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OPTIMAL LINEAR LQG CONTROL OVER LOSSY NETWORKS
WITHOUT PACKET ACKNOWLEDGMENT
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ABSTRACT

This paper is concerned with control applications over lossy data net-
works. Sensor data is transmitted to an estimation-control unit over a network,
and control commands are issued to subsystems over the same network. Sensor
and control packets may be randomly lost according to a Bernoulli process. In
this context, the discrete-time linear quadratic Gaussian (LQG) optimal con-
trol problem is considered.

It is known that in the scenario described above, and for protocols for
which there is no acknowledgment of successful delivery of control packets
(e.g. UDP-like protocols), the LQG optimal controller is in general nonlin-
ear. However, the simplicity of a linear sub-optimal solution is attractive for a
variety of applications. Accordingly, this paper characterizes the optimal lin-
ear static controller and compares its performance to the case when there is

acknowledgment of delivery of packets (e.g. TCP-like protocols).

Key Words: Linear regulator, LQG control, maximum matrix principle,

packet loss, UDP.

I. INTRODUCTION

Today, an increasing number of applications de-
mands remote control of plants over unreliable net-
works. The recent evolution of sensor web technol-
ogy [1] enables the development of wireless sensor
networks that can be immediately used for estimation
and control. In these systems issues of communication
delay, data loss, and time-synchronization play criti-
cal roles. Communication and control become tightly
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coupled and these two issues cannot be addressed in-
dependently. The goal of this paper is to provide some
partial answers to the question of how control loop per-
formance is affected by communication constraints and
what are the basic system-theoretic implications of us-
ing unreliable networks for control. This requires a gen-
eralization of classical control techniques that explicitly
takes into account the stochastic nature of the commu-
nication channel.

We consider a generalized formulation of the lin-
ear quadratic Gaussian (LQG) optimal control problem
by modeling the arrival of both observations and control
packets as random processes whose parameters are re-
lated to the characteristics of the communication chan-
nel. Accordingly, two independent Bernoulli processes
are considered, with parameters y and v, that govern
packet losses between the sensors and the estimation-
control unit, and between the latter and the actuation
points.

In our analysis, we distinguish between two
classes of protocols. The distinction resides simply in
the availability of packet acknowledgments. Adopting
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the framework proposed by Imer et al. [2], we will refer
to transmission control protocol (TCP)-like protocols
if packet acknowledgments are available and to user
datagram protocol (UDP)-like protocols otherwise.

We have shown in some previous work [3, 4], and
[5] the existence of a critical domain of values for the
parameters of the Bernoulli arrival processes, v and 7,
outside which a transition to instability occurs and the
optimal controller fails to stabilize the system. In par-
ticular, we have shown that under TCP-like protocols
the critical arrival probabilities for the control and ob-
servation channel are independent of each other. This
is another consequence of the fact that the separation
principle holds for these protocols. A more involved
situation regards UDP-like protocols. In this case the
critical arrival probabilities for the control and observa-
tion channels are coupled. The stability domain and the
performance of the optimal controller degrade consid-
erably as compared with TCP-like protocols as shown
in Fig. 1.

We have also shown that in the TCP-like case the
classic separation principle holds, and consequently the
controller and estimator can be designed independently.
Moreover, the optimal controller is a linear function of
the state. In sharp contrast, in the UDP-like case, the
optimal controller is in general nonlinear. In this case, a
natural suboptimal solution is to use a static linear regu-
lator, composed by a Kalman-like estimator and a state
feedback controller as shown in Fig. 2. This is particu-
larly attractive for sensor networks, where simplicity of
implementation is highly desirable and complexity is-
sues are a primary concern. Accordingly, in this paper,
we focus on the performance of the UDP-like controller
and compare it with the optimal one in the TCP-like
case.

