
Testbed Implementation of A Secure Flooding Time
Synchronization Protocol

Tanya Roosta1, Wei-Chieh Liao2, Wei-Chung Teng2, and Shankar Sastry1

Dep. of Electrical Engineering and Computer Science, UC Berkeley1

Dep. of Computer Science and Information Engineering, National Taiwan University of Science and Technology2

{roosta,sastry}@eecs.berkeley.edu1, {M9415016,weichung}@mail.ntust.edu.tw2

Abstract— A fundamental building block in distributed wire-
less sensor networks is time synchronization. Given resource
constrained nature of sensor networks, traditional time synchro-
nization protocols cannot be used in sensor networks. Previous
research has focused on developing various energy efficient time
synchronization protocols tailored for these networks. However,
many of these protocols have not been designed with security
in mind. In this paper, we describe FTSP which is one of the
major time synchronization protocols for sensor networks. We
outline the adverse effects of the time synchronization attacks
on some important sensor network applications, and explain the
set of possible attacks on FTSP. We then propose a number of
countermeasures to mitigate the effect of the security attacks. We
implement these attack scenarios on a sensor network testbed.
We show the extent each attack is successful in desynchronizing
the network. Finally, we propose countermeasures and implement
them on our sensor network testbed to validate their usefulness
in mitigating security attacks. We show that adding a sequence
number filter to the original FTSP helps mitigate the effect of
attacks on this protocol.

I. I NTRODUCTION

Due to recent technological advances, the manufacturing of
small, low cost sensors have become technically and econom-
ically feasible. Thousands of these sensors can potentially be
networked as a Wireless Sensor Network (WSN) for many
applications that require unattended, long term operations.
Some current applications of sensor networks are providing
health care for the elderly, surveillance, emergency disaster
relief, detection and prevention of chemical or biological
threats, and gathering battlefield intelligence.

One of the critical challenges to making sensor networks
more pervasive and secure is the severe resource constraints
on the sensor nodes. An example of a sensor node, sometimes
called a mote, is the TelosB mote which has a 8 MHz, 16-
bit processor, 10 KB of RAM, and 1 MB of external flash
memory. It has a 2.4 to 2.4835 GHz, IEEE 15.4 compliant
radio with 250 kbps maximum data rate and runs on a AA
battery [1]. The limited energy, bandwidth, and computational
resources make it difficult to implement security primitives,
such as strong cryptography, and implement secure services,
such as secure time synchronization.

This work was supported in part by the Team for Research in Ubiquitous
Secure Technology at UC Berkeley (TRUST), the National Science Council
(NSC), the Industrial Technology Research Institute (ITRI), and the Taiwan
Information Security Center at NCTU.

The challenge of resource constraints in sensor networks
is compounded with the challenge of designing distributed
protocols that can scale from tens to thousands of motes. An-
other challenge is that typically sensor networks are physically
unattended after deployment. As a result, the nodes are vulner-
able to physical capture and compromise. All of these issues
combined make it difficult to design energy/memory efficient,
scalable distributed protocols, such as time synchronization
protocols, that are also secure.

In this paper, we look at the security issues in Flooding
Time Synchronization protocol (FTSP) proposed in [10]. FTSP
is a relatively simple and easy-to-use time synchronization
protocol. However, it has not been designed with security as an
objective. In this work we show, through experiments run on
a real sensor network testbed, that FTSP can become crippled
in the face of attacks.

To motivate the discussion of secure time-synchronization,
we describe the effects of time synchronization attacks on a
set of fundamental sensor network applications and services
that are dependant on time synchronization.

In many application areas, time synchronization allows
engineers to design simpler and more elegant algorithms. A
representative set of applications in sensor networks that rely
on a time synchronization service are,

• Shooter localization [9]
• TDMA-based channel sharing, such as, Flexible Power

Scheduling [8] and TDMA-based MAC protocol [2]
• State estimation [11]
• Authenticated broadcast (µTesla) [12]

To illustrate the effects of corrupted time synchronization,
we explain the estimation application in more detail. Many
tracking applications use Kalman filter to estimate the state of
a moving object based on sensor readings. The Kalman filter
estimates the state of a discrete-time controlled process that is
governed by a linear stochastic difference equation:

xk = Axk−1 + Buk−1 + wk−1 x ∈ <n (1)

given the measurementzk ∈ <m, wherezk = Hxk + vk. The
random variablesw andv represent process and measurement
noise and are assumed to be independent random variables
with Normal distribution.

