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Abstract— To address privacy concerns with digital video
surveillance cameras, we propose a practical, real-time ap-
proach that preserves the ability to observe actions while
obscuring individual identities. In our proposed Respectful
Cameras system, people who wish to remain anonymous agree
to wear colored markers such as a hat or vest. The system
automatically tracks these markers using statistical learning
and classification to infer the location and size of each face
and then inserts elliptical overlays. The objective is to cover
the face of each individual wearing a marker, while minimizing
the overlay area to allow observation of actions in the scene.
Our approach incorporates a visual color-tracker based on a
9 dimensional color-space. We train Probabilistic AdaBoost to
find axis-aligned hyperplanes as classifiers. We then use Particle
Filtering to incorporate interframe temporal information. We
present experiments illustrating the performance of our system
in both indoor and outdoor settings, where occlusions, multiple
crossing targets, and lighting changes occur. Results suggest
that the Respectful Camera system can reduce false negative
rates to acceptable levels (under 2%).

I. INTRODUCTION

The increasing prevalence and ever-improving capabilities
of digital surveillance cameras introduce new concerns for
visual privacy of individuals in public places. Advances in
camera technologies allow for the remote observation of
individuals beyond the mere recording of presence in an
observed area without the individual’s knowledge; instead,
it changes the nature of vision itself. Robotic cameras can
be servoed to observe high resolution images over a wide
field of view. For example, the Panasonic KX-HCM280 pan-
tilt-zoom camera costs under $1000 with a built-in web-
server and a 21x optical zoom (500 Mpixels per steradian).
Surveillance technologies are additionally empowered by
digital recording, allowing footage to be stored indefinitely,
or processed and combined with additional data sources
to identify and track individuals across time and physical
spaces. Such cameras are also quickly becoming affordable
for commercial use, causing faster proliferation. Their ap-
plications extend beyond security, to industrial applications
such as traffic monitoring and research applications such

*This work was partially funded by the a Trust Grant under NSF CCF-
0424422, with additional support from Cisco, HP, IBM, Intel, Microsoft,
Symmantec, Telecom Italia and United Technologies. This work was also
partially supported by NSF Award 0535218, and by UC Berkeleys Center
for Information Technology Research in the Interest of Society (CITRIS).

Fig. 1. Sample image frame input on left image, with output regions
overlayed on right image. In this sample, the construction workers wearing
green vests as markers are made anonymous, while faces of the other
construction workers remain visible.

as observing public behavior. Their increased observational
power enables data gathering about individuals far beyond
the capabilities of perceptible human observers, and poses
new challenges to individuals’ sense of privacy in public.

McCahill et al. estimated approximately 4 million cameras
deployed in the UK [1]. The U.S. has also deployed a number
of camera systems in cities such as New York and Chicago
for public monitoring [2], [3], [4]. Deployments of such
large-scale government-run security systems, in conjunction
with smaller-scale private applications, raises fundamental
privacy concerns which must be addressed. In this paper
we consider the problem of automatically obscuring faces
to assist in visual privacy enforcement. Our objective is to
develop “Respectful Cameras.”

We investigate a new approach for visual privacy that
uses markers worn by individuals to simplify the level of
robust person detection required for obscuring individual
identity, providing a method for individuals to conceivably
opt-out of observation. We would like the false negative
rate (where we fail to obscure the face of an individual
who wishes for privacy) to be under 2%. Existing face
tracking methods have difficulty tracking faces in real-time
under moving backgrounds, changing lighting conditions and
partial occlusions. These markers provide a visual cue for our
system by having a color that is distinct from the background.
We use the location of the marker to infer the location of the
faces of individuals who wish to “opt-out” of observation.

Our approach provides some level of visual privacy by
hiding an individual’s identity by obscuring their face with
a colored ellipse, while allowing observation of his or
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her actions. The Respectful Cameras system allows human
actions to be observable so that people can monitor what is
going on (ie, at a construction site or airport terminal) for
security or public relations purposes.

