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The problem of tracking multiple targets and managing their identities in sensor networks is considered. Each

sensor is assumed to have its own surveillance region and an ability to communicate with its neighboring sensors.We

propose a scalable, distributed, multitarget-tracking and identity-management algorithm that can track an

unknown number of targets and manage their identities efficiently in a distributed sensor network environment.

Distributed multitarget tracking and identity management finds a globally consistent solution by maintaining local

consistency among neighboring sensors. Distributed multitarget tracking and identity management consists of data

association, multitarget tracking, identity management, and identity and track fusion. The data-association and

multitarget-tracking problems are efficiently solved byMarkov chainMonteCarlo data association,which can track

an unknown number of targets. Distributed multitarget tracking and identity management manages identities of

targets based on the identity-mass-flow framework. This framework prevents exponential growth in computation

and storage of target-to-track association probabilities. Using identity and track fusion, distributed multitarget

tracking and identity management maintains consistent identities and tracks among neighboring sensors. The

performance and features of distributed multitarget tracking and identity management are extensively evaluated in

simulation.

I. Introduction

R ECENT advances in sensor technology and wireless
communication have led to the concept of a sensor network

[1–3]. A sensor network is a network of local sensor nodes that have
sensing, processing, and communication capabilities [4,5]. Sensor
networks have received growing interest in a variety of applications,
including building comfort control [6], habitat and environment
monitoring [7], traffic control [8], manufacturing and plant
automation [9], service robotics [10], and battlefield surveillance and
enemy tracking in military applications [11,12] (also see [2] and
references therein). To fully exploit the capability of sensor
networks, algorithms for sensor networks need to be scalable (i.e.,
adding/deleting sensors into a sensor network can be handled
efficiently) and distributed (i.e., the algorithm can be implemented in
individual sensors). In this paper, we develop a scalable distributed
multitarget-tracking and identity-management (DMTIM) system
that can keep track of multiple maneuvering targets and their
identities in a sensor network.

Multitarget tracking is an important mathematical framework in
many applications, including surveillance [13], computer vision
[14,15], and network security [16]. The essence of the multitarget-
tracking problem is to find tracks§ from noisy measurements. Unlike
single-target tracking, the multitarget problem is complicated by the
uncertainty about the source of each measurement; that is, the
associations between measurements and targets are not known. This

data-association problem inmultitarget tracking is towork out which
measurements were generated by which targets; more precisely, we
require a partition of measurements such that each element of a
partition is a collection of measurements generated by a single target
or clutter.

The most frequently used multitarget-tracking algorithms include
the nearest-neighbor filter (NNF) [13,14], joint probabilistic data-
association (JPDA) filter [13], and multiple hypothesis tracker
(MHT) [17–19]. The NNF processes the newmeasurements in some
order and associates each with the target for which the predicted
position is closest, thereby selecting a single association after each
scan. Although the NNF is easy to implement and fast, as shown in
[13], it can break down under nontrivial circumstances and it is not
suitable for the problems considered in this paper. JPDA is a
suboptimal approach to the Bayesian filter. At each time step, instead
of finding a single best association between measurements and
tracks, JPDA computes association probabilities for all measure-
ment-target pairs.

An association probability between measurement j and target k is
the probability that measurement j is originated from target k. Given
each association, the state of a target is estimated by a filtering
algorithm, and this conditional state estimate is weighted by its
association probability. Then the state of a target is estimated by
summing over the weighted conditional estimates. MHT maintains
multiple hypotheses associating past measurements with targets.
When a new set of measurements arrives, a new set of hypotheses is
formed from each previous hypothesis. The algorithm returns a
hypothesis with the highest posterior as a solution. However, the
track initiation and termination are difficult with JPDA, and both
JPDA and MHT require large memory and computation cycles (the
time and space complexities ofMHT are higher than those of JPDA).
BecauseMHT can initiate and terminate tracks, the tracking task can
be easily distributed in a network of sensors, whereas this is difficult
with JPDA. Our distributed tracking algorithm is inspired by the
distributed tracking algorithm based onMHTbyChong et al. [19], in
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which the tracking task is distributed and tracks are hierarchically
merged.We follow a similar approach, but our algorithm is based on
a more computationally efficient multitarget-tracking algorithm.

The tracks estimated by a multitarget-tracking algorithm are
usually used by other applications. These applications make
decisions or reallocate resources based on the estimated tracks (e.g.,
pursuer assignment and path planning in pursuit–evasion games
[20]). But a decision based on a single set of tracks may be risky,
because tracks do not fully exhibit the uncertainty in the identities of
targets accumulated from continuous interactions among crossing or
nearby targets. For example, when two targets are moving close to
each other, there can be multiple interpretations of the event.
Figure 1a shows measurements about positions of two targets over
time. Figures 1b and 1c show two possible interpretations made from
the measurements shown in Fig. 1a. Clearly, there can be more than
two interpretations, due to measurement noise and identity
uncertainty, but a multitarget-tracking algorithm can only display a
single interpretation (usually the onewith the highest likelihood or an
interpretation with expected positions). Because the number of
possible interpretations grows exponentially as more measurements
are collected, we cannot display all possible interpretations. In this
paper, we assume that the communication medium is bandwidth-
limited; hence, it is necessary to represent the uncertainty about the
identities in the most compact representation.

This issue can be addressed by identity management [21,22]. An
identity is assigned to a target when it first appears; the identity belief
associated with a target at any future point in time is represented as a
probability distribution of the identity of the target over all existing
identities. Thus, when two targets cross each other, the uncertainty in
this crossing is represented by changes in the identity beliefs.
However, the available identity-management algorithms [21,22]
work for the cases in which the number of targets in a sensor network
is known and constant and their trajectories are available to local
sensors. As a result, the existing algorithms are applicable to limited
situations and it is difficult to scale them for a large sensor network.
Hence, to handle general situations arising in a large-scale sensor
network, a scalable and autonomous approach is required and it
demands a new identity-management system that can handle an
unknown and time-varying number of targets.

Although target tracking and identity management are closely
related, only the recent work by Hwang et al. [23,24] describes an
algorithmic framework for systematically tracking multiple
maneuvering targets and maintaining their identities from noisy
measurements. The algorithmhas been shown to performwell for the
case inwhich there is a single sensor (radar) and the number of targets
are known and constant. Thus, this algorithm cannot be used for
sensor network applications in which there are many sensors and the
number of targets is varying over time. In this paper, we extend the
results in [24] and propose a multitarget-tracking and identity-
management system that is scalable, autonomous, and distributed.
The system is based on three new algorithms: multitarget-tracking,
identity-management, and identity- and track-fusion algorithms. The
multitarget-tracking algorithm is a hierarchical implementation of
Markov chain Monte Carlo data association (MCMCDA) [25,26]
with a sliding window. For identity-management and fusion
algorithms, distributed multitarget identity management (DMIM) is
proposed. DMIM is a scalable, event-driven, query-based algorithm

for local maintenance of identity beliefs and the incorporation of
identity information from nearby sensors. Global identity estimates
are generated in DMIM using identity fusion, which is posed as an
optimization problem such that the fused identity minimizes a cost
function that represents a performance criterion.

MCMCDA can track an unknown number of targets in real time
and is an approximation to the optimal Bayesian filter. Monte Carlo
methods have been applied to multitarget tracking. In [27,28], the
particle filter has been applied to multitarget tracking, but the data-
association problem is solved by JPDA. Unlike JPDA or MHT,
which enumerates all possible associations to solve data-association
problems, MCMCDA randomly samples the region in which the
posterior is concentrated usingMarkov chainMonte Carlo (MCMC)
techniques, making it more computationally efficient [25,26]. The
simulation study in [25] showed that MCMCDA was computation-
ally efficient compared with MHT with heuristics (i.e., pruning,
gating, clustering, N-scan-back logic, and k-best hypotheses).
MCMCDA outperformed MHT when the false-alarm rate is high or
the number of targets is large [25]. MCMCDA is suitable for
distributed sensor networks because it can autonomously initiate and
terminate tracks. It has also been shown that MCMCDA is robust
against packet losses and communication delays [29]. MCMC was
first used to solve data-association problems by Pasula et al. [30,31],
who showed it to be effective for multicamera traffic surveillance
problems involving hundreds of vehicles. More recently, in [32],
MCMC was used to approximate the association probabilities in
JPDA and was shown to outperform Fitzgerald’s cheap JPDA.
MCMC has also been used for problems that are roughly isomorphic
to the data-association problem, including state estimation in the
switching Kalman filter [33] and stereo correspondence in computer
vision [15].

The DMIM algorithm combines local maintenance of identity
beliefs with a query-based protocol for the transfer and fusion of
identity information between sensors. The algorithm is appropriate
for distributed sensor network scenarios because it has the capability
to reduce the uncertainty of the global identity estimates by fusing
local estimates of the identity of a target collected by each sensor
[22]. The identity-mass-flow framework is used to maintain a local
estimate of identity for a fixed set of maneuvering targets [21,22].
This framework prevents exponential growth in computation and
storage of target-to-track association probabilities. We develop a
distributed version of this centralized algorithm (DMIM) that allows
an unknown time-varying number ofmaneuvering targets in a sensor
network. TheDMIMalgorithm is scalablewith respect to the number
of targets and number of sensors and can handle dynamic scenarios in
which targets maneuver into and through the sensor network.

