
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009 1129

An External Active-Set Strategy for
Solving Optimal Control Problems

Hoam Chung, Member, IEEE, Elijah Polak, Life Fellow, IEEE, and
Shankar Sastry, Fellow, IEEE

Abstract—We present a new, external, active constraints set strategy
for solving nonlinear programming problems with a large number of
inequality constraints that arise in the process of discretizing contin-
uous-time optimal control problems with state-space constraints. This
strategy constructs a sequence of inequality constrained nonlinear pro-
gramming problems, containing a progressively larger subset of the
constraints in the original problem, and submits them to a nonlinear
programming solver for a fixed number of iterations. We prove that
this scheme computes a solution of the original problem and show by
means of numerical experiments that this strategy results in reductions in
computing time ranging from a factor of 6 to a factor of over 100.

Index Terms—Active-set strategies, nonlinear programming, optimal
control.

I. INTRODUCTION

Optimal control problems with state space constraints are usually
solved by discretizing the dynamics, which results in the conversion
of the continuous-time optimal control problem into a nonlinear pro-
gramming problem. This conversion can be done in one of two ways.
The first is called collocation, see, e.g. [1], which treats the control and
the state as independent variable. It results in nonlinear programming
problems with a very large number of variables, a very large number of
nonlinear (collocation) equality constraints, representing the dynamics,
and a large number of nonlinear inequality constraints, representing
the state space constraints. Its main advantage is that the expressions
for derivatives are relatively simple. The second way is to replace the
continuous optimal control problem by a discrete-time optimal control
problem, obtained by integrating the dynamics using Euler’s method.
Some Runge-Kutta methods can also be used, but they lead to consider-
able complications (see, [2]). A discrete-time optimal control problem
is also a nonlinear programming problem. Its distinguishing features
are (i) only the control is a decision variable, and hence the number of
design variables is relatively small, (ii) there are no nonlinear equality
constraints representing the dynamics, since the state is computed ex-
plicitly, (iii) assuming the same discretization grid-size of time, the
number of state-space inequality constraints is the same as in collo-
cation, and (iv) the required gradients can be computed using adjoint
equations.

With either method, although the number of state-space inequality
constraints may be large, relatively few of these inequalities are
active. The active-set strategy that we will discuss in this technical
note can be used in conjunction with either transcription into a
nonlinear programming problem. However, we have a preference for

Manuscript received April 02, 2008; revised October 19, 2008. Cur-
rent version published May 13, 2009. This work was supported by
ARO MURI SWARMS (W911NF-0510219) and ARO Phase II STTR
(W911NF-06-C-0192). Recommended by Associate Editor F. Bullo.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA 94720 USA (e-mail:
hachung@eecs.berkeley.edu; polak@eecs.berkeley.edu; sastry@eecs.berkeley.
edu).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2009.2013035

the transcription into a discrete-time optimal control problem, for the
following reasons, see [3], Chapter 4. First, the discrete-time optimal
control problems are consistent approximations to the continuous-time
problems, and hence cannot have spurious local minima or stationary
points.1 Second, they are compatible with adaptive discretization
schemes, which result in considerable computing time savings. And
third, it is very simple to scale the finite-dimensional control and
initial state variables so as to preserve the norms they have in the
continuous-time case. When this scaling is not preserved, serious
ill-conditioning can result.

An important example of optimal control problems with state
space constraints arises in the trajectory planning for unmanned
aerial vehicles (UAV’s) using receding horizon control (RHC). RHC
is a form of sample-data control that determines the control to
be applied over the next sampling interval by solving an optimal
control problem during the current sampling interval. The optimal
control problems for RHC control of UAV’s are characterized by
large numbers of collision avoidance inequalities and by expensive
evaluations of the gradients of these inequality defining functions.
Since potential collisions are confined to relatively short segments
of the UAV trajectories, most of the collision avoidance inequalities
are inactive. In the case of UAV’s, the sampling intervals are short
and hence the viability of the RHC scheme is largely determined
by the speed of the nonlinear programming solvers.

Unfortunately, standard nonlinear programming packages, including
the excellent set found in TOMLAB [4], including SNOPT [5],
NPSOL [6], Schittkowski SQP [7], and KNITRO2 [8], are not
designed to exploit the fact that a problem with a large number of
nonlinear inequality constraints may have few active constraints. A
scan of the literature reveals a few algorithms with built-in active
set strategies, such as the first-order Phase I-Phase II methods of
feasible directions (see [3]), the superlinearly converging CFSQP [9],
and the minimax algorithm [10]. However, these active-set strategies
are not transferable to existing packages, such as those mentioned
earlier. There appear to be no “external” active-set strategies in the
literature that can be added via a small subroutine to an existing
nonlinear programming package.

In this technical note, we present what appears to be the first ex-
ternal active constraint set strategy for solving nonlinear programming
problems with a large number of inequality constraints. This strategy
constructs a sequence of inequality constrained nonlinear programming
problems, containing a progressively larger subset of the constraints in
the original problem, and submits them to a nonlinear programming
solver for a fixed number of iterations. We prove that this scheme com-
putes a solution of the original problem and show by means of numer-
ical experiments that when applied to UAV trajectory planning, this
strategy results in reductions in computing time ranging from a factor
of 6 to a factor of over 100. Our new strategy is particularly effec-
tive when used with nonlinear programming solvers that allow warm
starts. It may be useful to observe that a related strategy [10] for solving
semi-infinite minimax problems using log-sum-exponential smoothing
has proved to be equally effective.