First, we formulate the problem of finding the
optimal linear controller as a non-convex optimization
problem. Then, we write, using Lagrange multipliers, a
necessary condition for the optimum. Using a result of
De Koning [6], we determine when such condition is
also sufficient. We provide some numerical convergence
results for the scalar case, and finally we show that the
performance of the obtained solution is comparable to
the one of the optimal controller in the TCP case.

In the past few years, networked embedded con-
trol systems have drawn considerable attention in the
academic world. We will now try to set our work in
the context of the existing literature. In [7] and [8], an
estimator, i.e., a Kalman filter, is placed at the sensor
side of the link and no assumption is made on the sta-
tistical model of the data loss process. Smith et al. [9]
focused on designing a suboptimal yet computationally
efficient estimator for Markov Chain arrival processes.

UDP-stable

TCP-stable

unstable

Y 1

Fig. 1. Region of stability for UDP-like and TCP-like optimal control
relative to measurement packet arrival probability 7, and the
control packet arrival probability V.
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Fig. 2. Overview of the system. Architecture of the closed loop sys-
tem over a communication network. The binary random vari-
ables v; and y, indicates whether packets are transmitted suc-
cessfully.

In [10] the authors study the stability of Kalman Fil-
ter under general Markovian packet losses. In [11], the
authors present a simple estimation scheme that is able
to recover the fate of the control packet under UDP-
like protocols by constraining the control signal sent to
the plant. Drew et al. [12] analyze the problem of de-
signing a controller over a wireless local area network
(LAN). Control design has been investigated in the con-
text of Cross Layer Design by Liu ef al. [13]. Finally,
in [14] and [15] the plant and the controller are mod-
eled as deterministic time invariant discrete-time sys-
tems connected to zero-mean stochastic structured un-
certainty, where the variance of the stochastic pertur-
bation is a function of the Bernoulli parameters. Here,
the controller design posed as an optimization problem
to maximize mean-square stability of the closed loop
system. While this method is suitable for the analy-
sis of multiple input multiple output (MIMO) systems
with many different controller and receiver compensa-
tion schemes [14], it does not include process and ob-
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servation noise. The resulting controller is restricted to
be time-invariant, hence suboptimal. Finally, within the
context of UDP-like control, Epstein et al. [11] recently
proposed to estimate not only the state of the system,
but also a binary variable which indicates whether the
previous control packet has been received or not. Such
strategy improves closed loop performance at the price
of a somewhat larger computational complexity.

The remainder of this paper is organized as fol-
lows. Section II provides the problem formulation. In
Section III we summarize our previous results that
are needed to understand the new contribution. In
Section IV we consider the optimization problem lead-
ing to the optimal linear UDP-like controller and dis-
cusses a solution to a weaker, necessary solution for
optimality. Section V shows the results and compares
them to the optimal TCP-like controller (which is al-
ways linear). Finally, Section VI draws conclusions
and outlines the agenda for future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system
which models both observation and control packet
losses:

Xip1 = Axg + Buy + wy (1)
Uy = iy, 2)
i =Pk (Cxg + vi) (3)

where uy is the control input to the actuator, uj is
the desired control input computed by the controller,
(x0, wg, vr) are Gaussian, uncorrelated, white, with
mean (xp,0,0) and covariance (Py, Q, R), respec-
tively, and (yy, vk) are i.i.d. Bernoulli random variables
with P(y, =1)=9y and P(vx =1)=V. The stochastic
variable vy models the loss of packets between the
controller and the actuator: if the packet is correctly
delivered then u§ =ug, otherwise if it is lost then the
actuator does nothing, i.e., ”Z =0. This zero-input
compensation scheme is summarized by (2). This
modeling choice is not unique: for example in the
hold-input strategy, if the control packet uy, is lost, then
the actuator could use the previous control value, i.e.,
uy =uy_,. It has been shown that both strategies yield
comparable performance [16]. In this work we will
focus on zero-input strategy since it gives rise to sim-
pler equations. The stochastic variable y; models the
packet loss between the sensor and the controller: if the
packet is delivered then y; = Cxy + v, otherwise if it
is lost then the controller reads a zero, i.e., yr =0. This
observation model is summarized by (3). A different

observation formalism was proposed in [17], where the
missing observation was modeled as an observation for
which the measurement noise had infinite covariance.
It is possible to show that both models are equiva-
lent [18], but the one considered in this paper has the
advantage to lead to simpler analysis. This arises from
the fact that when no packet is delivered, then the op-
timal estimator does not use the observation y; at all,
therefore its value is irrelevant.