A key component of DMIM is the fusion of tracks and identity
beliefs between neighboring sensors. The tracks estimated by
neighboring sensors are hierarchically merged using MCMCDA to
maintain local consistency. Identity fusion in DMIM is based on
principles of information theory. Information-theoretic methods
were initially developed to understand data communication and
storage limits [34] and have subsequently been applied to problems
such as target localization [35] and fault detection [36]. The identity-
fusion algorithm incorporates metrics from information theory as
performance criteria when determining global belief estimates.
Specifically, Shannon information, Chernoff information, and the

Fig. 1 An example of different interpretation measurements: a) measurements about the positions of two targets, b) one interpretation made from

measurements shown in Fig. 1a (a solid line represents a track of a target), and c) another interpretation; each circle represents a measurement and

numbers represent measurement times.
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sum of Kullback–Leibler distances are used as cost functions.
Minimizing these cost functions allows us to find locally consistent
identity beliefs. Because local estimates can be combined under a
query-based protocol, the identity-fusion algorithm lends itself to a
distributed sensor network in which targets maneuver in and out of
the sensing range of individual sensors.

In this paper, a distributed air traffic control system is used as an
example of sensor networks. Although each air traffic controller is
usually more capable than low-power sensor nodes described in
[4,5], the efficiency of the system described in this paper makes the
system applicable for a wide range of applications, including low-
power or heterogeneous sensor networks. In the current air traffic
control system, there is no algorithm that can perform simultaneous
aircraft tracking and identity management, and most air traffic
control systems are based on centralized computation. A controller
performs identity management manually through voice communi-
cations, and the current techniques to resolve identity uncertainty of
aircraft involve considerable communication between pilots and
controllers, hence increasing workloads on both parties. The
techniques developed in this paper mitigate this problem as much as
possible by automating identity management; in this manner, local
information is automatically incorporated using aircraft motion
models. In situations under which this is not sufficient, the system
can be used to alert the controller before a safety-critical situation
occurs. In these scenarios, other sources of identity information such
as intermittent transponder reports or physical characteristics of the
aircraft may also be used in our system.

This paper is organized as follows: The overall architecture of the
DMTIM is presented in Sec. II and the components of DMTIM are
described in the following sections. In Sec. III, we formally describe
the multitarget-tracking problem and describe MCMCDA for data
association and multitarget tracking. We also compare MCMCDA
against MHT in simulation. The algorithms for the identity
management are described in Sec. IV. The tracks and identities
estimated by neighboring sensors are combined using the identity-
and track-fusion algorithms described in Sec. IV. We demonstrate
and evaluate a DMTIM system in simulation in Sec. V.

II. System Architecture of Distributed Multitarget
Tracking and Identity Management

The main focus of this paper is the problem of tracking multiple
targets andmanaging their identities in sensor networks. Each sensor
is assumed to have its own surveillance region and an ability to
communicate with its neighboring sensors. A simple two-sensor
example is shown in Fig. 2, in which the circles represent the
surveillance regions of the sensors. Each sensor is assumed to have
the capability of trackingmultiple targets andmanaging the identities
of targets within its surveillance region. The problem gets
complicated, because the number of targets within the surveillance
region of a sensor changes over time. For example, some targets may
come from the surveillance regions of neighboring sensors, some
targets may have not yet been registered into the identity-
management system, and some targets may leave the surveillance
region of the current sensor. For a large network, a centralized
approach to multitarget tracking and identity management is not
feasible and a scalable distributed approach is required.

This paper proposes a scalable DMTIM system that can track an
unknown time-varying number of maneuvering targets and manage
their identities efficiently in a distributed sensor network. The key
highlights of DMTIM include modularity, the compact representa-
tion of identity and tracks to reduce communication load, and event-
driven mechanisms for identity and track management.

The identity of a target ismaintained by a belief vector.When there
are K known identities, the belief vector of the target at time t is
b�t� 2 �0; 1�K . The ith element bi�t� ofb�t� represents the probability
that the identity of the target is the ith identity and

XK
i�1

b�t� � 1

For multiple targets, we have a belief matrix B�t� for which the
columns are belief vectors of the targets. Thus, entryBij�t� represents
the probability that target j can be identified as label (or name) i at
time t.

The overall architecture of DMTIM is shown in Fig. 3. DMTIM
includes the data-association and multitarget-tracking (DAMTT)
module and the DMIM module, which contains the identity-
management (IM) and identity- and track-fusion (ITF) submodules.
At each sensor, the DAMTTmodule estimates the number of targets
and tracks in its surveillance region, using its local measurements,
and computes a mixing matrix and local information that are used by
the IM module. A mixing matrix stores information about the
interactions among targets, and local information contains identity
information about a target. Amixingmatrix and local information are
described in detail in Sec. III. Upon receiving a mixing matrix and
local information, the IM module updates its belief matrix. Then the
sensor transmits its updated belief matrix and estimated tracks to its
neighboring sensors using the communication unit.

In DMTIM, instead of sharing raw measurement data among
neighboring sensors, the neighboring sensors share identity
information in the form of a belief matrix and estimated tracks. As
a result, we can reduce the overall communication load of the
network.When the updated beliefmatrices and estimated tracks from
neighboring sensors are available, the ITFmodule combines identity
information and tracks and maintains local consistency among
sensors. For example, if the same target is seen by sensor 1 and
sensor 2, then the ITF module makes sure that sensor 1 and sensor 2
share the same information about the target. The ITF module also
combines multiple tracks of the same target into a single track and
adds an entry for the identity of a new target into the belief matrix. In
following sections, the components of DMTIM are described in
detail.

III. Data Association and Multitarget Tracking

The DAMTT module of DMTIM takes in sensor measurements
and outputs a mixing matrix, state estimates, and local information.
The DAMTT module needs to be able to track an unknown number
of targets to distribute tracking tasks, because the number of targets in
each sensor’s surveillance region changes over time. In this section,
wefirst describe a general formulation that allows the uncertainties in
the number of targets and appearance and disappearance times of
targets. Then we describe an algorithm for solving the general
multitarget-tracking problem. Finally, the computations of mixing
matrices, state estimates, and local information are described.

A. Multitarget-Tracking Problem

LetT 2 Z� be the duration of surveillance. LetK be the number of
targets that appear in the surveillance region R during the
surveillance period. Each target k 2 f1; . . . ; Kgmoves inR for some
duration �tki ; tkf� � �1; T�. Notice that the exact values ofK and ftki ; tkfg
are unknown. Each target arises at a random position in R at tki ,
moves independently aroundR until tkf, and then disappears. At each
time, an existing target persists with probability 1 � pz and
disappears with probability pz. The number of targets arising at each
time overR has a Poisson distributionwith a parameter �bVR, where

Fig. 2 A distributed multitarget-tracking and identity-management

scenario for a two-sensor network.
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�b is the birth rate of new targets per unit time, per unit volume, and
VR is the volume of R. The initial position of a new target is
uniformly distributed over R.

Let Fk: Rnx ! Rnx be the discrete-time dynamics of the target k,
where nx is the dimension of the state variable, and let xk�t� 2 Rnx be
the state of the target k at time t. The target k moves according to

xk�t� 1� � Fk�xk�t�� �wk�t� for t� tki ; tki � 1; . . . ; tkf � 1 (1)

where wk�t� 2 Rnx are white-noise processes. The white-noise
process is included to model nonrectilinear motions of targets. The
noisy measurement (or observation) of the state of the target is made
with a detection probability pd. Notice that with probability 1 � pd,
the target is not detected andwe call this amissing observation. There
are also false alarms, and the number of false alarms has a Poisson
distribution with a parameter �fVR, where �f is the false-alarm rate
per unit time, per unit volume. Let n�t� be the number of
measurements at time t, including both noisymeasurements and false
alarms. Let yj�t� 2 Rny be the jth measurement at time t for
j� 1; . . . ; n�t�, where ny is the dimension of each measurement
vector. Each target generates a uniquemeasurement at each sampling
time if it is detected. LetHj:Rnx ! Rny be the measurement model.
Then the measurements are generated as follows:

yj�t� �
�
Hj�xk�t�� � vj�t� if jthmeasurement is from xk�t�
u�t� otherwise

(2)

where vj�t� 2 Rny are white-noise processes and u�t� 	 unif�R� is a
random process for false alarms. We assume that the targets are
indistinguishable in this paper, but if measurements include target-
type or attribute information, then the state variable can be extended
to include target-type information as done in [30].

The objective of themultitarget-tracking problem is to estimateK,
ftki ; tkfg and fxk�t�: tki 
 t 
 tkf g for k� 1; . . . ; K from noisy

measurements.
Let y�t� � fyj�t�: j� 1; . . . ; n�t�g be all measurements at time t

and Y � fy�t�: 1 
 t 
 Tg be all measurements from t� 1 to t� T.
Let � be a collection of partitions of Y such that for ! 2 �,
!� f�0; �1; . . . ; �Kg, where �0 is a set of false alarms and �k is a set of
measurements from target k for k� 1; . . . ; K. Note that ! is also
known as a joint-association event in literature. More formally, ! is
defined as the following: 1) !� f�0; �1; . . . ; �Kg, 2) [Kk�0�k � Yand

�i \ �j � ; for i ≠ j, 3) �0 is a set of false alarms, 4) j�k \ y�t�j 
 1
for k� 1; . . . ; K and t� 1; . . . ; T, and 5) j�kj � 2 for k� 1; . . . ; K.

An example of a partition is shown in Fig. 4, in which K is the
number of tracks for the given partition ! 2 �, and j�kj denotes the
cardinality of the set �k.We call �k a trackwhen there is no confusion,
although the actual track is the set of estimated states from the
measurements �k. However, we assume there is a deterministic
function that returns a set of estimated states, given a set of
measurements, and so no distinction is required. A track is assumed
to contain at least two measurements, because we cannot distinguish
a track with a single measurement from a false alarm, assuming
�f > 0. For special cases inwhichpd � 1 or�f � 0, the definition of
� can be adjusted accordingly.