The Kalman filter estimates the state at every time step.
We simulated the movement of an object using Equation 1,



Fig. 1. The y axis shows the norm of the difference between the results from
the Kalman filter before and after de-synchronization. The de-synchronization
began at time10. The x axis is the time of the corresponding observation.

where the state is position and velocity of the object in two
dimensions. We then used the Kalman filter to estimate the
position and velocity of the object before and after modifying
the time of some of the position observations, as might occur
in an attack on the time synchronization in the sensor network.
The norm of the error is shown in Figure 1.

There have been some work done on secure time syn-
chronization protocols. First is the work by Ganeriwal, et.
al [5], which attempts to detect time synchronization attacks.
The detection is done using a threshold on the maximum
drift and skew of the clock when there are no attacks on
the protocol. The algorithm also makes use of the message
authentication code (MAC) to ensure the integrity of the time
synchronization message updates. In the event of an attack
the protocol aborts the time synchronization process. This
approach could potentially lead to more problems since an
adversary can use this feature to launch a denial of service
attack on the sensor network.

The second work is [13] in which the authors employ a com-
bination of pairwise node authentication along with using data
redundancy to build a resilient time synchronization protocol.
Our countermeasures differ from [5] and [13] in the following
important way: we do not abort the time synchronization
process when there is an attack, and we do not rely on MAC
and cryptographic techniques. Our main objective is to filter
out the bad data, coming from the compromised nodes, using
more robust methods. We aim to use the existing data more
intelligently in order to detect outliers.

The rest of the paper is organized as follows. Section II
gives a short background on the concept and necessity of
time synchronization in sensor networks and different types
of time synchronization protocols in these networks. Section
III explains the details of the operations of FTSP protocol.
Section IV gives the details of the attack scenarios ran on
the sensor network testbed and the result of each experiment
on the time synchronization process. Section V describes our

proposed countermeasures and the implementation of some of
these methods on the testbed followed by the conclusion and
future work in Section VI.

II. BACKGROUND

Sensor networks are to monitor different real world phenom-
ena. Since the existing time synchronization protocols do not
fit the special needs of sensor networks, a number of clock
synchronization protocols have been developed to meet the
memory and energy constraints of these networks. The need
for a time synchronization protocol stems from the fact that
every sensor node has a notion of time that is based on the
oscillation of a crystal quartz. The sensor clock has a counter
that is incremented at rate f where f is the frequency of the
oscillation. The counter counts time steps, and the length of
these time steps is prefixed. The clock estimates the real time
T (t) = k

∫ t

t0
ω(τ)dτ + T (t0), whereω(τ) is the frequency

of the crystal oscillation andk is a constant. Ideally this
frequency should be 1. However, in reality the frequency of
a clock fluctuates over time due to changes in temperature,
pressure, and voltage. This will result in a frequency different
than 1. This difference is termedclock drift. In addition to
frequency fluctuation in one clock, the crystals of different
clocks oscillate at different rates. This difference causes what
is called theoffsetbetween two clocks.

There are three general ways to synchronize nodes in a
sensor network. In the first approach, an intermediate node is
used to synchronize the clocks of two nodes together, such as
Reference Broadcast Synchronization (RBS) [3]. The second
approach assumes that the clock drift and offsets are linear,
and nodes perform pair-wise synchronization, using a tree
structure, to find their respective drift and offset, such as
TPSN [6]. In the third approach, one node declares itself the
leader, and all the other nodes in the network synchronize their
clocks to the leader, such as Flooding Time Synchronization
Protocol (FTSP) [10]. Our work focuses on FTSP because
of its simplicity and that fact that it has been successfully
implemented on a real testbed of sensors.

III. F LOODING TIME SYNCHRONIZATION PROTOCOL

In FTSP, a root node broadcasts its local time and any nodes
that receive the broadcast synchronize their clocks to that time.
The broadcasted synchronization messages consist of three
relevant fields:rootID, seqNum, andsendingTime(the global
time of the sender at the transmission time). Upon receiving a
message, a node calculates the offset of its global time from
the global time of the sender embedded in the message. The
receiving node calculates its clock skew using linear regression
on a set of these offsets versus the time of reception of the
messages.

