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Abstract—We present a compressed domain scheme that is able
to recognize and localize actions at high speeds. The recognition
problem is posed as performing an action video query on a test
video sequence. Our method is based on computing motion simi-
larity using compressed domain features which can be extracted
with low complexity. We introduce a novel motion correlation
measure that takes into account differences in motion directions
and magnitudes. Our method is appearance-invariant, requires
no prior segmentation, alignment or stabilization, and is able
to localize actions in both space and time. We evaluated our
method on a benchmark action video database consisting of six
actions performed by 25 people under three different scenarios.
Our proposed method achieved a classification accuracy of 90 %,
comparing favorably with existing methods in action classification
accuracy, and is able to localize a template video of 80 x 64 pixels
with 23 frames in a test video of 368 x 184 pixels with 835 frames
in just 11 s, easily outperforming other methods in localization
speed. We also perform a systematic investigation of the effects of
various encoding options on our proposed approach. In particular,
we present results on the compression-classification tradeoff,
which would provide valuable insight into jointly designing a
system that performs video encoding at the camera front-end and
action classification at the processing back-end.

Index Terms—Action recognition, compressed domain pro-
cessing, real-time video surveillance, video coding, video signal
processing.

1. INTRODUCTION

HE use of video cameras has become increasingly
T common as their costs decrease. In personal applications,
it is common for people to record and store personal videos
that comprise various actions, in part due to the widespread
availability of phone cameras and cheap cameras with video
recording capabilities. In security applications, multiple video
cameras record video data across a designated surveillance
area. A good example of this is the large network of surveil-
lance cameras installed in London. Such proliferation of video
data naturally leads to information overload. It would not only
be incredibly helpful but also necessary to be able to perform
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rudimentary action recognition in order to assist the users in
focusing their attention on actions of interest as well as allowing
them to catalog their recorded videos easily.

In this paper, we formulate the problem of action recognition
and localization as follows: given a query video sequence of a
particular action, we would like to detect all occurrences of it
in a test video, thereby recognizing an action as taking place
at some specific time and location in the video. The approach
should be person-independent, hence we want our method to be
appearance-invariant. In a surveillance setting, it is critical to be
able to respond to events as they happen. Even in a consumer
application, it is desirable to minimize processing time. There-
fore, we want a solution that is fast and can operate in real time.

Any practical system that records and stores digital video
is likely to employ video compression such as H.263+ [2] or
H.264 [3]. It has long been recognized that some of the video
processing for compression can be reused in video analysis or
transcoding; this has been an area of active research (see, for
example, [4] and [5]) in the last decade or so. Our approach ex-
ploits this insight to attain a speed advantage.

It is reasonable to assume that a surveillance application
would consist of a front-end system that records, compresses,
stores, and transmits videos as well as a back-end system that
processes the transmitted video to accomplish various tasks.
One focus in this paper is on the action recognition task that
would presumably be performed at the back-end. However, we
recognize that various engineering choices, such as the choice
of video coding method, made at the front-end can have an im-
pact on the action recognition performance in the back-end. In
particular, we would also like to understand how various video
coding choices impact the action recognition performance of
our approach.

A. Related Work

There has been a great deal of prior work in human action
recognition; an excellent review of such methods has been pre-
sented by Aggarwal and Cai [6]. We are interested in approaches
that work on video without relying on capturing or labeling
body landmark points (see [7] and [8] for recent examples of the
latter approach). Efros ef al. [9] require the extraction of a stabi-
lized image sequence before using a rectified optical flow-based
normalized correlation measure for measuring similarity. This
stabilization step required by [9] is a very challenging prepro-
cessing step and affects the end result significantly. Shechtman
and Irani [10] exhaustively test motion consistency between
small space-time (ST) image intensity patches to compute a
correlation measure between a query video and a test video.
While their method is highly computationally intensive, they
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are able to detect multiple actions (similar or different) in the
test video and perform localization in both space and time. Ke
et al. [11] also use an image intensity-based approach, but apply
a trained cascade of classifiers to ST volumetric features com-
puted from image intensity. Schiildt et al. [12] propose an ap-
proach based on local ST features [13] in which support vector
machines (SVMs) are used to classify actions in a large database
of action videos that they collected. Dollar et al. [14] adopt a
similar approach, but introduce a different spatio-temporal fea-
ture detector which they claim can find more feature points.