Let ne�t� 1� be the number of targets at time t� 1, nz�t� be the
number of targets terminated at time t, and nc�t� � ne�t� 1� � nz�t�
be the number of targets from time t � 1 that have not terminated at
time t. Let nb�t� be the number of new targets at time t, nd�t� be the
number of actual target detections at time t, and nu�t� � nc�t� �
nb�t� � nd�t� be the number of undetected targets. Finally, let
nf�t� � n�t� � nd�t� be the number of false alarms. Notice that the
numbers nz�t�, nc�t�, nd�t�, nu�t�, nb�t�, and nf�t� can be computed
for given !.

Using the Bayes rule, it can be shown that the posterior of ! is

P�!jY� / P�!� � P�Yj!� /
YT
t�1
pnz�t�z �1 � pz�nc�t�pnd�t�d


 �1 � pd�nu�t���bVR�nb�t���fVR�nf�t� � P�Yj!� (3)

Fig. 3 Architecture of a DMTIM system for a two-sensor example.

Fig. 4 An example of partition measurements: a) measurements Y

(each circle represents a measurement and numbers represent

measurement times) and b) partition ! of Y (associations are indicated

by dotted lines and hollow circles are false alarms).
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where P�Yj!� is the likelihood of measurements Y given !, which
can be computed based on the chosen dynamic and measurement
models. Our formulation of Eq. (3) is similar to MHT [18], and
the derivation of Eq. (3) can be found in [37]. The parameters pz,
pd, �b, and �f have been widely used in many multitarget-tracking
applications [13,18]. Our experimental and simulation experiences
show that our tracking algorithm is not sensitive to changes in
these parameters in most cases. For example, the computation of
P�Yj!� for the linear dynamic and measurement models can be
found in [25].

In this paper, we take the maximum a posteriori (MAP) approach
to multitarget tracking, similar to MHT. The MAP approach finds a
partition of measurements that maximizes P�!jY� and estimates the
states of targets based on this partition.

B. State Estimation

Based on our general framework for multitarget tracking
described in the previous section, we describe an algorithm for
estimating the number of targets and states of targets. The DMTIM
system implements the online MCMCDA algorithm, which is an
approximate implementation of MCMCDA. First, the MCMCDA
algorithm is described.

1. MCMCDA

MCMC plays a significant role in many fields such as physics,
statistics, economics, and engineering [38–40]. The MCMCmethod
includes algorithms such as Gibbs sampling [41] and the
Metropolis–Hastings algorithm [42,43]. MCMC techniques have
been applied to complex probability distribution integration
problems, counting problems, and combinatorial optimization
problems [39]. In some cases, MCMC is the only known general
algorithm that finds a good approximate solution to a complex
problem in polynomial time [44].

MCMC is a general method to generate samples from a
distribution � on a space� by constructing aMarkov chainMwith
states ! 2 � and stationary distribution ��!�. We now describe an
MCMC algorithm known as the Metropolis–Hastings algorithm. If
we are at state ! 2 �, we propose !0 2 � following the proposal
distribution q�!; !0�. The move is accepted with an acceptance
probability A�!;!0�, where

A�!;!0� �min

�
1;
��!0�q�!0; !�
��!�q�!;!0�

�
(4)

otherwise, the sampler stays at !, and so the detailed balance is
satisfied. If we make sure that M is irreducible and aperiodic, then
M converges to its stationary distribution by the ergodic theorem
[45].

The MCMC data-association (MCMCDA) algorithm [25] is
described in Algorithm 1. MCMCDA is an MCMC algorithm for
which the state space� is described in Sec. III.A and for which the
stationary distribution is the posterior (3). The proposal distribution
for MCMCDA consists of five types of moves (a total of eight
moves). They are the 1) birth/death move pair, 2) split/merge move
pair, 3) extension/reduction move pair, 4) track-update move, and
5) track-switch move.

The MCMCDA moves are graphically illustrated in Fig. 5. We
index each move by an integer such that m� 1 for a birth move,
m� 2 for a death move, and so on. The movem is chosen randomly
from the distribution �K�m�, where K is the number of tracks of the
current partition !. When there is no track, we can only propose a
birth move, and so we set �0�m� 1� � 1 and 0 for all other moves.
When there is only a single target, we cannot propose a merge or
track-switch move, and so �1�m� 4� � �1�m� 8� � 0. For other
values ofK andm, we assume �K�m�> 0. The inputs forMCMCDA
are the set of all measurements Y, the number of samples nmc, and the
initial state!init. At each step of the algorithm,! is the current state of
the Markov chain. The acceptance probability A�!;!0� is defined in
Eq. (4), in which ��!� � P�!jY� from Eq. (3). The output !̂
approximates theMAP estimate argmaxP�!jY�. Given !̂, the states

Algorithm 1 MCMCDA

Input: Y, nmc, an !init

Output: !̂
!� !init; !̂� !init

for n� 1 to nmc do
propose !0 based on !
sample U from Unif[0, 1]
!� !0 if U < A�!; !0�
!̂� ! if p�!jY�=p�!̂jY�> 1

end for

Fig. 5 Graphical illustration ofMCMCDAmoves (associations are indicated by dotted lines and hollow circles are false alarms). Eachmove proposes a

new joint-association event!0 that is amodification of the current joint-association event!. The birthmove proposes!0 by forming a new track from the

set of false alarms (Fig. 5a to Fig. 5b). The death move proposes!0 by combining one of the existing tracks into the set of false alarms (Fig. 5b to Fig. 5a).

The split move splits a track from! into two tracks (Fig. 5c to Fig. 5d); whereas the merge move combines two tracks in! into a single track (Fig. 5d to
Fig. 5c). The extensionmove extends an existing track in! (Fig. 5e to Fig. 5f) and the reductionmove reduces an existing track in! (Fig. 5f to Fig. 5e). The

track-update move chooses a track in ! and assigns different measurements from the set of false alarms (Fig. 5g to Fig. 5h and the reverse). The track-

switch move chooses two track from ! and switches some measurement-to-track associations (Fig. 5i to Fig. 5j and the reverse).
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of the targets can be easily computed by any filtering algorithm
because the associations between the targets and the measurements
are known. Algorithm 1 can be also used to find the Bayesian
estimates of the target states (see [26] for more detail).

An MCMC algorithm can be specialized and made more efficient
by incorporating the domain-specific knowledge. In multitarget
tracking, we can make two assumptions:

1) Themaximumdirectional speed of any target inR is less than �v.
2) The number of consecutive missing measurements of any track

is less than �d.
The first assumption is reasonable in a surveillance scenario

because, in many cases, the maximum speed of a vehicle is generally
known based on the vehicle type and terrain conditions. The second
assumption is a user-defined parameter. Let �pdt�s� � 1 � �1 � pd�s
be the probability that a target is observed at least once out of s
measurement times. Then for a given �pdt, we set �d� dlog�1 �
�pdt�= log�1 � pd�e to detect a track with probability of at least �pdt.
For example, givenpd � 0:7 and �pdt � 0:99, a track is detected with
a probability larger than 0.99 for �d � 4. We will now assume that
these two new conditions are added to the definition of� so that each
element ! 2 � satisfies these two additional assumptions.

We use a data structure, called a neighborhood tree of
measurements, which groups temporally separated measurements
based on distances, to propose a new partition !0 in Algorithm 1. A
neighborhood tree of measurements is defined as

Ld

�
yjt

�
�
n
ykt�d 2 yt�d:

��yjt � ykt�d��
 d � �v
o

for d� 1; . . . ; �d, j� 1; . . . ; nt, and t� 1; . . . ; T � 1, where k � k is
the Euclidean distance, and the parameter d allows missing
measurements. The use of this neighborhood tree makes the
algorithm more scalable, because distant measurements will be
considered separately, and makes the computations of the proposal
distribution easier. It is similar to the clustering technique used in
MHT, but Ld is fixed for a given set of measurements.

We now describe eachmove of the sampler in detail. First, let ��d�
be a distribution of a random variable d, taking values from

f1; 2; . . . ; �dg. We assume the current state of the chain is
!� !0 [ !1 2 �, where !0 � f�0g and !1 � f�1; . . . ; �Kg. The
proposed partition is denoted by!0 � !00 [ !01 2 �. Note the abuse
of notation with indexing of time; that is, whenwe say ��ti�, timeans
the time at which a target corresponding to the track � is observed i
times.

a. Birth and Death Moves. For a birth move (Fig. 5a to
Fig. 5b), we increase the number of tracks fromK toK0 � K � 1 and
select t1 uniformly at random (u.a.r.) from f1; . . . ; T � 1g as an
appearance time of a new track. Let �K0 be the track of this new target.
Then we choose d1 from the distribution �. Let

L1
d1
�
n
yjt1 : Ld1

�
yjt1

�
≠ ;; yjt1

=2 �k�t1�; j� 1; . . . ; nt1 ; k� 1; . . . ; K
o

L1
d1
is a set ofmeasurements at t1 such that for any y 2 L1

d1
, y does not

belong to other tracks and y has at least one descendant inLd1�y�.We
choose �K0 �t1� u.a.r. from L1

d1
. If L1

d1
is empty, the move is rejected,

because the move is not reversible. Once the initial measurement is
chosen, we then choose the subsequent measurements for the track
�K0 . For i� 2; 3; . . ., we choose di from � and choose �K0 �ti� u.a.r.
from

