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‘We present a model predictive control based algorithm for aircraft motion planning that will
apply to converging flows of aircraft going through convective weather in the en route airspace.
The cost function associated with the model predictive control optimization problem is obtained by
solving the Hamilton-Jacobi equation, a non-linear partial differential equation. For a given wind
profile, convective weather conditions and aircraft destination, the solution to the Hamilton-Jacobi
equation provides a value function that corresponds to the minimum travel time from any point
in the NAS to the specified destination. The optimal control sequence is then computed over a
fixed horizon by minimizing the aircraft cost function, subject to aircraft separation constraints
and bounds on aircraft turning rates. This algorithm results in aircraft trajectories corresponding
to a locally optimal solution of the optimization program involving the set of aircraft considered.

Nomenclature

T Model Predictive Control horizon length, (units: seconds)
At Model Predictive Control time step, (units: seconds)

n Model Predictive Control number of steps in horizon

N  Total number of aircraft considered

x;; « position of aircraft ¢ at time j, (units: meters)

Yi,j ¥ position of aircraft 7 at time j, (units: meters)

i,; Heading of aircraft ¢ at time j, (units: radians)

u;,; Turning rate of aircraft ¢ at time j, (units: radians/second)

T [®1,15 -, T1,ny s TN, 15 --» TN, ) Aircraft x position vector, (units: meters)

y [Y1,15 -3 YL,ms o, YN, 15 --» YN,n] Aircraft y position vector, (units: meters)

0 01,1,.-,01,n,--,0N 1, ..., 0N, n] Aircraft heading vector, (units: radians)

u [U1,15 0y UL,y oy UN 15 oo, UN, ] Alrcraft turning rate vector, (units: radians/second)
Vi Value function of aircraft ¢, encoding the minimum time to reach destination %, (units: seconds)
v Aircraft velocity, (units: meters/second)

h Aircraft altitude, (units: meters)

P Atmospheric pressure, (units: Pascal)

Subscript

7 Aircraft index

J Sampling time index
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I. Introduction

In the current Air Traffic Control system, protocols centralized at the sector level are applied by Air Traffic
Controllers to aircraft for conflict resolution.!*2*3 These protocols prevent Losses of Separation (LOS), to
enforce safety in the National Airspace System (NAS). In practice, and under normal weather conditions,
these protocols rarely involve more than three or four aircraft at a time, due to flow management techniques
applied at the Air Route Traffic Control Center (ARTCC) level, to regulate the flow of aircraft in the NAS.
However, in the presence of convective weather, aircraft flows are disrupted and are sometimes constrained
to converge through narrow windows (in space and time) of the airspace, triggering an increase in potential
LOS. Currently, these situations are solved manually by Air Traffic Controllers.*-%:6:7-8

The long term goal of this work is to generate fully decentralized algorithms for aircraft conflict resolution
protocols that will apply to converging flows of aircraft going through convective weather, inspired by the
work of Mao et al.? in geometrically unstructured environments. In this version of the work, we will however
only consider protocols centralized at the sector level, which correspond to the current operational system
in place in the NAS.?

An input of our problem is a grid, for which we have wind and convective weather data at periodic
time intervals. We will approach the problem of deconflicting aircraft paths through severe weather using
Nonlinear Model Predictive Control (NMPC). Assuming constant velocity, the optimal input sequence, which
represents the turning rate for each aircraft, (equal to zero if the aircraft is traveling at fixed heading) will be
repeatedly computed over a horizon T by minimizing a cost function for each aircraft subject to non-linear
constraints. The cost function is obtained by solving the Hamilton-Jacobi partial differential equation (HJ
PDE)!0:11:12:13 for 4 set of wind and turbulence data as well as a destination. The solution to the HJ PDE
provides a value function which contains the minimum travel time from any point in the NAS to the specified
destination. The shortest travel time incorporates avoidance of convective weather patches as well as effects
of the wind flow field on aircraft. Each destination in the NAS thus has a corresponding value function.
The set of value functions will serve as a look-up table for our cost function. By penalizing the position at
the end of the horizon in our objective function, we aim to minimize deviations due to weather avoidance
or aircraft conflict resolution. In other words, given that an aircraft deviates from its optimal trajectory to
avoid convective weather or another aircraft, the resulting trajectory is such that the point at the end of
the horizon is closest to its destination, thus minimizing the remaining travel time, which is encoded in the
objective function. The result gives minimum travel time trajectories, while maintaining aircraft separation
constraints and ensuring convective weather avoidance.

