Fig. 19(a)] using past measurements, despite the

fact that the MSF module reports the detection of a single

target [upper left panel of Fig. 19(a)]. A live picture of this
experiment is shown on the right of Fig. 13.

VI. CONCLUSION AND FUTURE WORK

This paper described LochNess, a hierarchical real-time

control system for sensor networks. LochNess is applied to

pursuit evasion games, in which a group of evaders are

tracked using a sensor network and a group of pursuers are
coordinated to capture the evaders. Although sensor net-

works provide global observability, they cannot provide

high quality measurements in a timely manner due to

packet loss, communication delay, and false detections.

These factors have been the main challenge to developing

a real-time control system using sensor networks.

This paper proposes a possible solution for closing

the loop around wireless ad-hoc sensor networks. The

Fig. 17. Estimated tracks of targets at time 70 from the experiment

with three people walking in the field. (upper left) Detection panel.

Sensors are marked by small dots and detections are shown in

large disks. (lower left) Fusion panel shows the fused likelihood.

(right) Estimated Tracks and Pursuer-to-evader Assignment panel

shows the tracks estimated by the MTT module, estimated

evader positions (stars) and pursuer positions (squares).

Fig. 18. Raster plot of the binary detection reports from the

three target tracking demo. Dots represent detections from nodes

that were successfully transmitted to the base station.
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hierarchical real-time control system LochNess decouples
the estimation of evader states from the control of pur-

suers by using multiple layers of data fusion, including the

multisensor fusion (MSF) module, the multitarget track-

ing (MTT) module, and the multitrack fusion (MTF)

module. While a sensor network generates noisy, incon-

sistent, and bursty measurements, the three layers of data

fusion convert raw sensor measurements into fused mea-

surements in a compact and consistent representation and
forward the fused measurements to the pursuers’ control-

lers in a timely manner.

In order to coordinate multiple pursuers, the MAC
module is developed. The assignments of pursuers to eva-

ders are chosen such that the time to capture all evaders is

minimized. The controllers for the pursuers are based on

minimum-time control but were designed to account for

the worst-case evader motions and to add robustness to the

quantization of inputs, measurement and process noises,

and modeling errors.

Simulation and experimental results have shown that
LochNess is well suited for solving real-time control prob-

lems using sensor networks and that a sensor network is an

attractive solution for the surveillance of a large area.

In this paper, we assumed a stationary hierarchy, i.e.,

the Tier-2 nodes and base station are fixed. However, a

stationary hierarchy is not robust against malicious attacks.

In our future work, we will address this issue by intro-

ducing redundancy, distributing the coordination tasks
among Tier-2 nodes, and dynamically managing the

hierarchy of the system. Our immediate goal is to quantify

the robustness of the system against false measurements

and packet loss and to identify the sensor network

parameters such as maximum delay rate, maximum packet

loss rate, and maximum false detection rate, necessary for

seamless operation of the control system. h
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