Ldi ��K0 �ti�1�� n f�k�ti�1 � di�: k� 1; . . . ; Kg

unless this set is empty. But, for i� 3; 4; . . ., the process of adding
measurements to �K0 terminates with probabilitypz. If j�K0 j 
 1, then
the move is rejected. We then propose this modified partition in
which !01 � !1 [ f�K0 g and !00 � f�0 n �K0 g. For a death move
(Fig. 5b to Fig. 5a), we simply choose k u.a.r. from f1; . . . ; Kg, delete
the kth track, and propose a new partition in which !01 � !1 n f�kg
and !00 � f�0 [ �kg.

b. Split and Merge Moves. For a split move (Fig. 5c to
Fig. 5d), we select �s�tr� u.a.r. from

f�k�ti�: j�kj � 4; i� 2; . . . ; j�kj � 2; k� 1; . . . ; Kg

Then we split the track �s into �s1 and �s2 such that �s1 � f�s�ti�: i�
1; . . . ; rg and �s2 � f�s�ti�: i� r� 1; . . . ; j�sjg. The modified track
partition becomes !01 � �!1 n f�sg� [ f�s1g [ f�s2g and !00 � !0.
For a merge move (Fig. 5d to Fig. 5c), we consider the following set
of possible merge move pairs:

Msp � f��k1�tf�; �k2 �t1��: �k2�t1� 2 Lt1�tf ��k1�tf��; f� j�k1 j

for k1 ≠ k2; 1 
 k1; k2 
 Kg

We select a pair ��s1�tf�; �s2 �t1�� u.a.r. from M. The tracks are
combined into a single track �s � �s1 [ �s2 . Then we propose a new
partition in which !01 � �!1 n �f�s1g [ f�s2g�� [ f�sg and !00 � !0.

c. Extension and Reduction Moves. In a track-extension move
(Fig. 5e to Fig. 5f), we select a track � u.a.r. fromK available tracks in
!. We reassign measurements for � after the disappearance time tj�j,
as done in the track-birth move. For a track-reduction move (Fig. 5f
to Fig. 5e), we select a track � u.a.r. fromK available tracks in! and r
u.a.r. from f2; . . . ; j�j � 1g. We shorten the track � to
f��t1�; . . . ; ��tr�g by removing the measurements assigned to � after
the time tr�1.

d. Track–Update Move. In a track-update move (Fig. 5g to
Fig. 5h), we select a track � u.a.r. fromK available tracks in !. Then
we pick r u.a.r. from f1; 2; . . . ; j�jg and reassign measurements for �
after the time tr as done in the track-birth move.

e. Track–Switch Move. For a track-switch move (Fig. 5i to
Fig. 5j), we select a pair of measurements ��k1 �tp�; �k2 �tq�� from two
different tracks such that �k1�tp�1� 2 Ld��k2 �tq�� and
�k2 �tq�1� 2 Ld0 ��k1 �tp��, where d� tp�1 � tq, d0 � tq�1 � tp,
0< d, and d0 
 �d. Then we let

�k1 � f�k1�t1�; . . . ; �k1�tp�; �k2�tq�1�; . . . ; �k2�tj�k2 j�g

�k2 � f�k2 �t1�; . . . ; �k2�tq�; �k1�tp�1�; . . . ; �k1 �tj�k1 j�g

2. Online MCMCDA

Although the computational complexity of the MCMCDA
algorithm described in Sec. III.B.1 is lighter thanMHT [25], it grows
as more measurements are collected. Because recent measurements
are more relevant to the current states, good estimates of the current
states can still be found from recent measurements. Based on this
idea, we propose an online MCMCDA algorithm for which the
estimates are based on measurements from a window of time
�tcurr � twin � 1; . . . ; tcurr�, where tcurr is the current time and twin is the
size of a window. Hence, at all times, only a finite number of
measurements are kept by the algorithm. This online implementation
of MCMCDA is suboptimal, because it considers only a subset of
past measurements. At each time step, we use the previous estimate
to initialize MCMCDA and run MCMCDA on the measurements
belonging to the current window. The measurements belonging to
the current window are

Yw � fyj�t�: 1 
 j 
 n�t�; tcurr � twin � 1 
 t 
 tcurrg

At time tcurr � 1, the measurements at time tcurr � twin � 1 are
removed from Yw and a new set of measurements is appended to Yw.
Any delayed measurements are inserted into the appropriate slots.
Then we initialized the Markov chain with the previously estimated
tracks and executes Algorithm 1 on Yw.

Each time that online MCMCDA is executed, it finds the partition
!̂ that approximates the MAP estimate of the multitarget-tracking
problem and state estimates for all tracks in !̂. For each track � 2 !̂,
we compare it with the tracks of previously identified targets. If �
does not share any measurements with the tracks of previously
identified targets, we declare � as a new target. Then the current
sensor makes a query about the identity of � to its neighboring
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sensors. If the identity of � is known to the neighboring sensors, its
identity is copied to the current sensor. Otherwise, a new identity is
created for �. The identity of a target is deleted when the track of the
target is terminated. In Sec. IV.A, we describe how the belief matrix
is updated upon changes in the number of identities.

3. Comparison Between MCMCDA and MHT

The performance of MCMCDA is extensively compared against
MHT in [25]. The simulation study in [25] compared MCMCDA
against MHT with heuristics (i.e., pruning, gating, clustering, N-
scan-back logic, and k-best hypotheses) by varying the false-alarm
rate, the number of targets (or target density), and the detection rate.
MCMCDA outperformed MHT when the false-alarm rate was high
or the number of targets was large, and it required significantly less
computation time [25]. At varying detection rate, MCMCDA
achieved performance similar to MHT. For more information about
the comparison between MCMCDA and MHT, see [25]. In this
section, an illustrative example is described to demonstrate the
robustness of MCMCDA.

An example of tracking multiple targets in a dense clutter
environment is used to compare onlineMCMCDAagainstMHT (see
Fig. 6a). For this example, the surveillance duration is T � 100, and
there are 10 targets appearing and disappearing at random times over
the surveillance region R� �0; 1000� 
 �0; 1000�. The other

parameters are pd � :9, �f � 5:0 
 10�5, �d� 10, and �v� 100 unit
lengths per unit time. A uniformmass function is used for each �K���,
and ��d� is computed based on pd. The state vector of a target is
x� �x; _x; y; _y�T , where �x; y� is a position along the usual x and y axes
and � _x; _y� is a velocity vector. Simple linear dynamics and
measurement models are used in simulation:

xk�t� 1� � Axk�t� �Gwk�t�; yj�t� � Cxk�t� � vj�t� (5)

where

A�

1 � 0 0

0 1 0 0

0 0 1 �
0 0 0 1

2
664

3
775; G�

�2=2 0

� 0

0 �2=2
0 �

2
664

3
775; C�

1 0

0 0

0 1

0 0

2
664

3
775
T

� is the sampling period,wk�t� is a zero-mean Gaussian process with
covariance Q� diag�25; 25�, and vj�t� is a zero-mean Gaussian
process with covariance R� diag�25; 25�.

The online MCMCDA algorithm is written in C�� with
MATLAB interfaces. The size of the slidingwindow is twin � 10 and
we used 10,000 samples at each simulation time. We used the C��

implementation of MHT¶ [46], which implements pruning, gating,

clustering,N-scan-back logic, and k-best hypotheses. The following
parameters are used for MHT: the maximum number of hypotheses
in a group is 1000, the maximum track tree depth is 5, and the
maximumMahalanobis distance is 11.8. All simulations are run on a
PC with a 2.6-GHz Intel processor.

Figure 6b shows the tracks estimated by onlineMCMCDA, and its
overall execution time was 33.5 s. The tracks estimated by MHT are
shown in Fig. 6c, and its overall execution time was 130.0 s. Even
with a longer execution time,MHT reports many spurious tracks. On
the other hand, online MCMCDA provides excellent track estimates
with less running time.

C. Mixing Matrix

Suppose there are K targets and K identities in the surveillance
region of the current sensor. Then the problem ofmanaging identities
ofmultiple targets is tomatch each target to its identity over time. For
this, we use the idea of the identity-mass flow [21]. The idea of the
identity-mass flow is that an identity is treated as a unitmass assigned
to a target. These masses cannot be destroyed or created and they
flow from one target into another through a mixing matrix M�t� at
time t. A mixing matrix is a K 
 K matrix for which the element
Mij�t� represents the probability that target i at time t� 1 has become
target j at time t. Thus, a mixing matrix stores information about the
interactions among targets for a single sampling period. It is a doubly
stochastic matrix; that is, its column sums and row sums are equal to
1.

Let K0�t� be the number of targets estimated by the online
MCMCDA at time t.We are interested in computing amixingmatrix
for the targets that are present both at time t � 1 and t. Let K be the
number of targets present at time t � 1 and t (i.e.,
K �min�K0�t � 1�; K0�t��), and this excludes any disappeared
targets or new targets.Without loss of generality, assume that thefirst
K targets are present at time t� 1 and t. Let

x̂�t � 1� � fx̂k�t� 1�: 1 
 k 
 Kg

be the state estimates of targets at time t � 1 and

x̂�t� � fx̂k�t�: 1 
 k 
 Kg

be the current state estimates computed by online MCMCDA. The
mixing matrix entryMij�t� represents the probability that the target
with state x̂i�t � 1� at time t� 1 has become the targetwith state x̂j�t�
at time t. In theory, we can use Algorithm 1 to compute this
probability. Instead, we use a single-scan version of MCMCDA to
reduce the computation time. Single-scan MCMCDA uses concepts
from JPDA [26]. We first encode this target-to-target association
event in a bipartite graph. Let G� �U;V; E� be a bipartite graph,
where U� f1; . . . ; Kg is a set of target indices at time t � 1, V �

Fig. 6 OnlineMCMCDAvsMHT: a) an example used in Sec. III.B.3 [trajectories of targets are shown in solid lines andmeasurements are shown indots
(from t� 1 to 100)]; b) tracks estimated by online MCMCDA with 10,000 samples at each simulation time (total execution time is 33.5 s); and c) tracks

estimated by MHT (total execution time is 130 s). Although MHT reports many spurious tracks and requires a longer running time, online MCMCDA

provides excellent track estimates with less running time.