There has also been prior work in performing action recogni-
tion in the compressed domain. Ozer et al. [15] applied Principal
Component Analysis (PCA) on motion vectors from segmented
body parts for dimensionality reduction before classification.
They require that the sequences must have a fixed number of
frames and be temporally aligned. Babu et al. [16] trained a
Hidden Markov Model (HMM) to classify each action, where
the emission is a codeword based on the histogram of motion
vector components of the whole frame. In later work [17], they
extracted motion history image (MHI) and motion flow his-
tory (MFH) [18] from compressed domain features before com-
puting global measures for classification. In [16] and [17], the
use of global features precludes the possibility of localizing ac-
tions with these compressed domain methods.

B. Contributions

Our proposed method makes use of motion vector informa-
tion to capture the salient features of actions which are appear-
ance-invariant. It then computes frame-to-frame motion simi-
larity with a novel measure that takes into account differences
in both orientation and magnitude of motion vectors. The scores
for each space-time candidate are then aggregated over time
using a method similar to [9]. Our approach is able to localize
actions in space and time by checking all possible ST candi-
dates, much like in [10], except that it is more computation-
ally tractable since the search space is greatly reduced from the
use of compressed domain features. Our innovation lies in the
ability of the proposed method to perform real-time localization
of actions in space and time using a novel combination of signal
processing and computer vision techniques. This approach re-
quires no prior segmentation, no temporal or spatial alignment
(unlike [9] and [15]), and minimal training. Unlike in [9], [11],
[12], and [14], we also do not need to compute features explic-
itly; features are readily available in the compressed video data.
We have to emphasize the fact that our action similarity com-
putation is much faster than methods such as in [10], making
possible applications such as content-based video organization
for large-scale video databases [19].

We also study how various encoding options affect the
performance of our proposed approach. This aspect is often
overlooked in most other compressed domain video analysis
work, in which results are typically presented only on a single
choice of encoding parameters. However, we recognize that
different encoding options not only affect compression per-
formance but also influence the performance of compressed
domain processing. Hence, in this study, we undertake a
systematic investigation to determine the tradeoffs between
compression performance and classification performance. This
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Fig. 1. Flow chart of action recognition and localization method. Optical flow
in the query and test videos are first estimated from motion vector information.
Next, frame-to-frame motion similarity is computed between all frames of the
query and test videos. The motion similarities are then aggregated over a series
of frames to enforce temporal consistency. To localize, these steps are repeated
over all possible ST locations. If an overall similarity score between the query
and test videos is desired, a final step is performed with the confidence scores.

would be useful in understanding how best to choose encoding
options to strike a good balance between compression and
classification and between speed and accuracy.

The remainder of this paper is organized as follows. Section II
outlines our proposed method and describes each step in detail.
The experimental setup and results are discussed in Section III,
and we discuss the effects of different video encoding options
in Section IV. We then present our concluding remarks in
Section V.

II. APPROACH

Given a query video template and a test video sequence, we
propose a compressed domain procedure to compute a score for
how confident we are that the action presented in the query video
template is happening at each ST location (to the nearest mac-
roblock and frame) in the test video. The steps of the algorithm
are summarized in the flow chart shown in Fig. 1. We will elab-
orate on each of these steps in Sections II-A-F.

Notation

In this paper, X? denotes a video, with p € {test,query}
referring to either the test video orthe query video. Each video
X? has TP frames, with each frame containing N? x M?
macroblocks. We assume that an action induces a motion field
that can be observed as a spatio-temporal pattern; let V? be the
spatio-temporal pattern (motion field) associated with video
X?. Furthermore, VP, (i) = [V (@) VP (i) ] denotes the
motion vector at location (n,m) in frame 7 of X?. Our working
assumption is that similar actions will induce similar motion
fields. We will use (u) as a shorthand for max(0, u).

A. Estimation of Coarse Optical Flow

Motion compensation is an integral component of modern
video compression technology, and motion vectors are by-prod-
ucts of the motion compensation process. Motion vectors are
obtained from block matching and can be interpreted as crude
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approximations of the underlying motion field or optical flow.
In addition, the discrete cosine transform (DCT) coefficients can
also be used to provide a confidence measure on the estimate.
We follow the approach outlined by Coimbra and Davies [20]
for computing a coarse estimate and a confidence map of the
optical flow. To generate the optical flow estimate, we use the
following rules [20].