We envision such a system being made widely available, as
these markers would be cheap, unobtrusive, and easily mass-
produced. For example, we could provide inexpensive hats of
a particular color or pattern at the border of the space where
cameras are present, similar to the respectful hats or leg-
coverings that are made available at the entrance of churches
and synagogues.

Our approach learns a visual marker’s color-model with
AdaBoost, uses the model to detect a marker in a single
image, and finally, applies Particle Filtering to integrate tem-
poral information. Recent advances in computer processing
have made our algorithms utilizing AdaBoost and Particle
Filtering feasible for real-time vision applications.

II. RELATED WORK

Protecting privacy of individuals has become increasingly
important as cameras become more ubiquitous and have
greater capabilities, such as better resolution. The National
Science Foundation (NSF) has sponsored TRUST [5], a new
center for security and privacy, and privacy has been the
subject of recent symposia such as [6].

Changes in surveillance ubiquity and capabilities raise
questions about the fair balance of police power (the inherent
authority of a government to impose restrictions on private
rights for the sake of public welfare, order, and security)
to monitor public places versus the citizens’ freedom to
pass through public spaces without fear of government
monitoring. According to Gavison, a loss of privacy occurs
through visual surveillance by the extent we are known by
others and subject to their attention [7]. He discusses our
expectation that our actions are observable only by those we
see around us, and thus we can judge how we should act.
Nissenbaum describes how the high-resolution and zooming
capabilities of cameras applied to visual surveillance also
violates the contextual expectations of how people will be
perceived in public [8]. This places the burden upon an
individual to conduct himself or herself as if every move
could be recorded and archived. Finally, it should be noted
that it is not just surveillance that threatens privacy, but also
the ability to be identified [9].

In order to provide automated privacy, the ability to find
the faces or full bodies of people is necessary. Applicable
methods include face detection [10], [11], [12], face tracking
[13], [14], people detection [15], and people tracking [16],
[17]. Unfortunately, these methods have difficulty detecting
and tracking in real-time while being robust enough to ad-
dress privacy under partial occlusions, and changing lighting
conditions. Alternatively, motion detection methods such as
Gaussian Mixture Models [18] can be applied, however they
require time to learn a background model, during which, they
cannot distinguish moving objects from the background.

Approaches to object detection employ statistical classifi-
cation methods including AdaBoost [11], Neural Networks

[19], and Support Vector Machines [20]. Rather than using
the person as the feature, we track a visual marker worn
by the individual, and use a form of AdaBoost [21] to
track the color of that feature. AdaBoost is a supervised
learning approach that creates a strong statistical classifier
from labeled data and a set of of weak hypotheses, which
poorly classify the labeled data. Rather than conventional
AdaBoost that provides a binary label, we use Probabilistic
AdaBoost [22], [23], which provides the probability of an
input’s label, and we use it in our Particle Filter formulation.

When using AdaBoost for detecting objects, there is a
choice between using pixel-based and region-based features
(we selected pixel-based). Pixel-based approaches use a set
of features for each pixel in the image, while region-based
usees features defined over a group of pixels. For region-
based, typical approaches examined applying Haar wavelet
features to pixel regions [11], [24]. Avidan describes the
use of a pixel-based method [25] where each pixel’s initial
feature vector contains the RGB values, as well as two his-
tograms of oriented gradients similar to those used in Scale
Invariant Feature Transform (SIFT) features [26]. These
SIFT features are commonly used for problems such as the
correspondence between images. Rather than incorporating
gradient information, our pixel-based approach uses multiple
color-spaces as our feature vector.

Sharing our motivations of robust (low false negative and
false positive) detection, the Augmented Reality community
also simplifies object detection with visual markers for
tracking and calibrating. Zhang et al. compared many of
these methods [27]. Kohtake et al. applied visual markers
to simplify object classification to ease the User Interaction
problem of taking data stored in one digital device and
moving it to another by pointing and selecting physical
objects via an “infostick” [28].