¶Data available online at http://www.adastral.ucl.ac.uk/~icox/.
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f1; . . . ; Kg is a set of target indices at time t, and

E� f�i; j�: i 2 U; j 2 V; P�x̂j�t�jx̂i�t� 1��> �0g

for some small �0 > 0. A feasible target-to-target association event �
is amatching inG (i.e., a subset E0 � E such that no two edges in E0

share a vertex). Let�� f�g be the set of all feasible target-to-target
association events. The posterior of � given x̂�t� and x̂�t � 1� can be
computed using the Bayes rule:

P��jx̂�t�; x̂�t� 1�� � 1

Z
P�x̂�t�jx̂�t� 1�; ��P�x̂�t� 1�j��P���

� 1

Z

n Y
�i;j�2�

P�x̂j�t�jx̂i�t � 1��
o
P�x̂�t � 1�j��P��� (6)

where Z is a normalizing constant. We assume that matchings of the
same size are equally likely; hence,

P��� /
�
jEj
j�j

��1
/ j�j!�jEj � j�j�!

where jEj is the number of edges in E, and j�j is the number of
matches in �. When computing a mixing matrix, we assume that
fx̂i�t � 1�g are fixed for the targets with known identities. So we
simply set P�x̂�t� 1�j�� � 1.

Under these assumptions, the posterior (6) reduces to

P��jx̂�t�; x̂�t� 1�� � 1

Z0

n Y
�i;j�2�

P�x̂j�t�jx̂i�t� 1��
o
j�j!�jEj � j�j�!

(7)

whereZ0 is another normalizing constant. EachP�x̂j�t�jx̂i�t � 1�� can
be computed using the target’s dynamic model; hence, the
posterior (7) can be computed up to a normalizing constant. Notice
that P�x̂j�t�jx̂i�t � 1�� can be computed exactly for linear-Gaussian
dynamic models and approximately for the cases when the dynamic
model is nonlinear and/or the noise processes are non-Gaussian,
using methods such as linearization, unscented filtering [47],
interacting multiple models [48], and particle filters [49]. Hence, our
objective is to compute the mixing matrix based on our estimates
fP�x̂j�t�jx̂i�t� 1��g.

Let �ij be the event such that the target with state x̂i�t � 1�
becomes the target with state x̂j�t�. Now the mixing probability
Mij�t� can be computed as

Mij�t� � P��ijjx̂�t�; x̂�t � 1�� �
X

�2�: �i;j�2�
P��jx̂�t�; x̂�t� 1�� (8)

The computation of Mij�t� requires a summation over the
posteriors, hence the enumeration of all joint-association events. The
exact computation of a mixing matrix is NP-hard. More generally,
the exact computation of association probabilities in JPDA is NP-
hard [50] because the related problemoffinding the permanent of a 0-
1matrix is ]P-complete [51].∗∗Hence, for a large problem (i.e., when
the number of targets is large), we need to seek an efficient
approximation algorithm. In the remainder of this section, we
describe a polynomial-time approximation algorithm based on
MCMC: namely, theMetropolis–Hastings algorithm. The algorithm
for computing amixingmatrix is shown inAlgorithm2. The inputs to
Algorithm 2 are the graph G, state estimates x̂�t� and x̂�t � 1�, an
initial Markov chain state �init that is chosen randomly from �, the
number of MCMC samples nmc, and the number of burn-in MCMC
samples nbi. The mixing matrix is estimated by the Monte Carlo
integration of samples after the burn-in period. For more information
about burn-in samples and general MCMC techniques, we refer
readers to [38]. Notice that we only need to compute the ratio

P��0jx̂�t�; x̂�t � 1��=P��jx̂�t�; x̂�t � 1��

avoiding the need to normalize P��jx̂�t�; x̂�t� 1��.
Although heuristic approaches do not guarantee asymptotic

optimality and may fail in some situations, Algorithm 2 can
approximate the mixing matrix M� �Mij� (the time index is
suppressed) in polynomial time with guaranteed error bounds.

Theorem 1: For any 0< �1; �2 < 1 and 0< 	 < 0:5, with time
complexity

O
�
��40 �

�2
1 �
�1
2 log 	�1K8

h
K log ��10 � log

�
��11 �

�1
2

�i�
(9)

Algorithm 2 finds estimates M̂ij for Mij with probability at least

1 � 	, such that forMij � �2, M̂ij estimatesMij within ratio 1� �1
[i.e., �1 � �1�Mij 
 M̂ij 
 �1� �1�Mij] and for Mij < �2,

jM̂ij �Mijj 
 �1� �1��2.
Theorem 1 is a corollary of Theorem 2 and Theorem 3 of [52] after

replacing the number of measurementsN in [52] with the number of
targetsK and lettingR� jEj=�0 andm5�K;N� �O�K log ��10 �. The
idea of the proof is as follows: It is well known that themixing time of
a Markov chain determines the rate of convergence of the Markov
chain to its stationarity [44]. We first show that the mixing time of
MCMCDA is polynomial in the size of the problem and log ��1,
where � is a precision parameter [52]. Then it is easy to show that the
estimates computed byMCMCDAare very close to their true values.

D. Local Information

In some applications, identity information about a target (local
information) could be obtained from sensors that can measure its
physical attributes or from the target’s dynamic characteristics.
When local information is available, we use local information to
decrease the uncertainty of the belief matrix measured by entropy.
MCMCDA, described in Sec. III.B.1, allows an efficient way to
compute local information from both the latest and past
measurements. Another benefit of MCMCDA is that local
information can be computed simultaneously while the number of
targets and tracks of all targets are estimated. For identity k, letNjk be
the number of times the jth latest measurement is associated with the
initial measurement identified by k after the initial nbi samples while

Algorithm 2 MCMC for mixing matrix computation

Input: nbi, nmc, G� �U;V; E�, x̂�t�, x̂�t � 1�, and �init
Output: M̂�t�
�� �init; M̂�t� � 0K
K

for n� 1 to nmc do
choose e� �u; e� 2 E uniformly at random
if e 2 �, then
�0 � �� e

else if both u and v are unmatched in �, then
�0 � �� e

else if exactly one of u and v is matched in � and e0 is the matching
edge, then
�0 � �� e� e0

else
�0 � �

end if
�� �0 with probability

min

�
1;
P��0jx̂�t�; x̂�t � 1��
P��jx̂�t�; x̂�t � 1��

�

if n > nbi then
for each �i; j� 2 � do

M̂ij�t� � M̂ij�t� � 1;
end for

end if
end for
for each �i; j� 2 f�i0; j0�: 1 
 i0; j0 
 Kg do
M̂ij�t� � M̂ij�t�=�nmc � nbi�

end for

∗∗A ]P-complete problem is computationally equivalent to computing the
number of accepting computations of a polynomial-time nondeterministic
Turing machine, and ]P contains NP [44].
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running Algorithm 1, where nbi is the number of initial burn-in
samples and nbi < nmc. When Algorithm 1 terminates, we compute

k � �
k1 ; . . . ; 
kn�t��T for identity k, where 
kj � Njk=�nmc � nbi�.
Then we form local information from 
k by resizing the vector
according to the latest measurements assigned in state estimates and
normalizing the resized vector.

IV. Distributed Multitarget Identity Management

A. Identity Management

The IM module consists of belief-matrix update and local-
information incorporation. In the IM module, a mixing matrix and
local information from the DAMTT module are used to update the
belief matrix.

1. Belief-Matrix Update

The belief-matrix-update block maintains identity information
stored in a belief matrixB�t� for which the columns are belief vectors
of the targets over time. The evolution of this belief matrix is
governed by a mixing matrix M�t�, which stores interaction
information for a single time step. Then the belief matrix is updated
by [21]

B�t� � B�t � 1�M�t� (10)

We can show that Eq. (10) keeps row and column sums of the belief-
matrix constant when the numbers of targets and identities are the
same. However, this is not the case for distributed identity
management, because the number of the targets within the
surveillance region of individual sensors may change over time.
There are two possible cases: a target leaves or enters the surveillance
region of a sensor.When a target leaves, we delete the corresponding
column in the belief matrix managed by the sensor. When a target
enters the surveillance region of a sensor, there are two possible
cases:

1) The target comes from the surveillance region of another sensor,
which may be queried.

2) The target comes from the outside of the surveillance region of a
sensor network.

For these cases, we propose Algorithm 3, a scalable, event-driven,
query-based belief-matrix-update algorithm.

For distributed identity management, a belief matrix managed by
each sensor may not be a square matrix, but might more likely be a
skinnymatrix, which has more rows than columns. The belief matrix
may not be a doubly stochastic matrix for which the row and column
sums are equal to one, but it should be a stochastic matrix with
column sums equal to one. Its row sums remain constant, because an
identity mass cannot be destroyed or created. Because the evolution
of the belief matrix is governed by Eq. (10), these characteristics of
the belief matrix are preserved over time.

2. Local-Information Incorporation

When local information is available, we use local information to
decrease the uncertainty of the belief matrix measured by entropy.