We consider the following two information sets
corresponding to the TCP-like and the UDP-like com-
munication protocols respectively:

T 2y, ¥F, v=1}, TCP-like
I = 4)

g 2 iy, v, UDP-like

Where yk é (Yk, yk717 ceey y1)7 Yk é ("/k, Vk—li ceey Vl)a
and vk £ (Vi Vi—1s -+ -5 V).
Consider also the following cost function:

In@N ! g, Py &

N-—1
=[ |:fo Wrxy + > (xp Wiexg + vieuy Ugug)

k=0
X llN_l,)E(), P():| (5)
where uV 1 £ (uny_1,un—_2,...,u1). Note that we are

weighing the input only if it is successfully received
at the plant. In fact, if it is not received, the plant
applies zero input and therefore there is no energy
expenditure.

We now look for a control input sequence u*
as a function of the admissible information set ., i.e.,
ur = gx(Fx), that minimizes the functional defined in
(5), i.e.,

N-1

(%o, P)2  min  Jy@V ' %, Py)  (6)

ug =g (Sk)
where S ={F, 9} is one of the sets defined in (4).
The set & corresponds to the information provided
under an acknowledgment-based communication pro-
tocols (TCP-like) in which successful or unsuccessful
packet delivery at the receiver is acknowledged to the
sender within the same sampling period. The set 4 cor-
responds to the information available at the controller
under communication protocols in which the sender re-
ceives no feedback about the delivery of the transmit-
ted packet to the receiver (UDP-like). The UDP-like
schemes are simpler to implement than the TCP-like
schemes from a communication standpoint. However,
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in the UDP-like scheme the information set available to
the controller is less rich.

III. PREVIOUS WORK

Before introducing new results, it is necessary to
review recently published results [3-5], and [16] for
both the TCP-like and the UDP-like case.

3.1 TCP-like case: estimator and controller design

The LQG control problem for the TCP-like case
has been solved in full generality in [3].

Finite horizon LQG. The main results are sum-
marized below:

e The separation principle holds under TCP-like
communication, since the optimal estimator is
independent of the control input uy.

e The optimal estimator gain Ky is time-varying and
stochastic since it depends on the past observation
arrival sequence {y j }’]‘.:1.

e The optimal LQG controller is a linear function of
estimated state ik‘k, ie.,up= Lkik‘k.

e The final cost cannot be computed explicitly, since
it depends on the realization of v, and y,, but can
be analytically bounded.

Infinite horizon LQG. Consider the system
(1)-(3) with the following additional hypothesis:
Wy =W, =W and U, = U. Moreover, let (A, B) and
(A, Q%) be controllable, and let (A, C) and (A, W%)
be observable. There exist critical arrival probabilities
ve and y,. , such that, for v>v, and y>y,:

1. The infinite horizon optimal controller gain is con-
stant:

lim Ly =Loo= — (B'SsocB + U)~!
k—00
X B'Sxc A (7
2. The infinite horizon optimal estimator gain Kj is
stochastic and time-varying since it depends on the
past observation arrival sequence {y j}lj‘.: 1

3. The expected minimum cost can be bounded by two
deterministic sequences:

) 1 1
N ;\;lm =< NJ;\} =< N ﬁax ¥

where J 1’(,” ", Jy“* converge to the following values:
1
Jmax Y li _— gymax
o N—1>r-il}oo NN
=trace((A'SocA + W — So0) (P —