Given the limited computational and memory resources of
sensor nodes, they can only keep a small number of reference
points (in the current implementation of FTSP 8 data points
are saved at each step). Therefore, the linear regression is
performed only on a small subset of the received updates. In
addition, a node cannot calculate its clock skew until it receives



a full set of reference messages (e.g. 8 reference messages).
Therefore, there is a non-negligible initiation period for the
network. FTSP also provides multi-hop time synchronization
in the following manner: Whenever a node receives a message
from the root node, it updates its global time. In addition, it
broadcasts its own global time to its neighbors. All nodes act
in a similar manner, receiving updates and broadcasting their
own global time to their neighbors. To avoid using redundant
messages in the linear regression described above, each node
retains the highest sequence number it has received and the
rootID of the last received message used. A synchronization
message is only used in the regression if theseqNumfield
of the message (the sequence number of the flood associated
with that message) is greater than the highest sequence number
received thus far and therootID of the new message (the origin
of the flood associated with that message) is less than or equal
to the last receivedrootID. FTSP is more robust against node
failures and topology changes than other time synchronization
protocols since no topology is maintained, and the algorithm
can adapt to the failure of a root node. If a node does not
hear a time synchronization message for a ROOTTIMEOUT
period, it declares itself to be the new root. To make sure there
is only one root in the network the root gives up its root status
if it hears a time synchronization message from another root
with lower ID than itself [10].

IV. ATTACKS ON FTSP

In the following subsections, we discuss the attacks sce-
narios for FTSP that we tried on our sensor network testbed.
In all the experiments we conducted, the following attacker
model was assumed: the attacker has gained control of a node,
possibly through physical compromise, and has the secret keys
for participating in legitimate inter-node communication. This
is a realistic setting since currently there is no tamper-resistant
hardware for the motes [7]. It is possible to add cryptographic
protocols to a particular time synchronization protocol to
enhance its security features, such as in [13]. However, it is
important to realize that once a node is physically compro-
mised, the attacker will gain access of the cryptographic keys
and can participate in network communication in a legitimate
fashion.

In general, all attacks on any of the existing time synchro-
nization protocols have one main goal, to somehow convince
a subset of nodes that their neighbors’ clocks are at a different
time than they actually are. Since global time synchronization
is build upon synchronization at the neighborhood level, this
will disrupt the mechanisms by which the protocols above
maintain global time in the network or allow events at distant
points in the network to be given time stamps that reflect the
actual difference between their times of occurrence.

A. Attack on ‘sendingTime’

The first attack scenario in our set of experiments was
the attack on thesendingTime(see Section III). A subset of
nodes were compromised. In this scenario, a compromised
node is programmed to send incorrectsendingTimeto their

Fig. 2. R is the root node and C is the compromised node. If the neighbors
of C receive synchronization message form other good nodes before C, the
incorrect sendingTimeof the compromised node would not have an effect
because of the out-of-dateseqNum.

direct neighbors. The goal was to find out if the compromised
nodes are capable of corrupting their neighbors’ synchroniza-
tion process. The result of the experiments shows that this
attack is successful if the compromised node can send its
synchronization updates sooner than good (non-compromised)
nodes in its neighborhood. As a result, if some of the good
nodes could send their time updates before the compromised
nodes, the corrupted time updates will be discarded due to the
seqNumfeature of FTSP. Figure 2 shows an example of an
unsuccessful attack onsendingTime.

B. Attack on Time Synchronization Rate

In FTSP, the root node sends a time synchronization update
once every TIMESYNCRATE seconds. As a result, other
nodes in the network will receive these update messages at
the same rate of 1 message per TIMESYNCRATE second.
A possible attack scenario is that the compromised node
would send time synchronization updates more frequently
than TIME SYNCRATE so as to increase the possibility of
affecting the time of its neighboring nodes. At the same time,
the compromised node must increase the sequence number
accordingly to convince its neighbors to consider the compro-
mised node’s update message in their regression table (only
the highestseqNumis considered in FTSP regression table).
Otherwise, as Figure 3 shows, the compromised node (B)
will not have any affect on the time synchronization of its
neighbors. The nodes in the neighborhood of A and B will
receive node A’s update before B, and since these updates have
a higher sequence number, node B’s updates are ignored. We
implemented this attack on the sensor network testbed, and the
result of the attack was in fact successful. Due to the similarity
of the plot to Figure 5, and lack of space, we omit the plot of
the results of TIMESYNCRATE attack.