1) Motion vectors are normalized by the temporal distance
of the predicted frame to the reference frame, and their
directions are reversed if the motion vectors are forward-
referencing.

2) Macroblocks with no motion vector information (e.g.,
macroblocks in I-frames and intra-coded macroblocks)
retain the same optical flow estimate as in the previous
temporal frame.

3) Macroblocks with more than one motion vector (e.g., bi-di-
rectionally predicted macroblocks in B-frames) take as the
estimate a weighted average of the motion vectors, where
the weights are determined by their temporal distance to
the respective reference frames.

It has been recognized that optical flow estimation perfor-
mance at each image location depends on the amount of texture
in its local neighborhood [21]. In particular, if the local neigh-
borhood suffers from the aperture problem, then it is likely to
have an unreliable optical flow estimate. By thresholding a con-
fidence measure derived from the DCT coefficients that mea-
sures the amount of texture in the block [20], we can filter out
optical flow estimates that are likely to be unreliable. To com-
pute the confidence measure for intra-coded macroblocks, we
use [20]

)2 + F;(1,0)?)

SEOL

where ) is the confidence measure and F;(u, v) is the 2-D DCT
of the ith block f;(z, y) out of K blocks within the macroblock.
Coimbra and Davies have shown that F;(1,0) and F;(0, 1) can
be interpreted as a weighted average of spatial gradient in the z-
and y-directions, respectively [20]. For predicted macroblocks,
we update the confidence map by taking a weighted average of
the confidence map in the reference frame(s) as indicated by
motion vector information.

By thresholding A, we then decide whether to keep the optical
flow estimate for the block or to set it to zero, hence obtaining
VP, As we will show later in Section III-B, this step removes
unreliable estimates and greatly improves the classification per-
formance of our proposed algorithm.

B. Computation of Frame-to-Frame Motion Similarity

For the purpose of discussion here, both the test frame and
query frame are assumed to have a spatial dimension of N x M
macroblocks (the equal size restriction will be lifted later). We
would like to measure the motion similarity between the motion
field of the ith test frame VteSt( ) and that of the jth query frame

Ve ().
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One way of measuring similarity is to follow the approach
taken by Efros et al. [9]. Each motion field is first split into
nonnegative motion channels, e.g., (Vgg(z))+, (—V,{%(i))+,
(V2w (i)) ., and (=V}P;v.(d)) , using the notation described in
Section II-A. We can then vectorize these channels and stack
them into a single vector Ur (7). The similarity between frame 7
of the test frame and frame j of the query frame, S (4,7), is then
computed as a normalized correlation

(Tt (i), Ty ()

S(i, 7) (D

[o=ofa- o]

We will refer to this similarity measure as nonnegative channels
normalized correlation (NCNC).

NCNC does not take into account the differences in magni-
tudes of individual motion vectors. To address this, we propose
a novel measure of similarity

) 1 N M
S(Z“}) — — Z Z d Vtest( ) uner) (_]) )
Z(i,7)

where, if HV}H > 0 and HV;H > 0, then

o () vl |7
d(Vq,Va) = _‘7"' - min —ir TS
Vi Vol ||V

(v2.72))
= 2 3
max< V2 5 Vl >

and d(V’l,VQ) = 0 otherwise. In (3), the first and second
terms measure the similarity in direction and magnitude of
corresponding motion vectors respectively. The normalizing
factor Z(%,7) in (2) is

In other words, we want to ignore macroblocks in both the
query and test video which agree on having no motion. This has
the effect of not penalizing corresponding zero-motion regions
in both the query and test video. We term this novel measure
nonzero motion block similarity (NZMS).

Vtcst

Ve ()| > 0]

C. Aggregation of Frame-to-Frame Similarities

Here, we describe how to compute S (,7), which tells us
how similar the motion fields of frame ¢ of the test frame and
frame j of the query frame are. To take temporal dependencies
into account, we need to perform an aggregation step. We do
this by convolving S(7, j) with a T’ x 7" filter parameterized by
a, Hu(i,7), to get an aggregated similarity matrix S(z,j) =
(S % Hu)(i,5) [9]. S(i, ) tells us how similar a T-length se-
quence centered at frame ¢ of the test video is to a T-length se-
quence centered at frame j of the query video. H,, (%, j) can be
interpreted as a bandpass filter that “passes” actions in the test
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Fig. 2. An example similarity matrix and the effects of applying aggregation.
In these graphical representations, bright areas indicate a high value. (a) Ag-
gregation kernel. (b) Similarity matrix before aggregation. (c) Similarity matrix
after aggregation. Notice that the aggregated similarity matrix is less noisy than
the original similarity matrix.