After applying an object detection method, tracking can be
employed to enhance robustness. Particle Filtering is used to
probabilistically estimate the state of a system, in our case,
the location of a visual marker, via indirect observations,
such as a set of video images. Particle Filtering provides
a probabilistic framework for integrating information from
the past into the current estimation. Unlike Kalman Filtering
[29], Particle Filtering is non-parametric, representing the
distributions via a set of samples, rather than through a small
set of parameters (for instance means and standard deviations
for Gaussians used in Kalman Filtering). We choose to use
Particle Filtering because our observation model is non-
gaussian, and thus methods such as Kalman Filtering cannot
be applied.

Perhaps closest to our approach, both Okuma et al. [30]
and Lei et al. [23] also use a probabilistic AdaBoost for-
mulation with Particle Filtering [23]. However, both assume
a classifier per tracked-object (region-based), rather than
classifier per-pixel. As our markers use pixel-based color,
we don’t need to classify at multiple scales, and we can
explicitly model shape to help with robustness to partial
obstructions. Okuma’s group dynamically weights between a
Particle Filter and an AdaBoost Object Detector, and applies
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their work to tracking hockey players. Instead of weighting,
our approach directly applies AdaBoost into the Particle
Filter’s observation model. Lei et al. has a similar approach
to us, and applies their work to tracking a face and a car.
However, unlike Lei, we also describe how to apply Particle
Filtering for tracking multiple objects simultaneously.

III. SYSTEM INPUT

Our input is the sequence of images from a video stream.
Let i be the frame number in this sequence. Each image
consists of an pixel-array where each pixel has a red, green,
and blue (RGB) component. Our system relies on a visual
marker worn by an individual who wishes to have his or her
face obscured.

IV. ASSUMPTIONS

We use the visual marker’s locations as a proxy for the
location of the human head. Thus, we assume that the face’s
location will always be at a relative offset from the marker.
Similarly, we assume the face’s size will be a scaled size of
the visual marker.

If a person’s face is unobscured for a single frame, the
person’s identity will be known for many subsequent frames.
While false positives make it impossible to see portions of
the scene which the user may wish to observe, it does not
reduce the privacy of those being viewed. Thus, we assume
that false negatives are far less acceptable than false positives.

Our system makes a the following additional assumptions:
• Whenever a person’s face is visible, then the visual

marker worn by that person is visible
• All visible markers have a minimum number of visible,

adjacent pixels
• There is a range of possible ratios between the height

and width of a visible marker’s bounding box
• The marker color is distinguishable from the back-

ground

V. SYSTEM OUTPUT

The objective is to cover the face of each individual
wearing a marker, while minimizing the overlay area to allow
observation of actions in the scene.

For each frame in the input stream, the system output is
a set of axis-aligned elliptical regions. These regions should
completely cover all faces of people in the input image who
are wearing markers. An elliptical region for ith output image
is defined by a center-point, denoted by an x and y position,
an x-axis aligned radius rx and a y-axis aligned radius ry:

Ei = {(x, y, rx, ry)}

The ith output video frame is the same as the ith input frame
with the corresponding regions Ei obscured via a colored
ellipse.

VI. THREE PHASES OF SYSTEM

Our solution consists of three phases: (A) learning a color-
model for the marker with AdaBoost, (B) identifying the
marker in a single image, and (C) using Particle Filtering to
integrate temporal information for improved performance.

A. Offline Training of the Marker Classifier

We train a classifier, offline, which we then use in the
two run-time phases. For classification, we use the statistical
classifier, AdaBoost, which performs supervised learning on
labeled data.

1) Input: A human “supervisor” provides the AdaBoost
algorithm with two sets of samples, one for pixels colors
corresponding to the marker T+ and one for pixels colors
corresponding to the background T−. Each element of the
set has a red value r, a green value g, a blue value b and
the number of samples with that color m. Thus, the set of
colors of marker pixels is

T+ = {(r, g, b, m)}

and the sample set of pixels that correspond background
colors

T− = {(r, g, b, m)}

As we are using a color-based method, the represen-
tative frames must expose the system over all possible
illuminations. This includes maximum illumination, minimal
illumination, and any potential hue effects caused by lighting
phenomena such as a sunset. We discuss the AdaBoost
formulation in more detail in Section VII-A.