+7PoC' (CPsC’ + R)"'CP))

+trace(Se0 Q)

. 1 ;

Jmmé li _~ gmin

*© Ni)rEOON N
= (1-)trace((A'Sooc A+ W —So0) P)

+trace(Seo Q)

and the matrices Seo, P oo, P are the positive def-
inite solutions of the following equations:
Seo=A'SxoA+ W —VA'Soo B
X(B'SoeoB + U) 'B'S A
Poo=APsA + Q — AP C’
X(CPsC' 4+ R)T'CPo A’
Po=10-PAP A + Q.
The critical probability v, can be numerically computed
via the solution of a quasi-convex linear matrix inequal-

ity (LMI) optimization problem, as shown in [3]. Also
the following analytical bounds are provided:

Pmin = Ve, Ve = Pmax
Dimi A 1

e max; |2 (A)|2
A 1

=] - —
Pmax Hl‘ Iﬂi‘ (A)|2

where Af(A) are the unstable eigenvalues of A.
Moreover, v, = pin When B is square and invert-
ible [19], and v; = p;ax When B is rank one [15].
Dually, y. = pmin When C is square and invertible, and
Ve = Pmax When C is rank one.

3.2 UDP-like case: estimator and controller design

As stated above, the LQG optimal control problem
for the UDP-like case presents analytical complications.
The lack of acknowledgment of the arrival of a control
packet has dramatic effects on the controller design.
Complete derivations for this case are presented in [4].
Here is a summary of them:

e The innovation step in the design of the estimator
now explicitly depends on the input uy;

¢ the separation principle is not valid anymore in
this setting.

e the LQG optimal control feedback uy = g; (%)
with horizon N > 2 that minimizes the functional
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(5) under UDP-like communication is, in general,
a nonlinear function of information set %y.

e In the special case in which the full state can be
observed whenever the observation packet arrives,
i.e., C is invertible and R =0, the LQG controller
is linear in the state, although the separation prin-
ciple does not hold.

Our experience in the design of control systems over
wireless sensor networks has taught us that it may be
extremely difficult to design and implement a TCP-like
protocol on such infrastructure. Therefore, there arises
the need to design an easily computable controller that,
although suboptimal, can guarantee “acceptable” per-
formance in UDP-like scenarios. The rest of paper will
deal with selecting such regulator within the class of
linear static controllers.

IV. A LINEAR STATIC CONTROLLER
FOR UDP-LIKE NETWORKED SYSTEMS

We want to find optimal static gains L, K for the

LQG controller and estimator respectively. The estima-
tor equations are:

Xp41 = AXg + VBug + 7 K vk — k)
up = —Lx &)
Yk = Cxy. (10)

After some simple algebra the close loop dynamics can
be written as,

X1 | _ A —vBL Xk
fee1 | T | WKC A—3BL—y,KC || %
Wk
+ .
[WKW}
If we define the vector z; £ [ka )EkT 17 € R?*", then the

previous equation can be written in a more compact
form as

lk+1= Gyk,vk (K, L)z + d. (1D

Now let

11 12
A Xk T R Py
oeel[3 ot o) = [ b L]

where Py is the covariance of the vector z;. Its evolution
is given by

Pyt =[Gy, (K, )2zl G

VioVk

(K, L)+ E[did] ]

=[Gy (K, L) PG, (K, L)]+D(K)

Vio Vi
=G(K,L, Py)+ D(K) (12)
where
_| @ 0
D(K)_[o yKRKT] (13

G(K,L, P)=3G11PGT, +7(1 —V)G1oPGY,
+(1 = 3)¥Go1 PG},
+(1 =1 =G PG

[ A —BL
| KC A—VBL—-KC

G| A 0
= |j5kCc A—-VBL-3KC

G _[A  —¥BL
M=lo A-¥BL

[ A 0
Go=] A—\'}BL]