video that occur at approximately the same rate as in the query
video. We use the following filter [9]:

Ho(iyg) = Y e (x(i,r4) + x4, i) ,

-T R &
for — < 4,5 <~
2 2
where

_ 1, ifu=sign(v) - [|v]]
x(u,v) = {0 otherwise

where R is the set of rates (which has to be greater than one) to
allow for and a(« > 1) allows us to control how tolerant we are
to slight differences in rates; the higher « is, the less tolerant it
is to changes in the rates of actions. Fig. 2(a) shows this kernel
graphically for a = 2.0.

Fig. 2(b) shows a pre-aggregation similarity matrix S (%, 7).
Note the presence of near-diagonal bands, which is a clear in-
dication that the queried action is taking place in those frames.
Fig. 2(c) shows the post-aggregation similarity matrix, S(z, j),
which has much smoother diagonal bands.

We will show later in Section III-C that this aggregation
step is crucial in performing action classification. However, the
choice of « is not that important; experimental results show
that performance is relatively stable over a range of a.

D. ST Localization

Sections II-C and D tell us how to compute an aggregated
similarity between each frame of a T***-frames test sequence
and each frame of a 79"“"Y-frames query sequence, both of
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Fig. 3. Illustration of ST localization. The query video ST patch is shifted over
the entire ST volume of the input video, and the similarity C'(n, m, ¢) is com-
puted for each ST location.

which are NV x M macroblocks in spatial dimensions. To com-
pute an overall score on how confident we are that frame ¢ of
the test frame is from the query sequence, we use

C(i) = max S(k,j7). (4)

max(i—(T/2),1)<k<min(i4(T/2),Tt")
1<G<Tavery

Maximizing S(k, j) over j of the query video allows us to pick
up the best response that a particular frame of the test video has
to the corresponding frame in the query video. We also maxi-
mize S(k, 7) over k in a T-length temporal window centered at
1. The rationale is that if a T-length sequence centered at frame
k of the test video matches well with the query video, then all
frames in that T-length sequence should also have at least the
same score.

The above steps can be easily extended to the case where
the test video and query video do not have the same spatial
dimensions. In that case, as proposed by Shechtman and Irani
[10], we simply slide the query video template over all possible
spatial-temporal locations (illustrated in Fig. 3) and compute a
score for each ST location using (4). This results in an action
confidence volume C(n,m, ) that represents the score for the
(n,m) location of the ith frame of the test video. A high value
of C'(n,m, 1) can then be interpreted as the query action being
likely to be occurring at spatial location (n,m) in the ith frame.

While this exhaustive search seems to be computationally in-
tensive, operating in the compressed domain allows for a real-
time implementation.

E. Video Action Similarity Score

Given C(n,m,1), we can compute a nonsymmetric simi-
larity, p(X'est, X 9uerY) of the test video to the query video by
using

n,m

thst
1
X1 x5 i) (o))
=1

where the normalization factor L is given by

Test

L= i)

and 7() is an indicator function which returns one if at least T’
frames in the (27" + 1)-length temporal neighborhood centered
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Fig. 4. Snapshots of frames from action videos in database [12]. From left to right: boxing, handclapping, handwaving, running, jogging, and walking. From top
to bottom: outdoors environment, outdoors with different clothing environment, and indoors environment. The subjects performing each action are the same across

the different environments.

at frame 7 have significant motion and returns zero if otherwise,
ie.,
i+T

YoleU) =T

j=i—T

n(i) =1

and the fraction of significant motion vectors in frame j, Q(7),
is given by

Ntest _q prtest _q .
S s >
n= m=

Ntest . Mtest

Q) =

A frame is asserted to have significant motion if at least ¢ pro-
portion of the macroblocks have reliable motion vectors (reli-
able in the sense defined in Section II-B) of magnitude greater
than ¢, i.e., Q(j) > 6.