2) Output: We use a Probabilistic AdaBoost formulation
that produces a strong-classifier H ′ : {0, . . . , 255}3 7→ [0, 1].
This classifier predicts the probability that the RGB color of
any pixel corresponds to the marker.

B. Run-Time Static Marker Detector

For static detection, each frame is processed indepen-
dently.

1) Input: The Marker Detector uses as input the model
generated from the AdaBoost classifier, as well as a single
frame from the video stream.

2) Output: We can use the marker detector without track-
ing, to determine the location of faces. This would produce
for the ith image, a region Ei as defined in Section V.
However, if used with the marker tracker, this phase produces
a set of rectangles bounding the corresponding markers. A
bounded-rectangle on the ith image is defined by a center-
point, denoted by an x and y position, a width ∆x and a
height ∆y:

Ri = {(x, y,∆x,∆y)}

This rectangle is restricted by the assumptions described in
Section IV.

C. Run-Time Dynamic Marker Tracker

The dynamic marker tracker uses temporal information to
improve the Run-time Detector.

1) Input: The dynamic marker tracker uses both the
classifier determined in the training phase and output from
the static image recognition phase. Because we use Particle
Filtering, we process a frame per iteration. Let the time
between the previous frame and the ith frame be ti ∈ R+,
and the ith image be Ii. We discuss Particle Filtering in more
depth in Section IX-A, but it requires three models as input:
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a prior distribution, a transition model, and an observation
model. We use the image detection system to initialize a
Particle Filter for each newly-detected marker. We use the
probabilistic classifier to determine the posterior distribution
of a hat location for each Particle Filter, given all previously
seen images.

2) Output: The output for the ith frame is also the region
Ri as defined in Section V.

VII. OFFLINE TRAINING OF THE MARKER CLASSIFIER

To train the system, a human “supervisor” left-clicks on
pixels in a sample video to add them to the set T+, and
similarly right-clicks to add pixels to set T−.

In this phase, we use the two sets T+ and T− to generate
a strong classifier H ′, which assigns the probability that any
pixel’s color corresponds to the marker. Learning algorithms
can use far less data than just determining the probability
that each color corresponds to the visual marker. In our
experiences, AdaBoost works well using a thousand labeled
samples, while getting 10 samples for each color to generate
the probability explicitly would require 10 × 2563 ≈ 170
million samples.

A. Review of AdaBoost

AdaBoost uses a set of labeled data to learn a classifier.
This classifier will predict a label for any new data. AdaBoost
constructs a strong classifier from a set of weak-hypotheses.

Let X be a feature space, Y ∈ {−1, 1} be an observation
space and G = {h : X → Y } be a set of weak hypotheses.
AdaBoost’s objective is to determine a function H : X 7→ Y
by learning a linear function of elements from G that predicts
Y given X . AdaBoost is an iterative algorithm where at each
step, it integrates a new weak-hypothesis into the current
strong-classifier.

Let η(x) = P (Y = 1|X = x) and define AdaBoost’s
loss function φ(x) = e−x. The objective of AdaBoost is to
minimize the expected loss or

E(φ(yf(x))) = inf
f

[ηφ(f(x)) + (1− η)φ(−f(x))]

This is an approximation to the optimal Bayes Risk, mini-
mizing E[l(f(X), Y )] with loss function

l(Ŷ , Y ) =
{

1 if Ŷ 6= Y
0 otherwise

To determine this function, we use a set of training data
{(xi, yi)|xi ∈ X, yi ∈ Y } sampled from the underlying dis-
tribution.

In general, AdaBoost can use any weak-hypothesis with
error less than 50%. However we use the greedy heuristic
where at each iteration, we select a weak hypotheses that
minimizes the number of incorrectly labeled data points [11].