This article is organized as follows. In the next section, the formulation of the problem is summarized.
Section III presents the algorithm used in this work. Section IV provides results of the simulation and a
discussion of the limitations of the method used. Finally conclusions are presented in section V.
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II. Problem Formulation

II.A. Aircraft Routing

Figure 1. Flow network with origin-destination points for each high altitude sector based on aggregate traffic analysis

for the entire NAS.*

High altitude traffic in the en route airspace follows flow
patterns, which have been extensively studied in the litera-
ture.15-16:17:18,14 Bo1 the purpose of this work, we consider
entry and departure points in high altitude sector defined by
flows, which characterize high altitude traffic In earlier work,'6
we have explained how to construct the origin-destination
points based on a flow analysis, as shown for the entire NAS in
Figure 1. Our algorithm computes the optimal trajectory by
minimizing an objective function, which represents the min-
imum time to reach the destination. For each destination,
the function representing the minimum time to reach a user-
specified target 7 (the destination disk on the map of Figure 2
is obtained by solving the HJ PDE. This minimum time func-
tion is commonly used in path planning and robotics to find an
optimal trajectory of the system to the destination, given mo-
tion constraints due to the environment.'?-!3 We will use this
technique in the present work (the computation of the solution
to the HJ PDE is detailed in Section ITI.B). Such trajectories
will not be constrained to these flows, but rather will take ad-
vantage of favorable winds and also avoid regions of convective
weather. Traffic through sectors ZMA64 and ZMA65 over
Florida will be considered, as shown in Figure 2, given that

Figure 2. Example of origin-destination pair in
Florida Sector ZMA64. The larger circle repre-
sents the destination of the aircraft, whereas the
smaller circle at the origin represents the pro-
tected zone surrounding the aircraft, assuming
the aircraft is located at the origin. The same
representation will be used in the simulation re-
sults of Section IV.

available weather data provides large regions of convective weather in those sectors, which makes them

interesting to study.
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II.B. Constraints

The computation of aircraft minimum time trajectories must take into account constraints that restrict the
effective region an aircraft can use.

II.B.1. Protected Zones

One of the key elements in air traffic control is to avoid LOS between aircraft. In high altitude sectors, above
29,000 feet, this occurs when aircraft are separated by a distance less than 5 nautical miles horizontally or
1000 feet vertically. These hard constraints will be encoded directly in the formulation of our problem. For
the present work, we restrict ourselves to horizontal motion in the (x,y) plane. The proposed method can
easily be extended to the full (z,y, z) space. However, because of the layered nature of traffic, the present
study is very relevant for horizontal separation in the en route airspace.?®

II.B.2. Convective Weather

In addition to the aircraft separation constraints, aircraft
are prohibited from flying in regions with severe convective
weather. Convective weather data is obtained from the Na-
tional Center for Atmospheric Research (NCAR). The specific
data we are using is called National Convective Weather De-
tection (NCWD) which represents archived convective weather
data. The NCWD data is obtained using the Vertically Inte-
grated Liquid (VIL) algorithm, which converts weather radar
reflectivity into a measure of liquid water content in a sample
volume. It has been shown?! that the amount of liquid water
correlates well with the level of turbulence in a sample volume.

The data obtained from NCAR is in Meteorological Data
Volume (MDV) format. In order to read the data into Mat-
lab, it has to be converted to network Common Data Form
(netCDF) format. The netCDF Matlab toolbox allows us to
read and manipulate the convective weather files. Each file

: . . Figure 3. Representation of Convective
contains a matrix of 918 by 1830 elements for the whole conti- Weather over Florida on August 1st, 2005 at

nental United States and each entry covers an area of approx- o -4pm:

imately 4 by 4 kilometers. A matrix of this type is available
approximately every 5 minutes.