III. EXPERIMENTAL RESULTS

We evaluate our proposed algorithm on a comprehensive
database compiled by Schiildt et al. [12].! As illustrated in
Fig. 4, their database captures six different actions (boxing,
handclapping, handwaving, running, jogging and walking),
performed by 25 people, over four different environments (out-
doors, outdoors with scale variations, outdoors with different
clothes, and indoors). Since our system was not designed to
handle scale-varying actions, we considered only the three
environments that do not have significant scale variations.

To evaluate performance, within each environment, we per-
form a leave-one-out full-fold cross validation, i.e., to classify
each video in the dataset, we use the remaining videos that are
not of the same human subject as the training set. This will im-
prove the statistical significance of our results given the limited
number of videos in the dataset. To perform classification, we
simply use nearest neighbor classification (NNC) by evaluating
the video action similarity score (see Section II-F) with each of
the videos in the training set.

[Online]. Available: http://www.nada.kth.se/cvap/actions/

TABLE I
CONFUSION MATRIX USING NZMS
[ [ Box | Hc | Hw [ Run | Jog [ Walk |

Boxing 0.86 | 0.07 | 0.05 | 0.00 | 0.00 | 0.01
Handclapping || 0.03 [ 0.89 | 0.08 | 0.00 | 0.00 | 0.00
Handwaving 0.00 | 0.04 | 0.96 | 0.00 | 0.00 | 0.00
Running 0.00 | 0.00 | 0.00 | 0.79 | 0.21 | 0.00
Jogging 0.00 | 0.00 | 0.00 | 0.01 | 097 | 0.01
‘Walking 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.93

TABLE II

CONFUSION MATRIX USING NORMALIZED CORRELATION [9]

[ [ Box | Hc | Hw [ Run | Jog [ Walk |
Boxing 0.86 | 0.00 [ 0.01 | 0.00 | 0.00 0.12
Handclapping 043 | 0.32 | 0.24 | 0.00 | 0.00 0.00
Handwaving 0.01 | 0.01 | 0.97 | 0.00 | 0.00 | 0.00
Running 0.00 | 0.00 | 0.00 | 0.97 | 0.03 0.00
Jogging 0.00 | 0.00 | 0.00 | 0.21 | 0.79 | 0.00
‘Walking 0.00 | 0.00 | 0.00 | 0.00 | 0.61 0.39

In our experiments, we used § = (1/30), e = 0.5 pels/frame,
a = 2.0, and T' = 17. For comparison, we also tested both
NCNC [(1)] and NZMS [(2)] when computing frame-to-frame
motion similarity.

A. Classification Performance

The action classification confusion matrix for our algorithm
when using NZMS is shown in Table I while that using NCNC
[9] is shown in Table II. Each entry of the matrix gives the frac-
tion of videos of the action corresponding to its row that was
classified as an action corresponding to the column. Using the
proposed NZMS, our overall percentage of correct classifica-
tion is 90%. As a comparison against state-of-the-art methods
that work in the pixel domain, we note here for reference that
Schiildt et al. [12], Dollar et al. [14], and Ke et al. [11] report
classification accuracies of 72%, 81%, and 63%, respectively,
on the same dataset. While the methodology and classification
methods used in these works differ, our results compare very fa-
vorably, even though we use compressed domain features and a
very simple classifier.
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TABLE III
CLASSIFICATION PERFORMANCE WITH AND WITHOUT THRESHOLDING
CONFIDENCE MAP

With Without
Method || thresholding | thresholding
NZMS 90.0% 81.2%
NCNC 71.7% 72.5%
TABLE IV

CLASSIFICATION PERFORMANCE WITH VARYING &

| a | Classification performance
1.0 88.2%
2.0 90.0%
3.0 91.0%
4.0 90.8%
No aggregation 62.5%

Looking at the confusion matrices, we see that our proposed
NZMS measure vastly outperforms NCNC. This is due to the
fact that our measure looks at each corresponding pair of mac-
roblocks separately instead of looking across all of them. NZMS
also considers both differences in motion vector orientations and
norms, and ignores matching zero-motion macroblocks.

Using NZMS, most of the confusion is between “Running”
and “Jogging,” with a significant proportion of “Jogging” videos
being erroneously classified as “Running.” Looking at the actual
videos visually, we found it hard to distinguish between some
“Running” and “Jogging” actions. In fact, there are certain cases
where the speed of one subjectin a “Jogging” video is faster than
the speed of another subject in a “Running” video.