1) Recasting Adaboost to Estimate Probabilities: Typ-
ically, as described in [31], AdaBoost predicts the most
likely label that an input will have. If we let β(x) =∑T

t=1 αtht(X), then the typical strong classifier is binary
and defined to be H(x) = sign (β(x)). Friedman et. al
describes how to modify the AdaBoost algorithm to provide

a probability instead [22]. The strong classifier determines
that probability that an input corresponds to a label of 1 (as
opposed to -1) is

H ′(x) =
e2β(x)

1 + e2β(x)

B. Determining Marker Pixels

We begin by applying Gaussian blur with standard de-
viation σI to the image, which enhances robustness to
noise by integrating information from nearby pixels. We
use these blurred pixels for T+ and T−. We then project
our 3 dimensional RGB color space into the two additional
color spaces, Hue, Saturation, Value (HSV) [32] and LAB
[33] color-spaces. HSV performs well over varying lighting
conditions because Value changes over varied lighting inten-
sities, while Hue and Saturation do not. LAB is designed
to model how humans see color, being more perceptually
linear, and is particularly well suited for determining spec-
ularities. This projection of RGB from T+ and T− into the
nine-dimensional RGBHSVLAB color space is the input to
AdaBoost.

For weak hypotheses, we use axis-aligned hyperplanes
which bisect each of the 9 dimensions. These hyperplanes
also have a direction, where all 9-dimensional tuples that
are in the direction and above the hyperplane are labeled
as visual marker pixels, and all other tuples are non-marker
pixels. The hyperplane bisecting dimension d at a threshold
j is described by:

hd,j(X) =
{

1 if X[d] ≥ j
−1 otherwise

We also include the complement of this hyperplane into
our set of weak hypotheses hd,j(X) = −hd,j(X). We
provide more classification flexibility to our simplistic weak
classifiers by projecting the initial RGB space into the
additional HSV and LAB spaces. For the weak learner,
AdaBoost chooses the dimension and threshold at each round
that minimizes the remaining error. The algorithm terminates
after running for some constant number, n, iterations.

VIII. RUN-TIME STATIC MARKER DETECTOR

This section describes a marker detection algorithm, using
only the current frame. Once we have the strong classifier
from AdaBoost, we apply the following steps: (1) Apply the
same gaussian blur to the RGB image as we did for training
(2) Cluster marker pixels using the connected component
method. (3) Select all clusters that satisfy certain constraints
to be locations of markers.

A. Clustering of pixels

To determine which pixels correspond to which markers,
we apply the connected-component technique [34]. We iter-
ate through all pixels that have been classified as markers,
and assign the cluster for that pixel (as defined by connected-
component) with a unique group-id. This yields a set of
marker pixels for each visual marker in the frame.
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To remove false positives, we verify there are at least c
pixels in the cluster, and that ratio of width (∆x) to height
(∆y) falls within a specified range from a to b: Formally

a ≤ ∆x

∆y
≤ b

IX. RUN-TIME DYNAMIC MARKER TRACKER

We use Particle Filtering to incorporate temporal informa-
tion into our models improving robustness to partial occlu-
sions. As Particle Filtering requires probability distributions
for how likely the state is given indirect observations, we
describe a pixel-based Probabilistic AdaBoost formulation,
which can be adapted for such purposes.

A. Review of SIR Particle Filtering
While there are many versions of Particle Filters, we

use the Sampling Importance Resampling (SIR) Filter as
described in [35], [36]. It is a non-parametric (sampling-
based) method for performing state estimation of Dynamic
Bayes Nets (DBNs) over discrete time. The state at iteration i
is represented as a random variable χi with instantiation χi

and the evidence of the hidden state Ei with instantiation
ei. There are three distributions needed for SIR Particle
Filtering: the prior probability distribution of the object’s
state P (χ0), the transition model P (χi|χi−1), and the
observation model P (Ei|χi). The prior describes the distri-
bution of the object’s state at the beginning of inference. The
transition model describes, the distribution of the object’s
state at the next iteration, given the current state of the object.
Lastly, the observation model describes the distribution of
observations resulting from a specific object’s state. Particle
Filtering uses a vector of samples of the state or “particles”
that are distributed according to the likelihood of all previous
observations P (χi|E0:i). At each iteration, each particle is
advanced according to a transition model, and then assigned a
probability according to its likelihood using the observation
model. After all particles have a new likelihood, they are
resampled with replacement using the relative probabilities
determined via the observation model. This results in a dis-
tribution of new particles which have integrated all previous
observations and are distributed according to their likelihood.
The more samples that are within a specific state, the more
likely that state is the actual state of the indirectly observed
object.