C. Attack on ‘seqNum’

As mentioned in Section III, only the root node is allowed
to increase the value of theseqNumfield of the time synchro-
nization updates. This procedure is to facilitate the dynamic
topology change for FTSP. A nice by-product of theseqNum
is that it could potentially block some of the incorrect time
synchronization updates propagated by compromised nodes
(Section IV-A). Therefore, the next attack scenario we tried on
the testbed was to have the compromised node simultaneously
falsify the sendingTimeand theseqNum. This attack scenario



Fig. 3. B is the compromised node and node A is a good node. Both nodes A
and B have the same TIMESYNCRATE, so if node A sends its time updates
first, node B’s updates will not affect the time synchronization of other nodes
due to theseqNum.

was very successful and resulted in crashing the root node and
FTSP completely. The testbed we used, shown in Figure 4, had
25 TelosB motes.

In this attack scenario, we programmed the compromised
node to add a ‘BADSEQNUM’ to the seqNumof its time
synchronization updates. In addition, the compromised node
altered the value ofsendingTimefield when sending the time
updates to its neighbors. From timet0 = 0 to t1 = 180 second,
the motes were going through the process of root selection
and initial data gathering (8 data points) for performing the
synchronization. At timet2 = 600 seconds, the compromised
node was added to the experiment. The effect of this attack
can be clearly seen from Figure 5. The attack took effect at
t3 = 630 seconds, as shown by the blue points which present
the global time estimated by the nodes.

V. COUNTERMEASURES FORFTSP

In this section, we propose a set of countermeasures for the
mentioned time synchronization attacks. It is important to note
that the network can employ a network-wide symmetric private
key to encrypt and authenticate messages from the root node,
including time synchronization updates, to prevent spoofing of
the root node and falsification of the time updates. There exist
implementations of such a scheme for sensor networks [13],
as mentioned earlier. This approach, however, will not work if
a subset of nodes were physically compromised. An adversary
would gain access to the network-wide key and could falsify
time synchronization updates. That said, the use of crypto-
graphic schemes to secure the communication among nodes
is absolutely a necessary step to take in order to secure the
sensor network.

FTSP provides one mechanism for electing a root node
(Section III). There is no security restriction in FTSP that
would prevent a compromised node from becoming the leader,
as we showed through our experiments. In order to fix this
problem, we propose using one of the standard distributed
coin-flipping algorithms that use cryptographic commitments.
For instance, each sensor will pick a random valuexi, broad-
casts Commit(xi), then everyone waits for all broadcasts. Fi-
nally everyone opens up their commitment and broadcastsxi.
Now one can usey = Hash(x1, .., xn) as a random number.

Fig. 4. Testbed used in seqNum attack.

For instance, one can compute [ymod n] and designate that
sensor as the leader. This picks a random leader, and as long
as least one sensor is honest, then the choice of leader will
be uniformly distributed across all sensors. This is in contrast
to FTSP’s root selection process which chooses the node with
the smallest node ID. This countermeasure is not implemented
on the sensor network testbed since it is not the focus of our
work. However, it shows that there are ways to strengthen the
security of the root selection mechanism in FTSP.

Once there is a secure procedure in place for electing the
leader node, the next step is to develop a built-in mechanism
for FTSP so that the algorithm can correct for erroneous
data without solely relying on cryptographic solutions. As dis-
cussed above, FTSP relies on updates from a single neighbor
node to calculate the offset and skew of its clock. One obvious
means of increasing the reliability of these synchronization
schemes is to introduce redundancy into the system. This is our
second proposal for multi-hop time synchronization protocols.
In FTSP, it is especially easy to introduce redundancy. Rather
than relying on a single update from a single node for each
wave of updates from the nearest root node (i.e. for each
seqNum), the nodes should record a subsetS of the updates
from their neighbors. This would increase the storage space
required for the linear regression data points by a factor ofS.
In the current implementation of FTSP, the regression table
holds 8 data points of8 bytes each,4 for the offset and4
for the arrival time of that offset. If S were5, for instance,
this scheme would require accommodating32 additional data
points or32∗(4+4) = 256 bytes. Even on a mote class node,
as described earlier, this is a reasonable additional memory
requirement. Given this additional data, the nodes could use
these updates for any sequence number instead of whichever
update is received first, which is the current scheme in FTSP.