The entropy (Shannon information) of an L 
 K belief matrix is
defined as

H�B�t��≜ �
XL
i�1

XK
j�1

Bij�t� logBij�t� (11)

Then the problem is how to incorporate this information to the belief
matrix. From the idea of the identity-mass flow and the
characteristics of Eq. (10), we know that the belief matrix should
have the following properties: its column sums are equal to one and
its row sums remain constant. However, if we replace a column in the
belief matrix with local information, it is not guaranteed that the new
belief matrix has the preceding properties. For a nonnegative square
matrix, the Sinkhorn algorithm [53] can be used to scale a matrix to
achieve specified row and column sums [54,55]; that is, we scale a
new beliefmatrix so that its row and column sums remain the same as
those of the belief matrix before local-information incorporation.
However, because the belief matrix is, in general, a nonnegative
rectangular matrix, such iteration may not converge [54–56]. But the
question whether a given matrix is almost scalable (i.e., the matrix
can be scaled within � > 0) can be decided in polynomial time [56].
Thus, we can efficiently check whether the available local
information can be incorporated. Thus, local information can be
incorporated when it makes the new belief matrix almost scalable.
Even though the new belief matrix is almost scalable, local
information incorporated may not necessarily decrease the
uncertainty (entropy) of the belief matrix. Therefore, local
information is incorporated only when it reduces the uncertainty of
the belief matrix. The local-information-incorporation algorithm is
described in Algorithm 4.

B. Identity and Track Fusion

ForDMTIM, the identity and track fusion is crucial to compute the
global information of the system from information provided by local
sensors. In this section, we explain how the ITF modules combines
state estimates and belief vectors of the same target from neighboring
sensors.

1. Identity Fusion

We now consider the problem of combining two belief vectors of
the same target from two different sensors. Identity fusion can be
formulated as an optimization problem such that the fused identity is
the one that minimizes a cost function, which represents a
performance criterion. For optimization, we propose three different
cost functions: Shannon information, Chernoff information, and the
sum of Kullback–Leibler distances. We then derive a Bayesian
identity-fusion method and discuss the relationship between the
Bayesian method and the optimization algorithms.

a. Shannon Information. The Shannon information is defined
as

H�b0� �
Xn
i�1
�b0�i� log b0�i� (12)

Algorithm 3 Event-driven, query-based belief-matrix update

For sensor i and target k,
if target k leaves the surveillance region of sensor i, then
delete the corresponding column in the belief matrix.

end if
if a target enters the surveillance region of sensor i, then
send a query about the identity of target k.
if there is an answer “yes” and the belief vector of target k is received,
then
augment the belief matrix with the belief vector received.

else
augment the belief matrix with a belief vector with a new identity

assigned to the target.
end if

end if

Algorithm 4 Local-information incorporation

Given local information (belief vector) of a target and a belief matrix B�t�.
Make a matrix B0�t� by replacing the column corresponding to the target in
B�t� with the local information.

Operator S represents the matrix scaling process in [56].
if B0�t� is almost scalable, then
Bnew�t� :� S�B0�t��
if H�Nnew�t�� 
 H�B�t�� then
B�t� :� Bnew�t�

else
B�t� :� B�t�

end if
else
B�t� :� B�t�

end if
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where b0 2 �0; 1�n with X
i

b0�i� � 1

The Shannon information (also known as entropy) is ameasure of the
uncertainty of a system. Thus, the minimization of the Shannon
information selects a belief vector that is most informative in the
sense of minimum entropy. Suppose b1 and b2 are belief vectors of
target t computed by sensor 1 and sensor 2, respectively. Because the
most common data-fusion algorithms compute a linear combination
of two data, we propose the following fusion strategy:

b0 � �b1 � �1 � ��b2 (13)

where � 2 �0; 1� and bi 2 �0; 1�n with
Xn
j�1

bi�j� � 1

for i 2 f1; 2g and
Xn
j�1

b0�j� � 1

Then the problem of computing the fused belief vector becomes a
problem of finding a weight � that minimizes the cost function in
Eq. (12). If we use the fusion strategy in Eq. (13), then the Shannon
information of the new fused belief vector is

H�b0� �H��b1 � �1 � ��b2� � �H�b1� � �1 � ��H�b2� (14)

From Eq. (14), we can see that the minimum is always achieved at
either �� 0 or �� 1. This means that a fused belief vector that has
the minimum Shannon information is either of the two given belief
vectors, which is a hard choice. For some applications, such as
identity management in this paper, the hard choice may not be
desirable because it ignores one possibility completely and thus
might quickly lead to a wrong answer over time, if not immediately.
Thus, we propose a soft decision method that has � 2 �0; 1� for
almost all cases. Motivated by the fact that Shannon-information
minimization chooses a belief vector that has the minimum entropy,
we propose to use the inverse of the Shannon information of a belief
vector as a weight. Thus, we put large confidence on a belief vector
that has small Shannon information. Then a new belief vector
b0 � �b0�i�� is

b0�i� � H�b1��1b1�i�
H�b1��1 �H�b2��1

� H�b2��1b2�i�
H�b1��1 �H�b2��1

(15)

From Eqs. (13) and (15), we get

�� H�b1��1
H�b1��1 �H�b2��1

� H�b2�
H�b1� �H�b2�

(16)

When H�b1� �H�b2� � 0, we set �� 1
2
; �� 0 if H�b2� � 0 (no

uncertainty inb2); and�� 1whenH�b1� � 0 (no uncertainty inb1).
In these cases, the fused belief vector computed by the proposed
fusion algorithm is a belief vector that has no uncertainty. This fusion
algorithm is a soft decision method because the fused data are a
convex combination of the two given data with a larger weight on the
data that have smaller entropy. FromEqs. (14) and (16), the Shannon
information of the new belief H�b0� has the property that

H�b0� � 2H�b1�H�b1�
H�b1� �H�b2�

or 2H�b0��1 
 H�b1��1 �H�b2��1

(17)

Inequality (17) tells us that the achievable minimum uncertainty of
the fused belief vector with the fusion strategy in Eq. (13) with
Eq. (16) as a weight is lower-bounded by uncertainties of the given
information. In other words, the maximum achievable certainty

(inverse of the Shannon information) is upper-bounded by the
arithmetic mean of the inverse of the Shannon information of the
given belief vectors. If we use the fusion strategy in Eq. (13), we can
also derive the upper bound of the Shannon information of the new
belief vector:

H�b0� 
 �2H�b1� � �1 � ��2H�b2� � ��1 � ���H�b1�
�H�b2� �D�b1 k b2� �D�b2 k b1�� (18)

where

D�p k q�≜
X
i

p�i� log�p�i�
q�i��

is the Kullback–Leibler distance [57]. If we use � in Eq. (16), then

H�b0� 
 2H�b1�H�b1�
H�b1� �H�b2�

�H�b1�H�b2��D�b1 k b2� �D�b2 k b1���H�b1� �H�b2��2
(19)

Thus, we can analytically compute the upper and lower bounds of the
Shannon information of the new belief vector using the fusion
strategy in Eq. (13) with Eq. (16). If we interpret the error covariance
matrix as an uncertainty measure of an estimate of a continuous
random variable, we find that Eq. (17) could be interpreted as an
analogy of the Cramér–Rao lower bound of the mean-squared error
(error covariance) of any unbiased estimator, in the sense that the
achievable minimum uncertainty has a lower bound. Thus, the
Shannon-information cost function would be useful when we have
good knowledge about the performance and/or fidelity of each
sensor, because we can get a solution that has lower entropy by
weighing information that has lower entropy than the other.
However, if we do not have such knowledge, we may get a biased
solution by consistently putting more confidence on one piece of
information (possibly the wrong one) than the other.

b. Chernoff Information. The Chernoff information is defined
as

C�b1; b2� � � min
0
�
1

log

�Xn
i�1

b1�i��b2�i�1��
�

(20)

If �� minimizes Eq. (20), the new belief vector b0 (�b0�i�� for
i� f1; 2; � � � ; ng) is

b0�i� � b1�i��
�
b2�i�1��

�

P
n
j�1 b1�j��

�
b2�j�1��

� (21)

The new belief vector in Eq. (21) satisfies [57,58]

D�b0 k b1� �D�b0 k b2� (22)

This fusion strategy is different from that in Eq. (13), which is a
convex combination of the two data. FromEq. (22), theminimization
of the Chernoff information is equivalent to finding a function that is
in the middle of the two original functions, in which the middle is
defined in terms of the Kullback–Leibler distance. In other words,
Chernoff-information minimization could be interpreted as selecting
a probability vector that is “equally close” in terms of the Kullback–
Leibler distance to the original probability vectors. This fusion
algorithm does not put more confidence on one than the other. Thus,
this cost function could be useful whenwe do not know the quality of
information obtained from individual sensors; by choosing the
middle point of the two pieces of information, we couldminimize the
bias over time. However, the fused belief vector computed by the
Chernoff-information-minimization algorithm may have larger
entropy than that computed by the algorithm in Eq. (13) with
Eq. (16).

c. Sum of the Kullback–Leibler Distances. Because the
Kullback–Leibler distance is not symmetric, we consider two
possible optimization problems:
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Minimize

D�b0 k b1� �D�b0 k b2� (23)

subject to

Xn
j�1

b0�j� � 1 b0�j� � 0

Minimize

D�b1 k b0� �D�b2 k b0� (24)

subject to

Xn
j�1

b0�j� � 1 b0�j� � 0

where b0�j� is the jth element of a vector b0. Let us first consider the
optimization problem in Eq. (23). The Lagrangian is given by

L�b0; �� �D�b0 k b1� �D�b0 k b2� � �
�Xn
j�1

b0�j� � 1

�
(25)

To get an optimal solution, we set the derivatives ofLwith respect to
b0�i� and � to be equal to zero. Then we get a new belief vector:

b0�i� �
���������������������
b1�i�b2�i�

p
P

n
j�1

����������������������
b1�j�b2�j�

p (26)

From Eq. (26), we see that the fused data are a geometric mean of the
given data. The fused data are the same as those in Eq. (21) for
Chernoff-information minimization when �� � 1

2
. Thus, this data-

fusion strategy can be interpreted as a special case of the Chernoff-
information-minimization method.