In addition to the VIL representation of the data, there exists corresponding discrete levels called Video
Integrator and Processor (VIP), which range from 0 to 6. The conversion between the continuous VIL data
and the discrete VIP levels is shown in Table 1. The third column shows the colormap for representing the
VIP data, as shown in Figure 3. Pilots are prohibited from flying in regions in which the convective weather
VIP index is greater than 3. In regions of convective weather, preventing LOS becomes more difficult as the
effective airspace is reduced.

Table 1. Conversion from VIL to VIP Data.

VIL (Kg/m?) | VIP Level | Colormap (Figure: 3)
0.14 1 white
0.7 2 pale gray
3.5 3 light gray
6.9 4 medium gray
12.0 5 dark gray
32.0 6 black
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1I.B.3.  Wind Profile

Strong winds can alter the travel time of an air-
craft significantly. Therefore knowing the current
and forecasted wind profiles can help in optimal
wind routing.??:23:24 Wind data is obtained from
the National Oceanic and Atmospheric Administra-
tion (NOAA) under the name Rapid Update Cycle
(RUC) Data. Every hour, the current wind data is
received as well as a one hour, two hour and three
hour forecast. In addition, every three hours, a six
hour forecast is available. Each of these data files
contain a vector field for thirty-seven isobar levels
ranging from 100 to 1000 millibars. For the pur-
pose of our analysis, we approximate an isobar level
to one with constant altitude. We use equation (1)
to model the relationship between pressure and alti-
tude, where h represents the altitude in meters and
P the pressure in Pascal.

logo(P) =5

Figure 4. Representation of wind profile over Florida on
August 1st, 2006 at 9pm at a pressure of 100mb.

h

S 1
15500 (1)

Using a feature of the NASA software FACET,! we can read RUC files and output a text file that can
in turn be used in Matlab. For each of the 37 isobar levels, 17063 vectors are described by the following

information:

Table 2. Wind Data Structure

| Lat | Long | Wind Direction (deg) | Horizontal Velocity (kts) | Vertical Velocity (kts) |

II.C. Problem Statement

The problem solved in this work can be summarized as follows.

Problem:
Given the following:

3) Dynamic wind fields.

1) N aircraft in a subset of the NAS, with one origin-destination pair per aircraft.
2) Dynamic convective weather obstacles.

Find: for each aircraft, an optimal (minimum-time) trajectory, from the corresponding
origin to the destination while avoiding the convective weather and the other aircraft.

In the current implementation of the method, we consider only static weather. Time varying weather
patterns will be included in the final version of this article. This does not alter the formulation of the problem
in any way, as will be seen in the algorithm of Section III.A. The problem statement is detailed as follows.

The dynamics (&, s, 6;) = f(2i, yi, i, u;) of aircraft ¢ can be written as:

() =
vit) =
bi(t) =

v cos ;(t)
v cos 8;(t)

u;(t) (4)

—~
=W N
=
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Note that in the current implementation of this method, the wind profile is included in the value function
computed by the HJ PDE (Section III1.B) but not in the dynamics of the system for simplicity. This will be
changed for the final version of this article. We assume the velocity v of each aircraft is constant throughout
the portion of the en route airspace of interest. The individual aircraft dynamics are decoupled. We can
assemble them into a single system dynamics & = f(x,u). We are looking for the optimal input sequence u;
for each aircraft in our system given constraints described below to minimize a cost function, which we will
define next. The variable u represents the collection of input sequences w; for all aircraft with i € [1, N].
The minimization of objective function J can be expressed as shown in equation (5).

min: J(u(")) = vazl Ji(ui(-))
s.ite g(u(-) <0 (5)

where u(-) = [u1(), - ,un(-)] is a measurable control input from [0, 7] to R™. We define (x?()(), yf()())
as the (z,y) trajectory of aircraft ¢ under input control u;(-). The optimization problem (5) can be written
explicitly as follows with the constraints of the problem.