B. Marker Tracking
Particle Filtering uses three models: a prior distribution,

transition model, and observation model.
1) Marker Model: The state of a marker is defined with

respect to the image plane and is represented by an axis-
aligned bounding box and a velocity. This results in a 6 tuple
of the bounding box’s center x and y positions, the height
and width of the bounding box, orientation, and speed. As
can be seen in Figure 2 this yields:

χ = (x, y, ∆x, ∆y, θ, s)

We model the marker in image coordinates, rather than world
coordinates to improve the speed of our algorithms.

Fig. 2. Illustrates the state of a single bounding box (left) and the
probability mask used for the Particle Filter’s observation model (right).

2) Transition Model: The transition model describes the
likelihood of the marker being in a new state, given its state
at the previous iteration, or P (χi|χi−1 = χi−1). Our model
adds gaussian noise to the speed, orientation, bounding-box
width, and bounding box height and determines the new
x and y position via Euler integration. Let W ∼ N(0, 1)
be a sample from a gaussian with mean zero and standard
deviation of one. The mean µ and standard deviation σ for
each portion of our model are set a priori. Formally:

xi = xi−1 + si · cos(θi) · ti
yi = yi−1 + si · sin(θi) · ti
∆xi = ∆xi−1 +

√
ti · (σ∆x ·W + µ∆x)

∆yi = ∆yi−1 +
√

ti · (σ∆y ·W + µ∆y)
si = si−1 + σs ·

√
ti ·W

θi = θi−1 + σθ ·
√

ti ·W
At each iteration, we also enforce that the width and height
constraints for each particle described in Section VIII-A. The
sample from the gaussian (after being scaled by µ and σ)
must be rescaled according to

√
ti in order to compensate

for non-constant frame rates.
3) Observation Model: The observation model describes

the distribution of the marker’s state given an image, but
our formulation gives a probability per pixel, rather than per
marker state. We use an objective function as a proxy for
the observation model, which has a probability of 1 if the
bounding box tightly bounds a rectangular region of pixels
with high probability. Let bounding box R1 be the marker’s
state and bounding box R2 have the same midpoint as R1

but have size
√

2∆x×
√

2∆y. The
√

2 scaling factor makes
the areas of R1 and R2 be equal. Let P (Ii(u, v)) be the
probability that the pixel at u, v corresponds to a marker, as
is provided by AdaBoost. Then:

R1 =
{

(u, v)
∣∣∣∣ x− ∆x

2 ≤ u ≤ x + ∆x
2 ,

y − ∆y
2 ≤ v ≤ y + ∆y

2

}

R2 =

(u, v)

∣∣∣∣∣∣∣
x− ∆x

2 ≤ u√
2
≤ x + ∆x

2 ,

y − ∆y
2 ≤ v√

2
≤ y + ∆y

2 ,

(u, v) /∈ R1


P1(χi = χi|Ii) = 1

∆x∆y

(∑
(u,v)∈R1

P (Ii(u, v))
)

P2(χi = χi|Ii) = 1
2∆x∆y

( ∑
(u,v)∈R1

P (Ii(u, v))+∑
(u,v)∈R2

1− P (Ii(u, v))

)
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Our final metric used as our observation model is:

P (χ|Et = et) = (1− P1)P1 + P1P2

This metric has the essential property that there is an optimal
size for the bounding box, as opposed to many other metrics
which quickly degenerate into determining the marker region
to consist of all the pixels in the image or just a single pixel.
For intuition, assume the projection of the visual marker
produces a rectangular region. If a particle’s bounding region
is too large, its objective function will be lowered in region
R1, while if it is too small, then the objective function would
be lowered in region R2. This function yields a probability of
1 for a tight bounding box around a rectangular projection
of the marker, yields the probability of 0 for a bounding
box with no pixels inside that correspond to the marker,
and gracefully interpolates in between (according to the
confidence in R1). We illustrate the two areas in Figure 2.