Now let us consider the optimization problem in Eq. (24). The
Lagrangian is given by

L�b0; �� �D�b1 k b0� �D�b2 k b0� � �
�Xn
j�1

b0�j� � 1

�
(27)

Similarly, we get an optimal solution

b0�i� � b1�i� � b2�i�P
n
j�1�b1�j� � b2�j��

� b1�i� � b2�i�
2

(28)

In this case, the fused data are the arithmetic mean of the given data.
This fusion strategy is the same as that in Eq. (13) when �� 1

2
. Thus,

from Eqs. (14) and (18), we get the lower and upper bounds of
Shannon information of the new belief vector:

H�b0� � H�b1� �H�b2�
2

H�b0� 
 H�b1� �H�b2�
2

�D�b1 k b2� �D�b2 k b1�
4

(29)

Therefore, the fusion algorithms obtained by solving the
optimization problems in Eq. (23) or Eq. (24) are to average the
given data either geometrically or arithmetically. This is similar to
Chernoff information minimization and thus these fusion strategies
would be useful when we want to get unbiased fused data in
situations in which we do not have good a prior information about a
system. An example would be a case in which information from one
sensor is wrong due to failure of the sensor or the malicious intent of
the sensor that is unknown a priori. These information-fusion
strategieswould be robust to thiswrong information, because they do
not put more confidence on one (possibly incorrect information) than
the other, but average them to compute a fused belief vector.

d. Bayesian Approach. In this section, we derive a fused belief
vector using a Bayesian approach. Suppose the target’s identity
� 2 f1; 2; � � � ; Ng and, without loss of generality, suppose there are
two sensors. Denote eventsX1 andX2 to bemeasurements at sensor 1
and sensor 2, respectively. We are assumed to be given information

b1���≜ P��jX1� from sensor 1 and b2���≜ P��jX2� from sensor 2,

in which P��j�� is a conditional probability. Then the problem of
identity fusion is to find the a posteriori probability P��jX1; X2�. We
assumeP�X1; X2j�� � P�X1j��P�X2j�� because given the identity of
a target, the events that are observed by sensor 1 or sensor 2 are
independent in distributed identity management. Using the Bayes
rule, we get

P��jX1; X2� �
P�X1j��P�X2j��P���

P�X1; X2�
(30)

Because

P��jXi� �
P�Xij��P���
P�Xi�

for i 2 f1; 2g, we obtain

P��jX1; X2� �
b1���b2���
P���

P�X1�P�X2�
P�X1; X2�

(31)

Therefore, a fused belief vector is

b0��̂� � argmax
�
P��jX1; X2� �

b1���b2���
P��� � 1

c
(32)

where c is a normalization constant. This is an interesting result
because the fused data do depend only on the given data
�b1���; b2���� and the a priori probability P���. Thus, if we knew a
priori information, we could compute the a posteriori probability
(i.e., the fused data). However, because wemay not know the a priori
probability for some applications such as distributed identity
management in this paper, we cannot compute the fused data from
Eq. (32). To compute the fused data for this case, we have to assume
P��� either from the characteristics of the systems or from that of
applications. For example, if we assume the a priori probability as a
geometric mean of the given data due to lack of information about a

system [P��� �
�����������������������
b1���b2���

p
], then we can get exactly the same

result as that in Eq. (26), which minimizes the sum of Kullback–
Leibler distances to the original data inEq. (23). Thus, the a posteriori
probability is the same as the a priori probability; that is, we cannot
extract any information from the given data. FromBayesian analysis,
we can see that the data-fusion strategies such as Chernoff-
information minimization and the minimization of the sum of
Kullback–Leibler distances in Eq. (23) compute the solution in a
similar form to the solution produced by the Bayesian approach.

In this paper, we are considering the case in which good
knowledge about the performance/fidelity of all sensors is available;
hence, the Shannon-information method is used. For a
comprehensive comparison of identity-fusion methods, see [22].

2. Track Fusion

Because each sensor maintains its own set of tracks, there can be
multiple tracks from the same target maintained by different sensors.
To resolve this inconsistency, we do track-level data association to
combine tracks from different sensors, as described in [29]. Let!i be
the set of tracks maintained by sensor i and NBi be a set of
neighboring sensors around i, including i itself. Let

Y 0w � f�k�t�: �k 2 !j; 1 
 t 
 T; 1 
 k 
 j!jj; j 2 NBig

be a set of measurements of all identified targets. We form a set of
combined measurements Yw from Y 0w by combining measurements
made from overlapping surveillance regions and keeping the
remaining measurements.†† We then form a new set of tracks !init

from f� 2 !j: j 2 NBig while making sure that constraints defined
in Sec. III.A are satisfied. Then we run Algorithm 1 on the set of

††In our current implementation, when multiple measurements from
different sensors are in close proximity (measured by the Mahalanobis
distance using the measurement covariance matrix), their mean value is used
in Yw instead. In our future implementation, we plan to allow multiple
measurements over the overlapping regions by relaxing constraints in
Sec. III.A.
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combined measurements Yw with the initial state !init to find locally
consistent tracks.

V. Simulation Results

In this section, we present two sets of simulations to illustrate the
features of the DMTIM algorithm. There are stationary sensors (e.g.,
air traffic control radars) tracking multiple aircraft through two-
dimensional space. The sensing range of each sensor is assumed to be
circular with a radius of 10 km, and a pair of sensors can
communicate if they are within the communication radius of 20 km.
We first present a two-sensor scenario with three aircraft and two
sensors and describe the behavior of DMTIM in detail. Then we
describe an example with five aircraft and seven sensors to
demonstrate a complete DMTIM system. Moderate-sized examples
are chosen for better illustration.

The nonlinear dynamics of maneuvering aircraft is modeled using
interacting multiple models [48] with two linear kinematic models
based on the discrete-time linear dynamics (5):

Model 1 second-order kinematic model:

A��k�t� � 1� �

1 � 0 0

0 1 0 0

0 0 1 �
0 0 0 1

2
664

3
775

G��k�t� � 1� �
�2=2 0

� 0

0 �2=2
0 �

2
664

3
775

and Q��kt � 1� � diag�0:1; 0:1�, where �k�t� indexes the kinematic
model of target k operating at time t and � is the sampling period. The
state vector is x� �x1; _x1; x2; _x2�T . This model assumes that the
variation in a velocity component is a discrete-time white-noise
acceleration [59].

Model 2 third-order kinematic model:

A��k�t� � 2� �

1 � �2=2 0 0 0

0 1 � 0 0 0

0 0 1 0 0 0

0 0 0 1 � �2=2
0 0 0 0 1 �
0 0 0 0 0 1

2
6666664

3
7777775

G��k�t� � 2� �

�2=2 0

� 0

1 0

0 �2=2
0 �
0 1

2
6666664

3
7777775

and Q��kt � 2� � diag�20; 20�. The state vector is
x� �x1; _x1; �x1; x2; _x2; �x2�T . This is a third-order kinematic model
with accelerations modeled as a discrete-time Wiener process [59].

The measurement model given in Eq. (5) is used for both models,
in which R� diag�200; 200�. The other parameters are pd � 0:98,
�f � 1:0 
 10�7, and �� 5. The online MCMCDA algorithm
described in Sec. III.B.3 is used in DMTIM.

A. Two-Sensor Scenario

A simple, yet illustrative, scenario with three aircraft is shown in
Fig. 7a. The aircraft labeled A and B are previously registered and
aircraft labeled X is unknown to the identity-management system.
The sensor on the left is denoted by sensor 1 and the sensor on the
right is denoted by sensor 2.

The DAMTT module of each sensor estimates the number of
targets (Fig. 7b) and estimates tracks of targets, as shown in Figs. 7c
and 7d. In Fig. 7b, the events in which the number of targets changes
are indicated by dotted vertical lines. The belief vector for each target
(i.e., a column of the belief matrix) computed by the IM module is
shown in Figs. 8a and 8b. At time 1, sensor 1 knows about target 1
and its belief vector is �b1A;1; b1B;1�T � �0:8; 0:2�T , where bij;k is the
probability that target k of sensor i can be identified as label j, and

Fig. 7 Two-sensor scenario: a) trajectories for three aircraft, superimposed with accumulated measurements marked as dots and sensor positions

marked by ?, b) estimated number of targets by each sensor, c) tracks estimated by sensor 1, and d) tracks estimated by sensor 2. (A track of a target is

shown after its first detection.)
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sensor 2 knows about its target 1 and its belief vector is
�b2A;1; b2B;1�T � �0:2; 0:8�T . At time 9, sensor 1 detects a new target
(target 2 of sensor 1) and assigns a new identity X because the target
is unknown to its neighboring sensors. The updated belief vectors are
shown in Fig. 8a. At the same time, sensor 2 detects a new target
(target 2 of sensor 2) and its identity and state-estimate information is
transferred from sensor 1, because its track is recognized as target 1
of sensor 1. The updated belief vectors are shown in Fig. 8b. At
time 22, sensor 2 detects a new target (target 3 of sensor 2) and its
identity and state-estimate information is transferred from sensor 1,
because its track is recognized as target 2 of sensor 1. At time 26,
target 2 of sensor 1 leaves the surveillance region of sensor 1 and
information about target 2 is removed from sensor 1. At time 30,
target 2 of sensor 2 leaves the surveillance region of sensor 2 and
information about target 2 is removed from sensor 2.