min: 2N Vi@ O(T), 5 O(T))

st —a<u(t)<a i€ [1,N] vt € 10,7
@O @) =2t V@) + O -yt V)2 > 02, kA€ [LN] Ve [0,T]
& O (1) = veos 0 (1) i€[1,N] vt € [0,T] 6
5O (1) = vsin 02O (1) i€[1,N] vt € [0, 7] (6)
00 (8) = uy () i€ [1,N] vt € [0, 7]

V; corresponds to the value function of aircraft i obtained from solving the HJ PDE for the destination of
aircraft ¢ (see section ITI.B). It represents the minimum time function to the destination of aircraft ¢. The
first constraint incorporates limits on the turning rate of the aircraft. A value of a = 2.65 deg.s™! was
used based on earlier work.?> The second constraint states that all aircraft must be separated by a distance
greater or equal to rp;; = 5 nautical miles. The last three constraints include the dynamics of the aircraft.

This formulation is standard in the path planning literature.?8

III. Algorithm

The algorithm used to compute the minimum time trajectories combines numerical methods based on
level sets methods®7:28:29:12 and an optimization routine built with NMPC.

ITII.A. Algorithm Outline

The outline presents the algorithm for time varying weather patterns, which will be implemented in the final
version of this article. Currently static weather patterns are used with the same algorithm.
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Initialization
Set horizon length T and time step At.
For all aircraft (i = 1--- N), set origin-destination pair and aircraft speed v;.
Main Loop
Repeat until all aircraft have reached their destination.
If new weather data is available.
Load VIP and wind data.
For all aircraft (¢ =1--- N).
Solve HJ PDE (7) to compute value function V.
Interpolate V; in space R? to reduce step size.
Compute gradient VV; with respect to x; and y;.
For all aircraft (i = 1--- N), load value function V; and gradient VV;.
Solve discrete time non-linear MPC problem (14) on horizon T.
Inputs:
Initial guess ug for control sequence u.
Objective function (15) and gradient of objective function (16) with respect to w.
Constraints (21),(22),(25) and gradient of constraints (23),(24),(28) with respect to u.
Ouput:
Optimal control sequence u over time horizon [0, 7).
Advance to the next step on the horizon by At time intervals.
Update initial guess ug with new control sequence u.
End of main loop.
Output: Optimal trajectories for set of NV aircraft from their origin to their destination.

ITII.B. Hamilton Jacobi Equation

The value function V;(z) for aircraft ¢ evaluated at point x provides a cost-to-go penalty corresponding
approximately to the time-to-reach from x the prespecified destination depicted in Figure 2 and denoted 7;.
In our current static scenario, this value function can be found by solving a static or time-independent HJ
PDE in a computational domain €2 representing the airspace.

mgX(VVi(ac) < flxi,u)) —£(x) =0 in Q\ 7,

(7)
Vi(z) = h(xz) on 07;.

In this work the set 7; is chosen as a small circle centered around the destination of the origin-destination

pair of an aircraft, and h(x) = 0 for x € 97;. More generally, 7; can also be used to impose hard constraints

on the aircraft motion (such as regions forbidden due to large VIP readings); however, we currently impose

those constraints sufficiently through the MPC stage.

If we choose the running cost £(z) = 1, then V;(x) is just the minimum time to reach 7; from z, ignoring
weather. In order for the value function to discourage travel through regions with convective weather—
essentially imposing the weather through soft constraints—we penalize those regions with a higher running
cost £(z) > 1. For the simulations shown, we have chosen ¢(z) = min(kV™"®) £,,.), where VIP(z) is the
VIP reading for point = from the NCAR data, k is some small constant (the examples use k = 4) and £pax
takes into account the fact that all sufficiently high VIP readings are equivalently forbidden (the examples
use lmax = k3). Consequently, V;(z) is a cost to go function related to but not exactly the time to reach the
destination. A separate V;(z) is computed for each destination airport, therefore indexed by ¢ (destination
for aircraft 7). Note that equation (7) includes the wind in the dynamics, which equations (2),(3),(4) do not.
In the final version of this article both will.