4) Multiple-Object Filtering: Our formulation uses one
Particle Filter per tracked marker. To use multiple filters,
we must address the problems of: (1) markers appearing,
(2) markers disappearing and (3) multiple filters tracking the
same marker. We make no assumptions about where markers
can be obstructed in the scene.

For markers appearing, we use the output of the Marker
Detection algorithm to determine potential regions of new
markers. We use an intersection over minimum (IOM) met-
ric, also known as the Dice Measure [37], defined for two
regions R1 and R2 is:

IOM(R1, R2) =
Area(R1 ∩R2)

min(Area(R1), Area(R2))

If a Marker Detection algorithm has an IOM of more than a
specified overlap γ with any of Particle Filter’s most likely
location, then a Particle Filter is already tracking this marker.
If no such filter exists, we create a new marker at this region’s
location by creating a new Particle Filter with the location
and size of the detection region. We choose an orientation
uniformly at random from 0 to 2 π, and speed is randomly
chosen between 0 and a maximum speed that is chosen a
priori.

To handle disappearing markers, if the maximum proba-
bility affiliated with a filter is below γ1 , then the filter is no
longer confident about the marker’s location, and is deleted.

Multiple Particle Filters can become entangled and both
track the same marker. If the IOM between two Particle
Filters’ exceeds the same threshold as appearing filters γ2, we
remove the filter that was created most recently. We remove
the most recent to preserve the association between a marker
and its corresponding Particle Filter for as long as possible.

X. EXPERIMENTS

We ran two sets of experiments to evaluate performance.
We experimented in our lab where we could control light-
ing conditions and we could explicitly setup pathological
examples. We then monitor performance on video from a
construction site as we vary model parameters. All tests in-
volved video from a Panasonic KX-HCM280 robotic camera,

Fig. 3. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates where the intense light
induced a specularity, causing the classifier to lose track of the hat.

transmitting an mJPEG stream of 640x480 images. We ran
all experiments on a Pentium(R) CPU 3.4 GHZ.

Currently, the system has not been optimized, and we
could easily extend our formulation to incorporate paral-
lelism. The rate that we can process frames is about 3
frames per second, which is approximately 2x slower than
the incoming frame rate.

For both setups, we trained on 2 one-minute video se-
quences using the method described in Section VI-A, ex-
posing the system to many potential backgrounds, location
and orientations of the visual markers, and over all lighting
conditions that the experimental data experiences.

An image has a false negative if any part of any face is
visible and has a false positive if there is a obscuring region
that touches no face. These metrics are independent of the
number of people in the scene. To evaluate the system, we
place each frame into the category of correctly obscuring all
faces, being a false negative but not false positive, being a
false negative but no a false positive, and being both a false
negative and false positive. For the tables, let FN be false
negatives and FP be false positives.

A. Lab Scenario Experiments

Within the lab, where we can control for lighting changes,
we explore scenarios that challenge our system. Our marker
is a yellow construction hat, and we assume the face directly
below (centered at the bottom-middle of the bounding box)
and the same size as the hat. We evaluate how the system
performs when 1) there are lighting conditions that the
system never was trained on, and 2) two individuals (and
their respective markers) cross. Lab experiments were run on
51 seconds of data acquired at 10 frames per second (fps).
We summarize our results in the following table:

Lab Scenario Experiments
Experiment # Frames Correct FPs FNs FP+FNs
Lighting 255 96.5% 0.0% 3.5% 0.0%
Crossing 453 96.9% 0.0% 3.1% 0.0%

1) Lighting: In this setup, there is a single person, who
walks past a flashlight aimed at the hat during two different
lighting conditions. We experiment with all lights being
on, and half of the lab lights on. In the brighter situation,
the flashlight does not cause the system to lose track of
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Fig. 4. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates tracking during a crossing,
showing how the Particle Filter grows to accommodate both hats.

Fig. 5. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates tracking after a crossing
(one frame after Figure 4), showing how the system successfully creates a
second filter to best model the current scene.

the hat. However, in the less bright situation, the hat gets
washed out with a specularity and we fail to detect the hat
during this lighting problem. We show one of the failing
frames in Figure 3. In general, the system performs well at
interpolating between observed lighting conditions, but fails
if the lighting is dramatically brighter or darker than the
range of lighting conditions observed during training.