We next define the following cost:

cx = Elx{ Wy + ul Uuy]

w 0
:Trace([ 0 \"}LTUL:| Pk)

= Trace(N (L) Py) (14)
where
w 0
N(L)= [ 0 T}LTUL] (15)

Clearly, if Py converges to a finite value P, then does
the cost, i.e., cxy converges to cso. Therefore, our ob-
jective is to minimize this cost function with respect
to K, L. The optimization problem can be written as
follows:

Ming ;,  Tr(PN(L))
st. P=G(K,L,P)+ D), (16)
P >0.
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This is a non-convex optimization problem, and in the
next section we will find necessary conditions for the
existence of an optimum.

4.1 Necessary conditions

Using Lagrange multipliers the optimization prob-
lem can be rewritten as:

Min[(,Lyp‘A JZTT(PN(L))
+Tr(A(G(K, L, P)
amn
+D(K)) — P)
sit. P>0, A=>0.

According to the minimum matrix principle [20], nec-
essary conditions for the optimum are:

oJ oJ oJ oJ
oA 0. opP 0. 0K 0. oL 0. (%)

The first two conditions above can be written re-
spectively as:

P=G(K,L,P)+D(K), P>0 (19)

A=G(K,L,A)+N({L), A>0 (20)

where

G(K,L, P)=3G{ ;PG +7(1 = ")G{,PGo
+(1 - ?)DG&PG(H
+(1 - ?)(1 - ‘_})Gg‘OPGOO

NOE that the operator G(K, L, P) is simply the dual
of G(K, L, P). Let us consider the following partition
of P and A and new matrices:

P1 P A A
P: N AZ
o ]oa=la ]

A=A1—A;, A=A, P=P—-P,, P=P,.
As shown in [21], the minimality assumption implies
that:

A= —A<0, Pp=P>0. 21
An immediate result is that limy_, o E[(xx — )?k))?kT 1=
P1» — P, =0, i.e., the estimate is asymptotically uncor-
related with the error estimate, similarly to the standard
Kalman filtering.

Equation (21) can be used to simplify (19) and
(20). In fact we can use the change of variables:

2= 7 @)
Eﬂz[i ﬂ[ﬂ’ (23)

which gives:

Statt |_| A= uKC (V—vi)BL | | &1
C2.k+1 wKC  A—-VBL $ok
wr — YK vk
+
[ Ve K vk }
Cl,k-ﬁ-l | A—=wBL —vwBL
Cokg1 | | k=v)BL A—(v—vi)BL—y,KC
| Gk 4| we— K
(ok Ve K vk ’

If we substitute the state space representation
given by (22) into (19) and (23) into (20), then the
matrices P and A become diagonal and are given by
P =diag(P, P) and A =diag(A, A). By using this
fact, then it is sufficient to compute the diagonal terms
of (19) and (20) which are given by the following:

P=E[(A—»KC)P(A—73KO)]

+E[( — vi)’BLPLT BT+ O + 5KRKT
P=E[yKCPCTKT]

+E[(A —VBL)P(A—vBL)'1+7KRKT
A=FE[(A—vBL)"A(A —vwBL)]

+E[(v — i)’ LTBTABLI+ W +3LTUL
A=EVLTBTABL)

+E[(A — (3 —v)BL — 3, KCO)TA

(A= (@ —w)BL — 3, KC)1+7LTUL.