Because the weather data is gathered at such low spatial resolution and because the MPC algorithm
ensures proper imposition of the vehicle dynamics (2)—(4) over the time horizon T, we use an even simpler
model of the vehicles for the HJ PDE
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with ||4]] < v. While the aircraft can instantaneously change direction under these dynamics, they are not
unreasonable for the resolutions at which the solution of the HJ PDE is approximated: the node spacing
is on the order of tens of kilometers, and aircraft moving under dynamics (2)—(4) are capable of reversing
direction in such a region.

Algorithms for directly solving HJ PDEs similar to (7) exist;?” however, their generalization to time-
dependent data and other vehicle dynamics is not trivial and implementations are not publicly available.
Instead, we transform (7) into a time-dependent HJ PDE, which can be solved using the publicly released
code in the Toolbox of Level Set Methods.2® An advantage of this transformation is that we anticipate few
code changes when we move to time-dependent weather data.

III.C. Model Predictive Control

Model predictive control is defined by the computation, at every time step At, of the optimal control sequence
over a finite horizon.3?3! The current state of the system sets the initial conditions at each sampling point.
One of the main advantages of this control scheme is its capacity to deal with nonlinearity subject to hard
constraints®? which makes it an attractive choice for multi-agent coordination3:.34

II.C.1. Dynamics Discretization

Since the dynamics f(z(t),u(t)) are continuous and Lipzchitz continuous, we can use the Forward Euler
Method (FEM) to approximate the solution to the differential equations3! with:

ZCZ'(tO + At) = (Ei(t()) + At - f((Ei(t()), uz(to)) 1€ []., N] (8)

The error resulting from this approximation over n steps is bounded by nM At? /2 where M = max |0f /Ot|.
In our case M = /2a?(v? + 2). The number of steps that will be used is determined by the relationship
between our horizon length T and our time step At. We find that n = T/At + 1. If we apply the FEM
to our system dynamics and our initial conditions 1 j, y1,5, 61,5, we get the following approximation of the
discrete trajectory of aircraft ¢ at time step j.

fri72 = xm + At - v COS(GiJ) (9)
Yiz = Y1+ At-vsin(0;,) (10)
Jj—2
ij = i1+ At-veos(fiy) + At v cos 11+AtZuM] Vie[1,N] Vjel[3,n] (11)
k=1 r=1
j—2 k
Yij = Yinx + Ot -vsin(0; 1) + At - stm i +AtZul T] Vi e [1,N] Vje€[3,n] (12)
k=1 r=1
Jj—1
0ij =0i1+ Aty uip Vi€ [l,N] Vje2n] (13)
k=1

II1.C.2. Discrete Optimization Problem Formulation

Once the system is discretized as detailed in section II1.C.1, the problem statement becomes:

. N
min: ZiZl ‘/i(xi,ﬂayi,n)

st —a<u;;<a i €[1,N] Vi € [1,n]
(@i = 2ng)? + (Ui — Yrg)? > Thin K #P€[LN] Vj€[lLn] (14)
Tij41 = xij + At -vcos(6;,5) i€[1,N] Vj € [1,n]
Yij+1 = Yij + Ot -vsin(b; ;) i €[1,N] Vi € [1,n]
Oij+1="0i; +u;; i€[1,N] Vi e [1,n]

In order to eliminate the equality constraints in the system, which are more difficult to enforce than
inequality contraints,! the optimization routine is performed over the input u rather than the states of the
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aircraft «, y and 0. Indeed all discrete states x; j, y;; and 60, ; for i € [1,N] and j € [1,n] are uniquely
determined by u. As a result, the objective function and the constraints are all only expressed in terms of
u and the initial conditions of the system, as detailed in the following subsections.

HI1.C.3. Objective Function

We use the value function obtained by solving the HJ PDE as described in section III.B in the objective
function of our model predictive control optimization routine, as shown in equation (15). The final point at
the end of the horizon is penalized to ensure that deviations due to aircraft conflict resolution and convective
weather avoidance are small.

N
min J(u) = min > Viwin (ua), i (ui)) (15)
i=1

The dependency ;. (u;) has been added to signify the implicit dependency of z;, to the input w; from
equation (11) and similarly for y; ,. In later parts of this article, it might be omitted for clarity of notation.
We express ;, and y;, as a function of the initial conditions and the input sequence u; of aircraft ¢ as
shown in equations (11) and (12). We use the Matlab function fmincon to solve our non linear constrained
optimization problem. In order to achieve better results, we provide the Matlab optimization function
fmincon with gradients of the objective function. Without the gradient, the function fmincon computes its
own numerical approximations to the gradient, which are less accurate and can lead to inaccuracy in the
computed optimal solution.