2) Crossing: In this test, two people cross paths multiple
times, at different speeds. Figure 4 shows how the system
merges the two hats into a single-classified hat when they
are connected, while still covering both faces. We are able
to accomplish this via the flexibility in our transition model,
namely the biasses to the bounding-region controlled via µ∆x

and µ∆y . At the following frame in Figure 5, the system
successfully segments what it believed to be a single hat
in the previous frame into two two hats by creating a new
Particle Filter.

B. Construction Site Experiments

The construction site data was collected from footage
recorded at the CITRIS construction site at the University
of Berkeley, California, under Human Subjects Protocol
#2006-7-1. For the construction site, our marker is a green
construction vest and we assume the face is directly above
(centered at the top-middle of) the vest, as we show in
Figure 1. We first evaluate the performance of the system
as we use different color-spaces used for input to AdaBoost.
We then evaluate the differences in performance between the
Particle Filtered approach and the Static Marker Detector.
All experiments were run on data acquired at 6 fps. This
diminished speed (the max is 10 fps) was caused by requiring

us to view the video stream to move the camera to follow
a person during recording, while having the system store a
secondary video stream to disk for later experimentation. We
summarize our results over a 76 second (331 frame) video
sequence from a typical day at the construction site in the
following table:

Construction Site Experiments
Experiment % Correct FPs FNs FP+FNs
Only RGB 19.4% 68.6% 5.1% 6.9%
Only HSV 86.1% 11.5% 1.2% 1.2%
Only LAB 84.3% 10.9% 3.6% 1.2%
All 9 (RGB+HSV+LAB) 93.4% 5.4% 0.6% 0.6%
Static Marker Detector 82.8% 16.3% 0.0% 0.9%
Dynamic Marker Tracker 93.4% 5.4% 0.6% 0.6%

1) Color Models: In this test, we investigate how our
system performs by using different color spaces, specifically
because we are only using simple axis-aligned hyperplanes
as our weak hypotheses. We compare the algorithm’s perfor-
mance when just using RGB, just HSV, just LAB, and then
the “All 9” dimensional color space of RGB+HSV+LAB.
All 9 is superior in both reducing false positives and false
negatives.

2) Particle Filtered Data: In this test, we evaluated per-
formance between a non-Particle Filtered approach, where
we just use each frame independently, and using Particle
Filtering. We can see that the system dramatically reduces
the number of false-positives, while inducing slightly more
false-negatives. There were two extra false-negatives induced
by the Particle Filter, one from the shirt being cropped at
the bottom of the scene, and one where the previous frame
experienced extreme motion blur. We were very strict with
our definitions of false-negatives as the portion of the face
that is visible due to the partially cropped shirt is only 8
pixels wide.

XI. CONCLUSION AND FUTURE WORK

We have presented the Respectful Cameras visual privacy
system which tracks visual markers to robustly infer the loca-
tion of individuals wishing to remain anonymous. We present
a static-image classifier which determines a marker’s location
using pixel colors and an AdaBoost statistical classifier.
We then extended this to marker tracking, using a Particle
Filter which uses a Probabilistic AdaBoost algorithm and
a marker model which incorporates velocity and interframe
information.

In future work, we will experiment with different markers
to identify preferred colors or patterns. It may be possible
to build a Respectful Cameras method directly into the the
camera (akin to the V-chip) so that faces are encrypted at the
hardware level and can be decrypted only if a search warrant
is obtained.

To obtain our experimental data, videos, or
to get updates about this project, please visit:
http://www.cs.berkeley.edu/∼jschiff/RespectfulCameras.
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Fig. 6. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates how without Particle
Filtering, partial occlusions segment the visual marker, resulting in multiple
small ellipses.

Fig. 7. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates how Particle Filtering
overcomes partial occlusions, yielding a single, large ellipse.

relating this work to policy and law. Panasonic Inc. donated
the cameras for our experiments.
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