B. Performance Gain From Thresholding Optical Flow
Confidence Map

Table III shows the effects of thresholding on action classifi-
cation performance using our proposed approach. By removing
noisy estimates of the optical flow, we are able to achieve a 10%
gain in classification performance when using NZMS as the mo-
tion similarity measure.

C. Effect of a Variation on Classification Performance

To understand the effect of o on classification, we ran an
experiment using NZMS with varying values of a. Table IV
shows the results of this experiment. We see that the classifi-
cation performance is relatively stable over a range of «. More
importantly, it is also clear that the aggregation step described
in Section II-D is critical for action classification.

D. Localization Performance

Unlike most other methods, with the notable exception of [10]
and [11], we are able to localize an action in space and time as
well as detect multiple and simultaneously occurring activities
in the test video. Fig. 5 shows an example (the “beach” test se-
quence and walking query sequence from Shechtman and Irani
[10]) that demonstrates our algorithm’s ability to detect mul-
tiple people walking in the test video. We emphasize that we
only use a single template video of a person walking to localize
walking actions in the test video. Since our algorithm is not ap-
pearance-based, there is no problem with using a query video of
one person on a test video containing other people.
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(d)

Fig. 5. Localization results. (a) A frame from the query video. (b) An input
video frame with one person walking. (c) An input video frame with two people
walking. (d) Detection of one person walking. (¢) Detection of two people
walking. The false color in (d) and (e) denotes detection responses, with blue
and red indicating a low or high response, respectively.

In the test sequence, there are both static background clutter,
such as people sitting and standing on the beach, and dynamic
background clutter, such as sea waves and a fluttering umbrella.
This background is very different from that in the query se-
quence. Since the spatio-temporal motion field of background
motion such as sea waves is different from that of walking, it
is not picked up by our algorithm. No special handling of the
background motion is necessary.

E. Computational Costs

On a Pentium-4 2.6-GHz machine with 1 GB of RAM, it
took just under 11 s to process a test video of 368 x 184 pixels
with 835 frames on a query video that is 80 x 64 pixels with 23
frames. We extrapolated the timing reported in [10] to this case;
it would have taken about 11 h. If their multigrid search was
adopted, it would still have taken about 22 min. Our method
is able to perform the localization, albeit with a coarser spa-
tial resolution, up to three orders of magnitude faster. On the
database compiled in [12], each video has a spatial resolution
of 160 x 120 pixels and has an average of about 480 frames.
For each environment, we would need to perform 22500 cross
comparisons. However, each run took an average of about 8 h.
In contrast, [10] would have taken an extrapolated run time of
three years.

IV. EFFECTS OF VIDEO ENCODING OPTIONS

In the experiments described in the previous section, we
have used input video compressed with MPEG [22], with a
group-of-pictures (GOP) size of 15 frames and a GOP struc-
ture of I-B-B-P-B-B-, where “I” refers to an intra-frame, “P”
refers to a predicted-frame, and “B” refers to a bi-directionally
predicted-frame. It would be interesting to see if there is any
discernible difference when different encoding options, such as
GOP size, GOP structure, or the use of half-pel or quarter-pel
motion estimation, are used. In addition, while MPEG uses
16 x 16 pixel macroblock as the basis of motion compensation,
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Fig. 6. Effect of varying GOP size on classification performance and compres-
sion performance. In general, increasing GOP size results in decreasing classi-
fication performance. Also, having no B-frames in the GOP structure offers a
better compression-classification tradeoff. The fairly constant performance of
the scheme using I-P-P-P-... with no texture propagation error indicates that
the main source of performance degradation with increasing GOP size is due to
propagation errors in computing block texture.

newer encoding standards such as H.2634 and H.264 allow the
use of smaller block sizes [2], [3].

These experiments would be useful for a systems engineer
in choosing a video encoder and its encoding options. While
storage space and video quality are important considerations, it
would be helpful to know if sacrificing a little compression per-
formance would yield large performance gains in surveillance
tasks such as action detection.

In the experiments below, we have used the publicly avail-
able “FFMPEG” video encoder.2 When applicable, we will de-
scribe the encoder options and specify the actual flags used with
FFMPEG in parentheses. Unless otherwise mentioned, the en-
coding options used are that the MPEG-4 video codec is used
(“~vcodec mpeg4”), the output video is of similar quality to the
input video (“-sameq”), and the “AVI” container format is used.