I OVi(win(wi),yin(ui))
Buj,,l
OVi(im (ui), Yim(ui)) (16)
du; OV (s n (1) s (1))
L Oui,n
_ 8‘/1'(332'@7 yi,n) axz,n(ul) + 6Vi(xi,na yi,n) 8311,71(“1) (17)
axi,n Ou; ayi,n Ou;
B avi(zi,nayi,n) axi,n(ui) a‘/i(wi,nyyi,n) 83/171(”1)
O n Oug,1 + OYi,n Oug,1
_ (18)
8‘/1($7 n>Yi, n) Oz n(uz) a‘/z(wz nYi, n) ayt n(ul)
L 0T n Oui,n + 0Yi,n Ouj,n

where OV (% n, Yi,n)/0x; »n should be Wh”mym) (Similarly for OV;(xin, ¥i.n)/0Yin). We use this slight
abuse of notation for simplicity. From (11) and (12) we obtain:

n—2

6%‘1' n
= A 0 sin
Py = Z

11+At2u”‘| (19)

5yzn 2
8%1@ =At°-v Z cos

11 +Atzu1 r‘| (20)

The gradients OV;(%; n, Yin)/0%in and OVi(z; n, Yin)/0Yin of the value function with respect to x and
y, are computed numerically using the results of the Matlab toolbox.
11.C.4. Constraints

As we did for the objective function and its gradient, we provide the Matlab function fmincon with the
constraints of the system as well as their gradient with respect to the control variable u. Providing the
gradient of the constraints to the function fmincon leads to a more accurate solution,®' than allowing
fmincon to compute its own numerical approximation to the gradient of the constraints.
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INPUT CONSTRAINTS: Let g1(u) be defined as the vector of 2nN entries of input contraint equations that
are of the type:

u;;—a<0 Vi€ [0,N] Vjel0,n] (21)
—u;;—a<0 Vie[0,N] Vjel0,n] (22)

Taking the gradient of the ¢g; (u) components with respect to the input w; gives the vectors:

8(ui7j — a)

—_ T
D r =[0,...,1,...,0] (23)
—ui; —a) B T
aui,k - [07 ) 11 70} (24)

where the non zero element in both equations corresponds to the entry where j = k.

COLLISION AVOIDANCE CONSTRAINTS: Let go(u) be defined as the vector of collision avoidance constraints
with nN(N — 1)/2 entries that are expressed by equation (25).

(ig =) + Wi = Yeg)? 2 Thim Vi£k €[L,N] Vj € [1,n] (25)
where z; ; and y; ; are expressed with equation (11) and (12). We need to compute

0ga(u)
ou

(26)

If we look at the partial derivative of one element of go(u), r2;, — (zi; — =k ;)% — (Yij — yr,j)* < 0 for
example, with respect to one component u, , with p € [1, N] and ¢ € [1,n], we obtain:

O(rimin = @iy = 0)* = Wig = Uks)?)  _ o (Oig Ok
up 4

. S 9
Gt = S )y — i) (27)

0Yi;  Oykj
+2 (j — =) (yrj — ¥ij)

Oup,q  Oupq

where the dependency on u of z; ; and y; ; has been omitted for clarity.

N j—2 k
Os,y = —At? v Zsin 0;1+ AtZui’r p=1i ¢<(j—2) (28)
8Up,q k=q r=1
6‘:@ j .
J = = -2 2
Gl =0 p=i 4>(~2 (29)
3:52-7] - .
Tupy 0 p#1 (30)
j—2 k
Wij _ pp2 vy cos |0in+ ALY wie| p=i ¢<(j-2) (31)
8up’q k=q r=1
i, . :
Dy o p=i ¢>(j—2) (32)
i, .
J — 33
Dty ¢ p#i (33)