The selected subset S can be a randomly selected subset of
neighbor nodes. This is loosely based on the idea of RANSAC
[4]. RANSAC relies on random sampling selection to search
for the best model to fit a set of points that is known to contain
outliers. In other words, RANSAC can be considered to seek
the best model that maximizes the number of inlier data.



Fig. 5. Result of seqNum attack. The blue line is the result of the actual
regression on message updates, and the red line shows what the regression
line should have looked like if there was no attack.

A. Countermeasure Implementation: Experimental Results

In this section we describe the results of implementing
some of the proposed countermeasures on the sensor network
testbed. The first countermeasure implemented on the tested
was to filter out bad data by collecting more data point from all
the neighbors instead of receiving the synchronization message
from only one node, and then filtrating extreme values. To
do this, we expanded the data table from 8 entries to 32
entries. The synchronization messages were collected from
all neighboring nodes regardless of the messageseqNum. As
a result, the functionality of theseqNumfield of FTSP was
completely ignored.

The result of this attack was surprising and revealed a
feature of FTSP which is a side effect of having sequence
numbers for each new update message. Although it is claimed
in [10] that FTSP does not have any level of hierarchy, in
reality it turns out that there, is an implicit hierarchy due to
seqNum, the local connection and the topology of the network.
To explain this point, assume that the root nodeR broadcasts
an update messageMt at some global timet. The nodes which
are closest (within the communication range) toR will receive
this update first and form the first level of hierarchy. This is
due to the fact that in FTSP each node is only allowed to
accept the updates with the highest (i.e. most recent) sequence
number. We call this set of nodesL1. These nodes perform
the regression step, update their global time accordingly and
broadcast their time update messages. The next set of nodes
that receives this broadcast is the one-hop neighbors ofL1

nodes, which we callL2. Continuing in this fashion, it is clear
that afteri broadcasts of the time update message, there arei
sets of nodes (Li), forming the hierarchy. Nodes in setLi are
one level higher in the hierarchy than nodes inLi+1.

Now when theseqNumis not used, this hierarchy breaks
down. In addition, the linear relation assumed between the
global time and the local time of the nodes, in FTSP, is
dependent on the fact that the updates are done in a short

Fig. 6. New data structure could block incorrect seqNum.

period of time where this linearity assumption holds true.
However, when we add many data points from multiple
neighboring nodes without using the sequence number of each
data point in the regression table, the linearity assumption does
not hold true anymore. This results in a very unstable linear
regression, meaning the result of regression from one time
update to the next fluctuates considerably. Figure 7 shows
an example where regression is done on three sets of data,
and as can be seen, each line has a different slope which
results in an unstable regression. If we use all of the data, the
regression line will try to fit all of the data, which will not
yield a good estimate. This instability results in a significantly
less precise time synchronization. Therefore, although our first
countermeasure did not aid in preventing attacks, it revealed
an important aspect of FTSP not known before, and that is the
existence of implicit hierarchy in FTSP and the need for the
sequence number as a mean of preserving the linear regression
relation and stability of the algorithm.

Securing seqNum Attack:Given the result of our previous
experiment, we need to use a countermeasure that will secure
the sequence number functionality. Therefore, we created
a new data structure, shown in Figure 6, containing three
important parts of the data: the node ID for the incoming syn-
chronization message (IncomingID),seqNumcorresponding to
each IncomingID, and a time out value for the corresponding
node ID, called TIMEOUT.

Using this extended data structure, each node randomly
choosesk nodes from its total ofn neighbors and records these
data, instead of recording only one neighbor’s data points as
in the original FTSP. Then, from among the randomly chosen
neighbors, the node chooses the neighbor with the smallest
seqNumand runs linear regression on the updates received
from this node. This is different from the original FTSP
where nodes choose the message with the highest sequence
number from among ‘all’ the neighboring nodes. We call this
countermeasureseqNum filter.