A. GOP Size and Structure

We first look at how varying GOP size and structure affects
classification performance. We consider two commonly used
GOP structure, I-B-B-P-B-B- (“-bf 2”) and I-P-P-P-P-P-. We
also look at a variety of GOP sizes {9,12,15,18,30,60,120,240}
(“-g [GOP size]”). By looking at how classification performance
varies with compression performance, we can get an idea of
what tradeoffs are possible by varying GOP parameters when
performing video encoding. In these experiments, the output
video quality is kept relatively similar over all GOP size and
structure.

It should be expected, and is in fact the case, that the larger the
GOP size, the smaller the compressed videos, since predicted
frames such as P- and B-frames can be more efficiently com-
pressed than I-frames. The results in Fig. 6 further shows that, in
general, increasing GOP size also results in decreasing classifi-
cation performance. This could be due to the fact that the update

2[Online]. Available: http:/ffmpeg.mplayerhq.hu/
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of the confidence measure computed as in Section II-B suffers
from error propagation with each P-frame. To test out this hy-
pothesis, we also ran experiments where the confidence measure
is computed from the DCT of the actual decoded frame pixels
instead. Looking at the curve for the I-P-P-P-... GOP structure
with no texture propagation error, we see that the classification
accuracy is indeed fairly constant over a wide range of GOP
size. This confirms that the main source of performance degra-
dation with increasing GOP size is due to the propagation errors
in computing the confidence measure.

Fig. 6 also shows that, for the most part, the I-P-P-P-... GOP
structure offers a better classification—compression tradeoff
than the I-B-B-P... GOP structure. There are two possible
reasons for this. First, because of the complexity of articulated
motion, B-frames are unable to provide any substantial com-
pression gains over P-frames, while suffering from overhead.
Hence, the I-B-B-P-... structure, for the same GOP size, ac-
tually performs worse in terms of compression performance.
Second, the I-B-B-P-... structure introduces inaccuracy into
the optical flow estimation process. The P-frames are spaced
three frames apart, and hence its estimated motion is actually
over three temporal frames and not over one frame.

The experiments in this section seem to suggest that, if action
classification is an important factor in determining encoding op-
tions, then no B-frames should be used in the encoding. This
also has other advantages such as simpler encoders and decoders
requiring less frame buffer memory. Further, if we used the
confidence measure as computed in Section II-B, the GOP size
should not be too large. A GOP size of 12, 15, or 18 seems to
offer a good balance between compression and action classifica-
tion. There might also be other factors in determining GOP size,
however, such as ease of random access and error resilience.

B. Quarter-Pel Accuracy Motion Estimation

In MPEG, motion estimation was carried out to half-pel ac-
curacy. It was found that better motion compensation is possible
with a further increase in accuracy to quarter-pel [3], [23]. This
motivates us to investigate if an increase in motion estimation
accuracy (“-gpel 1) would also translate into better action clas-
sification performance.

Fig. 7 shows that using quarter-pel accuracy in motion esti-
mation does not actually improve the classification—compres-
sion tradeoff. There are two main reasons for this. First, we
observe that on this set of action videos, for the same GOP
size, using quarter-pel accuracy actually performs worse than
half-pel accuracy in terms of compression performance. This
could be due to the storage overhead of motion vectors with in-
creased accuracy. Second, quarter-pel accuracy does not trans-
late into better action classification performance.

C. Block Size in Motion Compensation

As mentioned earlier, newer encoding standards have the op-
tion of allowing smaller block sizes to be used in motion com-
pensation [2], [3]. We compare the effect of forcing smaller
blocks in motion compensation (“-mv4 1”) on both action clas-
sification performance and compression performance. In this set
of experiments, we used a GOP structure of I-B-B-P-.
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Fig. 8. Effect of using different block sizes in motion compensation on classi-
fication performance and compression performance. Using a smaller block size
results in a better compression—classification tradeoff, but this has to be weighed
against the resulting increase in computational time.

Fig. 8 shows that using smaller blocks in motion compen-
sation does result in a better performance-versus-compression
tradeoff. Smaller blocks allows for a more refined motion com-
pensation and prediction, hence resulting in better compression
performance. At the same time, with higher resolution motion
vectors, action classification performance also improves. Of
course, while using smaller blocks for motion compensation
improves the tradeoff, it has to be weighted by the increase in
computation time. In our experiments, increasing the motion
estimation resolution by 2 in each dimension resulted in about
5 times increase in run-time.