For illustration purpose, Figs. 8a and 8b are showing the local
belief vectors at each sensor before ITF. At time 21, aircraft A and
aircraft X cross one another and the uncertainty about identity is
increased, as shown in Fig. 8a. For example, the belief that target 1 of
sensor 1 can be identified with aircraft A is reduced from 0.8 to 0.45.
However, ITF can reduce this uncertainty by fusing the belief vector
of target 1 of sensor 1 and the belief vector of target 2 of sensor 2.We
use Shannon information for ITF because we are considering a
cooperative situation and it has been shown that Shannon
information is superior against the other criteria in terms of
cooperative efficiency [22]. The fused belief vector is shown in
Fig. 8c, in which the belief vectors from times 9 to 29 are shown.
When target 3 of sensor 2 appears at time 23 (i.e., one time step after
its detection), the identity uncertainty is reduced by ITF. For
example, the (fused) belief that target 1 of sensor 1 can be identified
with aircraft A is increased from 0.45 to 0.64, as shown in the bottom
plot of Fig. 8c. Finally, the tracks estimated by each sensor in a
distributedmanner are fused by ITF and the fused tracks are shown in
Fig. 8d.

B. Seven-Sensor Scenario

There are seven air traffic control radars (ATC1 through ATC7)
and five aircraft (T1 through T5), as shown in Fig. 9, which

represents the state of the system at simulation time t� 17. The left
frame of Fig. 9 shows the position and heading of each aircraft, along
with the sensing range (circle) of each sensor and measurements
(dots). As the simulation time progresses, the left frame of Fig. 9 will
show the estimated tracks and event logs. The right frame of Fig. 9
shows belief vectors of aircraft at each sensor. The order of the belief
vector is dictated by the order in which the target is registered to the
corresponding sensor. Out of five targets, only three targets (T1, T2,
and T3) are known to the system initially, and the targets T4 and T5
are unknown to the system. At time t� 1, targets T1, T2, and T3 are
registered to ATC1 and target T3 is registered to ATC2. The
identities ID1, ID2, and ID3 are associated to targets T1, T2, and T3,
respectively. At t� 8, ATC1 terminates T3 because the targetmoves
away from the sensing region of ATC1. At t� 15, ATC3 detects a
new target and the target is labeled as A3-T1 and identity ID4 is
assigned to this target. At t� 16, ATC6 detects a new target and the
target is labeled as A6-T1 and identity ID5 is assigned to this target.
At the same time, ATC1 transfers T1 to ATC3 (see Fig. 9). The
snapshots at t� 51 and 52 are shown inFigs. 10 and 11, respectively.
The uncertainty about the identities at t� 52 can be observed from
the mixing of belief vectors.

At t� 80, the belief matrix of ATC7 is

BATC7�80� �
0:2572 0:0514 0:0343 0:6571 0

0:4928 0:0986 0:0657 0:3429 0

� 	
T

(33)

where the rows 1 through 5 of the belief matrix BATC7�80�
correspond to identities ID1 through ID5, and the first and second
columns of the belief matrix correspond to targets A3-T1 and T1,
respectively.

At the same time, local information about target A3-T1 is obtained
by ATC7, and target A3-T1 is now thought to have belief
�0:1 0 0 0:9 0�T . This local information is incorporated according
to Algorithm 4. First, a newmatrixB0ATC7�80� is formed by replacing
the column for target A3-T1 with local information, where

B0ATC7�80� �
0:1 0 0 0:9 0

0:4928 0:0986 0:0657 0:3429 0

� 	
T

(34)

Fig. 8 Fusion of belief vectors and tracks: a) local belief vectors computed by sensor 1, b) local belief vectors computed by sensor 2, c) fused belief vectors

between target 1 of sensor 1 and target 2 of sensor 2, and d) fused tracks. The symbols �, �, and □ denote aircraft A, aircraft B, and aircraft X,
respectively.
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Fig. 9 Simulation time t� 16; the left frame shows the estimated tracks and event logs. Circles and dots represent sensing ranges and measurements,

respectively. The grayscale of aircraft corresponds the true identity based on the grayscale shown on the left. The right frame shows the belief vectors

maintained by each sensor. The grayscale of each segment of the bar graph represents an identity based on the grayscale shown on the right. At t� 15,

ATC3 also detects a new target and the target is labeled as A3-T1 and identity ID4 is assigned to this target. At t� 16, ATC6 detects a new target and the
target is labeled as A6-T1 and identity ID5 is assigned to this target. At the same time, ATC1 transfers T1 to ATC3.

Fig. 10 Simulation time t� 51; at t� 23, ATC1 terminates T2; at t� 24, ATC2 terminates T3; at t� 29, ATC1 terminates T1; at t� 30, ATC3
transfers T1 to ATC4; at t� 37, ATC3 transfers A3-T1 to ATC4; at t� 41, ATC3 terminates T1; at t� 43, ATC3 terminates A3-T1; at t� 44, ATC6

transfers A6-T1 to ATC4; at t� 49, ATC4 transfers T2 to ATC6; at t� 50, ATC6 terminates A6-T1, targets T3 andA6-T1move close to each other, and

the belief vectors of targets T3 and A6-T1 are mixed in ATC4; at t� 51, ATC4 transfers T3 to ATC6.
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Because B0ATC7�80� is almost scalable, Algorithm 4 computes the
scaled belief matrix:

Bnew
ATC7�80� �

0:1879 0 0 0:8121 0

0:5621 0:15 0:1 0:1879 0

� 	
T

(35)

The scaled beliefmatrixBnew
ATC7�80� decreases entropy from2.9091

to 2.3602. Hence, we assign BATC7�80� � Bnew
ATC7�80�. See Fig. 12

and compare it against the updated belief matrix in Fig. 13.
To evaluate the performance of DMTIM, we compared DMTIM

against the centralized version of the algorithm. In the centralized
version, there is a single ATC at [0,0], with a larger sensing radius
of 26 km. The same set of measurements are used, except those on

Fig. 11 Simulation time t� 52; at t� 52, targets T1 and A3-T1 move close to each other and the belief vectors of targets T1 and A3-T1 are mixed.

Fig. 12 Simulation time t� 79; before the belief-matrix update by ATC7.
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the overlapping sensing regions. When there are multiple
measurements made by overlapping ATCs, a randomly chosen
measurement is used by the centralized algorithm. The
performance comparison between DMTIM and the centralized
algorithm is made by comparing belief vectors and state estimates
from both algorithms. The relative estimation errors in the position
and belief-vector estimations are shown in Fig. 14. The relative
position estimation error is high when there is confusion or when
the same targets are detected by multiple sensors. The latter is due
to the fact that a measurement from a single target can be different
for a different ATC. Because the norm of standard deviations of
position can be 20.77 when �kt � 1 and 81.54 when �kt � 2
(including both process and measurement noises), the position
estimates of DMTIM are close to the estimates of the centralized
algorithm. At t� 52 and 53, the relative position estimates are
high for all targets, and this is when the relative belief-vector-
estimation error increases. As shown in Fig. 14b, the belief-vector-
estimation error may increase over time, hence, it is necessary to
perform the local-information incorporation to reduce the error, as
described earlier. The centralized algorithm required more
computation time than DMTIM because it processes more

measurements each time. Hence, the centralized algorithm is not a
practical solution for a large-scale sensor network.

VI. Conclusions

We proposed a scalable distributed multitarget-tracking and
identity-management (DMTIM) algorithm that can track an
unknown number of targets and manage their identities efficiently
in a distributed sensor network environment. A decision based on a
single set of tracks can be risky, due to the uncertainty in the identities
of targets accumulated from continuous interactions among crossing
or nearby targets. DMTIM provides a scalable and distributed
solution to the multitarget-tracking and identity-management
problem by combining an efficient data-association algorithm and
identity-management methods. The novelty of the system
architecture of DMTIM includes modularity, the compact
representation of identity and tracks to reduce communication load,
and event-driven mechanisms for identity and track management.

DMTIM consists of data association, multitarget tracking, identity
management, and identity and track fusion. The data-association and
multitarget-tracking problems are efficiently solved by MCMCDA.

Fig. 13 Simulation time t� 80; the belief matrix is updated due to the local information about target A3-T1 obtained by ATC7; see the text for detail.

Fig. 14 Relative estimation error in a) the position of each target and b) belief vectors of each target from simulation time t� 45 to t� 75. For each

target, the figures plot the maximum estimation error among all ATCs at each simulation time. The estimation error at each ATC is computed by

calculating the vector norm of the difference between estimates made by the ATC and the centralized algorithm.

OH, HWANG, AND SASTRY 27



DMTIM efficiently incorporates local information about the identity
of a target to reduce the uncertainty in the system andmaintains local
consistency among neighboring sensors via identity and track fusion.

In this paper, the system is evaluated using simple measurement
models. We are currently applying more sophisticated measurement
models to evaluate the performance of the system. In particular, we
are applying our method to the distributed camera network, in which
the measurements can be, but are not limited to, position, color,
texture, and shape. Currently, the DAMTT module produces the
mixing matrix for the IM module. But updated identity information
from the IM and ITF modules are not used in the DAMTT module.
We are currently developingmethods to improve the performance of
DAMTT by incorporating updated identity information in DAMTT.
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