Given we run regression on the set of data points coming
from the same node, the linear assumption will hold and
the regression is stable. In addition, we keep theseqNum
to preserve the implicit hierarchy in FTSP. The TIMEOUT
feature is used to support the dynamic topology change that
FTSP offers. For example, if one of thek neighbors of
a node does not broadcast a time update for a period of



Fig. 7. In the left diagram, the linear relation holds if the synchronization
message is received form a single node. In the right diagram, where there
more nodes, the regression results lead to inconsistent data from different
nodes, and the linear regression would be very unstable.

Fig. 8. The seqNum filter used in combination with original FTSP. The
attack started at t=1600 second but was unsuccessful.

TIME OUT seconds, then the node can remove this neighbor
from its regression table, and add a new neighbor in its place,
which is randomly chosen from among the remaining available
neighbors of the nodes. The result of applying the seqNum
filter to FTSP is shown in Figure 8. The node ID of the
compromised node is 34, shown in Figure 4, and it starts
sending wrong time updates att = 1600 seconds. As seen
from the plot, the attack clearly did not succeed in falsifying
the global time estimation.

The seqNumfilter proved to be effective in mitigating the
effect of attacks on the sequence number andsendingTime.
Using a combination of random neighbor selection and the
seqNum helps make FTSP more robust to insider attacks while
preserving the original features of FTSP, such as dynamic
topology support.

VI. CONCLUSION AND FUTURE WORK

One of the fundamental tasks in sensor networks is the
problem of time synchronization. Given the unattended nature
of sensor networks, physical capture and compromise of
the nodes is possible. Therefore, the attacker gains access
to the network cryptographic keys and can participate in
the legitimate communication among nodes. Therefore, de-
signing a secure time synchronization protocol is crucial to
maintaining the functionality of the sensor networks. In this
paper, we described FTSP which is one of the major time

synchronization protocols for sensor networks. We outlined
the adverse effects of the time synchronization attacks on some
important sensor network applications, such as estimation. The
set of possible attacks on FTSP protocol was explained next.
We then proposed a number of countermeasures to mitigate
the effect of the security attacks. The attack scenarios were
carried out on a testbed of 25 TelosB motes. We explained the
degree to which each attack was successful in desynchronizing
the network. Finally, some of our proposed countermeasures
were implemented on the testbed to validate their usefulness
in mitigating security attacks. We showed that adding the
seqNum filter to the original FTSP helps mitigate the effect
of insider attacks on this protocol.

REFERENCES

[1] Crossbow technology: www.xbow.com/products.

[2] S. Coleri. PEDAMACS: Power efficient and delay aware medium access

protocol for sensor networks. Master’s thesis, UC. Berkeley, December

2002.

[3] J. Elson and D. Estrin. Fine-grained network time synchronization

using reference broadcast. InThe fifth symposium on Operating Systems

Design and Implementation (OSDI), December 2002.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated

cartography. InCommunications of the ACM, volume 24, 1981.

[5] S. Ganeriwal, S. Capkun, C. Han, and M. Srivastava. Secure time

synchronization service for sensor networks. InIn Proceedings of ACM

Workshop on Wireless Security (WiSe), September 2005.

[6] S. Ganeriwawal, R. Kumar, and M. Srivastava. Timing-sync protocol for

sensor networks. InThe first ACM Conference on Embedded Networked

Sensor Systems (SenSys), November 2003.

[7] Carl Hartung, James Balasalle, and Richard Han. Node compromise

in sensor networks: The need for secure systems. Technical report,

Department of Computer Science University of Colorado at Boulder,

2005.

[8] B. Hohlt, L. Doherty, and E. Brewer. Flexible power scheduling for

sensor networks. InInformation Processing in Sensor Networks (IPSN),

April 2004.

[9] A. Ledeczi, P. Volgyesi, and M. Martoi. Multiple simultaneous acoustic

source localization in urban terrain.

[10] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The Flooding Ttime

Synchronization Protocol. InProc. Of the Second ACM Conference on

Embedded Networked Sensor Systems (SenSys), November 2004.

[11] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain monte

carlo data association for general multiple-target tracking problems. In

In Proc. of the IEEE International Conference on Decision and Control

(CDC), 2004.

[12] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar. SPINS: Security

protocols for sensor networks. InMobile Computing and Networking,

2001.

[13] K. Sun, P. Ning, and C. Wang. Secure and resilient clock synchronization

in wireless sensor networks. InIEEE Journal on Selected Areas in

Communications, volume 24, February 2006.