These values can easily be computed using the closed form of z;; and y;; as a function of the initial
conditions and the input sequence u of equations (11) and (12).
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IV. Results

IV.A. Conflict Resolution

The collision avoidance portion of the algorithm was first tested in an environment without any convective
weather. The results are shown in Figure 5 for different instants in time. One unit on the axis of Figure 5
corresponds to a distance of 10 km. Thus, given that the speed of the aircraft is set to 230 m.s~!, based
on previous work,?® the travel time of each aircraft is approximately 75 minutes. The aircraft are set up in
a circular configuration such that they would all potentially collide at the same point. For this particular
simulation, a horizon of 1024 seconds and a time-step of 128 seconds was used. Thus the number of discrete
points along the horizon is equal to 9. Given that the separation constraint is only enforced at the discrete
points along the horizon, decreasing the time step decreases the risk of having LOS between these discrete
points. The circle around the current position of each aircraft in Figure 5 corresponds to the protected
zone of the aircraft. The actual horizontal separation constraint between aircraft is 5 nautical miles which
corresponds to 9.26km. For the purposes of visual representation, this separation constraint was increased to
5 units on the graph, which equals 50km. The physical interpretation of the 50km choice is that the aircraft
have to be separated by 50km (rather than 5nm = 9.26km). This test is very standard in the multiple vehicle
motion coordination literature.3:20:36,37.3,38

A more realistic configuration is shown in Figure 6 with 8 aircraft. Florida sectors ZMA6/ and ZMA65
are considered. The origin destination pairs are taken to be the midpoint of opposing sides of a sectors. In
this case, a horizon of 64 seconds and time-step of 8 seconds was used in order to be consistent with the
simulation shown in Figure 7, where the weather information is included. A shorter time-step was found to
be necessary when including the weather information into our optimization routine because of the coarseness
of the data. Indeed in order to cover an area of 400 by 400 km for the purpose of including several sectors
in Florida, there is a limit to the number of interpolations, which can be performed to reduce the coarseness
of the weather data, in order to maintain a reasonably sized matrix. We found that above a time-step of
8 seconds, the optimization routine does not perform as well. In order to avoid increasing the number of
discrete points along our horizon and thus increasing the computation time, we decided to reduce the horizon
length as well to maintain the number of discrete points at 9. Given that the speed of an aircraft is set to
230 m.s~1, it will cover a distance of 14.72km over a horizon of 64 seconds. Thus two aircraft traveling in
opposite directions towards each other will first detect a potential conflict when they are 29.44km apart.
While this is a relatively small margin, it is still greater than the 9.26km separation they need to maintain
between them. As shown in Figure 6, all potential collisions are avoided. For visual clarity, once an aircraft
reached its destination, its trajectory is removed from the graph.

IV.B. Conflict Resolution and Convective Weather Avoidance

Figure 7 reproduces the same configuration and same separation constraints as the simulation shown in
Figure 6 but with 4 aircraft instead of 8. Another difference is that weather information is now included
in the optimization routine. The same horizon length (64 seconds) and time-step (8 seconds) was used.
The computation time is significantly increased when the weather data is included. Thus for the purpose
of this draft only 4 aircraft were included in the simulation. However our goal is to increase the number
of aircraft to a more realistic number corresponding to en route constraints for the final version of this
paper. As shown on Figure 7, all aircraft successfully avoid convective weather regions as well as other
aircraft. Please refer to the following url to view animations and more details concerning these simulations:
http://www.ce.berkeley.edu/ bayen/gnc07/gnc07.htm

V. Conclusion

We used a model predictive control framework to solve the minimum time trajectory for multiple aircraft
subject to convective weather avoidance constraints. We incorporated a computational technique based on
level set methods to determine the objective function of our model predictive control optimization routine.
Solving the Hamilton-Jacobi equation for a given destination and weather information (wind profile and con-
vective weather data) provided us with a value function that represents the minimum travel time from any
point in the NAS to the specified destination, including necessary deviations due to convective weather avoid-
ance. Minimizing the sum of the value functions of each aircraft subject to collision avoidance constraints led
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Figure 5. Trajectories generated by the algorithm of section III.A algorithm for 6 aircraft with no weather information.
(1 unit = 10km). The larger circles correspond to the aircraft destinations while the smaller circles located at the current
position of each aircraft refers to the protected zone around an aircraft, which must not be entered by another aircraft.
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(a) Initial Conditions. All aircraft are
located at their origin, at the entry point
of a sector. The destination of each air-
craft is located on the opposite side of
the corresponding sector with respect to
the origin.