The previous equations can be then written as follows

P=7(A—KC)P(A—KC)T+(1-7)APAT
+v(1=v)BLPL" BT+ Q+7KRK"
=®(P,P.K,L) (24)
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P =(A—VBL)P(A—VBL)"
+3K(CPCT+R)KT
=d,(P,P,K,L) (25)
A=%A—-BL)YTA(A—BL)+(1-v)ATAA
+W4+W( LT (U+(1-9)BTAB)L
=®3(A, A, L) (26)
A=5(A-KCO)TA(A—KC)+(1-7)ATAA
+3LT(BTAB+(1-v) BT AB4+U)L
=®4(A, A K, L). (27)

Similarly, if we use (21) into the last two par-
tial derivatives of (18) written in the new state variable

above, then it is clear that SIJ{ and S—J are equivalent to
the partial derivatives of the trace of the right hand sides
of (24) and (26), respectively, which give the following

constraints:

K =APCT(CPCT +R)

=®5(P) (28)
L=B"AB+(1-v)BTAB+U)'BTAA
= D6(A, A) (29)

where the symbol f represents the Moore-Penrose pseu-
doinverse. Note that if =7 =1 and we substitute (28)
into (24), and (29) into (26), we obtain the standard Al-
gebraic Riccati equations for the Kalman filter and LQ
optimal controller, respectively. Next section provides
an iterative algorithm that converges to solution of the
optimization problem if such a solution exists.

4.2 Iterative solution

As described above, the six coupled nonlinear
equations (24)—(29) define a set of necessary condi-
tions. A natural choice to try to find a fixed point is to
use an iterative approach as the following:

Piy1 =@1(Pk, Py, Ki. Ly) (30)
Py =D:(Py, Py, K, L) (3D
Aiy1=D3(Ar, Ay, Li) (32)
Appy = Ps(Ax, Ay, Kie, L) (33)
K = ®5(Py) (34)
Li = ®s(Ar, Ap). (35)

For ease of notation, if we substitute the last two equa-
tions for the gains Ky, L into the previous four, the
iterative update can be written in a more compact form
as follows:

(Fk-i-l s £k+1 s Kk+1 s Ak-ﬁ-l) = (I)(Fk, Bk, Kk, Ak)-
(36)

It was shown by De Koning in [6] that, under some
standard conditions on stabilizability and detectability
of the open loop system, the necessary conditions given
by (24)—(29) are also sufficient and the iterative solution
given by (30)—(35) converges to the fixed point solution.
We adapt his results to our scenario in the following
theorem:

Theorem 1. Let us consider the closed loop control
system defined by (1)—(2) and (9)—(10), where v; and
7x are Bernoulli random variables with mean v and 7,
respectively. Assume that (A, B), (AT, CT), (A, W1/?)
and (AT, Q%) are all stabilizable, and U>0, R>0.
Then, the sequence defined by (30)—(35) starting from
initial conditions Po = Py= Ag= Ay =0 converges to
the unique solution of the optimization problem defined
by (16), i.e.,

lim ®(0,0,0,0)=(P", P*, A", A*)
k—o00

if and only if the sequence defined by (30)—(35)
where W =0 =0, V=R=0 and initial conditions
Po=Ao=1 and P, =A,=0 converge to zero, i.e.,

lim ®*(1,0, 1,0)= (0,0, 0, 0).
k—o00

The proof of the previous theorem is rather involved and
requires the use of the homotopic continuation method
to prove convergence, therefore it is omitted. We refer
the interested reader to [6] and [22] for details.

V. DISCUSSION

In the previous section we provided necessary and
sufficient conditions for the existence of an optimum,
along with an iterative method to compute it. This sec-
tion shows some numerical examples and applications
of the proposed iterative algorithm.

For the sake of simplicity and to be able to pro-
vide a readable plot, consider a scalar version of the
system of (1)-(3), with B=C=Q0=R=W=U=1,
A=1.1,v=7=0.8. Fig. 3 shows a contour plot of
the infinite horizon cost as a function of the con-
troller and estimator gains, K and L respectively.
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v=y=0.8
1.2 T T
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0.9
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Fig. 3. Contour plot of infinite horizon cost for fixed control and esti-
mation gains L and K. Solid line corresponds to the (Lg, Ki)
points computed using the iterative solution of (30)—(35) with
zero initial conditions.