V. CONCLUSION

We have designed, implemented, and tested a system for per-
forming action recognition and localization by making use of
compressed domain features such as motion vectors and DCT
coefficients that can be obtained with minimal decoding. The
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low computational complexity of feature extraction and the in-
herent reduction in search space make real-time operation fea-
sible. We combined existing tools in a novel way in the com-
pressed domain for this purpose and proposed NZMS, which is
a novel frame-to-frame motion similarity measure. Our classifi-
cation results compare favorably with existing techniques [11],
[12], [14] on a publicly available database, and the computa-
tional efficiency of our approach is significantly less than ex-
isting action localization methods [10].

Our experimental results provide justification for the engi-
neering choices made in our approach. In particular, we showed
the value of filtering motion vectors with low texture and of
aggregating frame-to-frame similarities. We also systematically
investigated the effects of various encoding options on the ac-
tion classification performance of our proposed approach. The
results showed that, for action videos, using a GOP structure
with only P-frames results in a better compression—classifica-
tion tradeoff. We also found that, while a larger GOP size might
result in a lower classification performance, it is mostly due
to the effects of drift in computing block texturedness. Thus,
a simple extension for improving classification performance in
videos with large GOP size, if memory constraints permit, is to
perform full decoding of every frame and to use the decoded
pixels at shorter regular intervals to update the confidence map.
We found that quarter-pel accuracy in motion estimation does
not appear to provide any benefits. While using smaller blocks
in motion compensation does lead to better action classifica-
tion and compression performance, the increased computational
time of both encoding and action classification should be taken
into account.

In this study, we have used a very simple classifier, i.e., NNC,
which still has given a very good performance. For further im-
provement in classification, we can use more sophisticated clas-
sifiers such as SVMs; on the same dataset, Dollar et al. have
shown that using SVMs result in a slight improvement over
NNC [14].

For future work, we plan to extend our system to adopt a hier-
archical approach which would allow us to approach the spatial
resolution of existing pixel-domain methods at lower computa-
tional cost. By leveraging the ability of state-of-the-art encoders
such as H.264 to use smaller blocks in motion compensation,
motion vectors at resolutions of up to 4 x 4 pixels block can
be obtained. The algorithm can first perform action recognition
at the coarsest level, i.e., 16 x 16 pixels macroblock, and then
perform a progressively finer level search in promising regions.
Furthermore, using the motion vectors of 4 x 4 pixels block as
an initial estimate also allows the computation of dense optical
flow at lower cost, hence enabling the progressive search to pro-
ceed to pixel level granularity.

One current limitation of our approach is that, while it is
robust to small variations in spatial scale, it is not designed
to handle large-spatial-scale variations or differences in spatial
scales between the query and test videos. We would like to ex-
plore a truly scale-invariant approach in future work. A possi-
bility is to apply our method at different resolutions in parallel;
this can be done naturally with the hierarchical extension de-
scribed earlier. Parallelizing this scale-space search could lead
to significant gains in performance while being scale-invariant.
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While we present results on a benchmark dataset widely used
for evaluating activity recognition algorithms [11], [12], [14],
it would be interesting to consider data with other actions and
containing more varied backgrounds as part of future work.
For example, the BEHAVE project, which has the objective of
automatically detecting anomalous or criminal behavior from
surveillance videos, has publicly available datasets.3 One inter-
esting approach uses optical flow information to identify such
behavior [24]; it would be useful to see how our method, which
uses only motion vectors, compares with the former, which uses
optical flow. While we consider single person actions, detecting
multiparty activities such as greeting or fighting is also a poten-
tial area of further investigation [24], [25].

Another interesting angle to consider is the type of motion es-
timation used at the encoder. Rate-distortion (RD) optimization
is commonly performed in sophisticated video encoders to seek
an optimum tradeoff between compression and reconstruction
quality [26]. It has also been used in the motion compensation
process to reduce the rate used for coding motion vectors [27],
[28]. This has the effect of smoothing the motion vector field
which can be interpreted as a de-noising process. We hypothe-
size that this has a positive influence on the compression—clas-
sification tradeoff, but this would have to be verified.
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