(d) 32 time steps (4 min, 15 sec). The
remaining aircraft traveling west has
reached its destination while avoiding
the aircraft traveling in the opposite di-
rection.

(g) 96 time steps (12 min, 56 sec). The
last conflict between the two aircraft
traveling north-south is resolved by air-
craft deviations.

Figure 6.

(b) 16 time steps (2 min, 8 sec). The
first conflict is resolved by the pair
of aircraft traveling east-west in sector
ZMAG65 (sector on the right) by devia-
tions of the concerned aircraft.

(e) 40 time steps (5 min, 20 sec). The
aircraft traveling east has reached its
destination.

(h) 144 time steps (19 min, 12 sec).
The first pair of aircraft traveling north-
south has reached their destination.

(c) 24 time steps (3 min, 12 sec). The
first two aircraft have reached their des-
tination and will therefore be removed
from the next figures.

(f) 72 time steps (9 min, 36 sec). A col-
lision is avoided in between two aircraft
due to proper deviations.

(i) 184 time steps (24 min, 30 sec). Fi-
nally the last two aircraft arrive at their
destination.

Trajectories generated by the algorithm of section III.A for 8 aircraft with no weather information. The

larger circles correspond to the aircraft destinations while the smaller circles located at the current position of each
aircraft refers to the protected zone around an aircraft, which must not be entered by another aircraft.
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(a) Initial Conditions. All aircraft are
located at their origin, at the entry point
of a sector. The destination of each air-
craft is located on the opposite side of
the corresponding sector with respect to
the origin.

(d) 96 time steps (12 min, 56 sec). The
two aircraft traveling in opposite direc-
tion place themselves to such that they
avoid each other.

(b) 16 time steps (2 min, 8 sec). The
first conflict is resolved by the pair
of aircraft traveling east-west in sector
ZMAG5 (sector on the right) by devia-
tions of the concerned aircraft.

(e) 104 time steps (13 min, 9 sec). The
two aircraft have successfully avoided
each other.

(c) 24 time steps (3 min, 12 sec). The
first two aircraft have reached their des-
tination and will therefore be removed
from the next graphs.

(f) 192 time steps (25 min, 36 sec). The
remaining two aircraft have successfully
reached their destination.

Figure 7. Trajectories generated by the algorithm of section III.A for 4 aircraft with weather avoidance. The larger
circles correspond to the aircraft destinations while the smaller circles located at the current position of each aircraft
refers to the protected zone around an aircraft, which must not be entered by another aircraft.
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to a locally optimal trajectories for the set of aircraft considered. Currently the algorithm performs well for
a small time-step and relatively short horizon. All aircraft reach their destination without entering regions
of convective weather as well as avoiding any LOS. However, this short horizon may present a problem when
a larger number of aircraft need to converge through a small area to avoid convective regions. The tradeoff
between processing time and horizon length needs to be assessed to determine if a longer horizon is worth
the increase in computation time.

The next goal of this work is to incorporate time-varying weather patterns into the path planning op-
timization routine, which will behave as moving obstacles. As soon as new weather data is available, the
Hamilton-Jacobi equation will be solved with the new set of data to obtain an updated value function for
each aircraft. These new value functions will then be passed on to the model predictive control routine to
compute the objective function.

This work presents a centralized protocol for multiple aircraft aircraft routine, which is similar to the
current operational system in the NAS. This general class of methods usually suffers from limited scalability
and poor robustness. In addition, if designed to be applied from the ground, they are subject to equipment
failure at the Air Route Traffic Control Center level. One possible solution to this problem is to develop
fully decentralized conflict resolution algorithms, which is the motivation for the long term goal of this work.
Once the time varying centralized version of the algorithm is built and tested, a similar yet decentralized
protocol will be designed.
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