The infinite horizon cost function J is computed as
J(K, L)=trace(N(L)P) where P is given by the lin-
ear equation (19) for fixed values of K and L. Fig. 3
also shows the trace (L, Kj) obtained from (30)—(35)
with zero initial conditions for the matrices P, P, A, A,
thus providing a sanity check of iterative solution of
the optimal LQG problem. Note that the cost function
is non-convex, but that there is a unique minimum.

We now consider the LQG design for the pen-
dubot, which is an example of a MIMO unstable sys-
tem. The pendubot consists of two-link planar robot
with torque actuation only on the first link, and we ad-
dress the interested reader to [23] for more details and
references. We are interested in designing a controller
that stabilizes the pendubot in the up-right position. The
state space representation of the system linearized about
the unstable equilibrium point and discretized with sam-
pling period T, =0.005 s is given by:

T 1.001  0.005  0.000 0.000
A—| 035 1001 —0.135 0.000
—| —0.001 0.000 1.001 0.005
[ —0.375 —0.001  0.590  1.001
r 0.001
0.540 1000
B=1_0002 |- Cz[o 0 1 o}
[ —1.066
[0.001 0
B=1"0 o000 ] U=2

T T T T T T T T T
1
\ — UDP
18 \ - = upper bound TCP
|}

0 L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Y=V

Fig. 4. Comparison of optimal linear LQG-like controllers under
TCP-like and UDP-like communication protocols for the pen-

dubot.

0.003
o7 _ | 1.000
0=qq", q{o.oos
—2.150

50 00

01 00

W=1001 0

0 0 0 1

The matrix A has two stable and two unstable eigen-
values, eig(A) = (1.061, 1.033, 0.968, 0.941). It is easy
to verify that the pairs (A, B) and (A, Q) are control-
lable, (A, C) and (A, W) are observable, and R>0, as
required by the assumptions of the theorems presented
in the previous sections.

Fig. 4 shows a comparison between the optimal
linear TCP-like LQG controller and the optimal linear
UDP-like controller derived above, for different values
of v=7. The figure suggests that for sufficiently high
arrival rate, implementing an optimal controller over a
TCP-like network does not provide a significant advan-
tage. This is particularly useful to the designer, who can
trade off high complexity in the network design with a
little performance loss.

VI. CONCLUSION AND FUTURE WORK

In this paper we analyzed a generalized version
of the LQG control problem in the case where both
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observation and control packets may be lost during
transmission over a communication channel. This sit-
uation arises frequently in distributed systems where
sensors, controllers and actuators reside in different
physical locations and have to rely on data networks
to exchange information. In this context controller de-
sign heavily depends on the communication protocol
used. In fact, in TCP-like protocols, acknowledgments
of successful transmissions of control packets are pro-
vided to the controller, while in UDP-like protocols, no
such feedback is provided. In the first case, the separa-
tion principle holds and the optimal control is a linear
function of the state. As a consequence, controller and
estimator design problems are decoupled. UDP-like
protocols present a much more complex problem. We
have shown that the lack of acknowledgment of control
packets results in the failure of the separation principle.
Estimation and control are now intimately coupled. We
have shown that the LQG optimal control is, in gen-
eral, nonlinear in the estimated state. In the particular
case, where we have access to full state information,
the optimal controller is linear in the state. To fully
exploit UDP-like protocols it is necessary to have a
controller/estimator design methodology for the gen-
eral case when there is measurement noise and under
partial state observation. As UDP-like protocols are the
only practical solution in many cases where the chan-
nel is too unreliable to guarantee successful delivery of
acknowledgment, it would prove extremely valuable to
determine the optimal time-invariant LQG controller.
Among all possible choices we focused on the class
of linear controllers, for their simplicity in implemen-
tation. After describing the optimization problem, we
derived necessary and sufficient conditions for the exis-
tence of a unique solution. Another very interesting find-
ing is that for practical purposes, control performance
is not greatly affected by lack of optimality of the linear
controller.
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