In Section II we state our strategy in the form of an algorithm and
provide theoretical justification for it, in Section III we present numer-
ical results, and our concluding remarks are in Section IV.

Notation: We will denote elements of a vector by superscripts (e.g.,
�
�) and elements of a sequence or a set by subscripts (e.g., ��).

1Points satisfying first-order conditions of optimality.
2KNITRO is a collection of optimization algorithms, and we use the

algorithm option “Interior/Direct” with quasi-Newton symmetric rank one
updates in this paper.

0018-9286/$25.00 © 2009 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

1130 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009

II. THE ALGORITHM

Consider the inequality constrained minimization problem:

�� ��� �
������ ���� � �� � � � (1)

where � � �, and �
�
� ��� 	 	 	 � ��. We assume that functions � �

� � are at least once continuously differentiable. In the context of
discrete optimal control problems, � can be either a discretized control
sequence or an initial state - discretized control sequence pair.3

Next we define the index set ����� with � � � by

�����
�
� � � ��� ���� � ������ � (2)

where

����
�
� ���

���
�
���� (3)

and

�����
�
� ��� ��� ����� 	 (4)

Referring to any advance textbook on nonlinear programming (see,
e.g., [3], [11], [12]), we see that the convergence of algorithms such as
Phase I- Phase II Methods of Feasible Directions, various versions of
Sequential Quadratic Programming, Augmented Lagrangian methods,
etc, in solving problems of the form (1), depend on these problems sat-
isfying a number of assumptions, such as that the functions are once or
twice continuously differentiable, that there is an interior feasible point
(Slater’ constraint qualification), and that the problems have optimal
solutions,4 as well as some other more algorithm specific condition.
Implicitly, we assume that the problems that we wish to solve and the
algorithms that we use are appropriately matched. Hence we assume
that we will be using convergent algorithms, defined as follows.

Definition: We say that an algorithm defined by a recursion of the
form

���� �
���� (5)

for solving inequality constrained problems of the form (1), is con-
vergent if any accumulation point5 of a sequence ��������, constructed
according to the recursion (5), is a feasible stationary point.6

To complete the elements for our scheme, we assume that the in-
equality constrained problems of interest, in the form (1), satisfy appro-
priate assumptions and that we have a convergent algorithm for their
solution. In fact, in our numerical experiments, we use several conver-
gent algorithms.

Algorithm 1: Active-Set Algorithm for Inequality Constrained
Minimization Problems

Data: ��, � � �, ����� �

Step 0: Set � � �, �� � ������.

3see [3] Chapter 4 for a detailed treatment of discrete time optimal control
problems.

4The problem ��� � does not have an optimal solution.
5A point �� is said to be an accumulation point of the sequence �� � , if

there exists an infinite subsequence, indexed by � � , �� � , such that
� � ��. as � � �.

6A point � is called as a stationary point or a stationary solution of� and
��� � � � if it satisfies the F. John conditions [13] (or Theorem 2.2.4, p.
188 in [3]).

Step 1: Set
� � �� and perform ����� iterations of the form

��� �
�
�� on the problem

�� ��� �
��
��� ��
� � �� � � �� (6)

to obtain
	 and set ���� �
	 .

Step 2: Compute �������.

if
	 is returned as a global, local, or stationary solution of ��
and ������� � �, then

STOP,
else

Compute

���� � �� 	 �������� (7)

and set � � �
 �, and go to Step 1.

end if

Lemma 2: Suppose that � � � and that the sequence ��������, in
�, is such that �� � �� as � �
. Then there exists an �� such that

for all � � ��, ������ � ������.
Proof: By definition (2), for any � � ������,

�
������ ������ � �	 (8)

First suppose that������ � ����� � �. Then the set������ is nonempty
and � ����� � ������ � �, for all � � ������. Since all the functions
� ���� and���� are continuous, for all � � ������, �� ��������������
�� ����� � ������� � � as � �
. Hence there must exist an �� such
that for all � � �� and � � ������,

�
������ ������ � �� (9)

which proves that for all � � ��, ������ � ������.
Next suppose that ����� � �. Then ������ � �, and the set ������

is empty. Since the empty set is a subset of any set, the desired result
follows.

Lemma 3: Suppose that � � � and that the sequence ��������, in
�, is such that �� � �� as ��
 and that� � 	����������. For any

� � �, let

����� � ���
���

�
����	 (10)

If ������ � �, then ����� � �.
Proof: By Lemma 2, there exists an �� such that ������ � �

for all � � ��, and hence it follows that ����� � ������ for all
� � ��. Now, both ���� and ����� are continuous, and hence ����� �
������ ����� � ������ ������ � ������. The desired result now
follows directly.

Lemma 4: Suppose that� � � and consider the problem

�� ��� �
���������� � �� � � � 	 (11)

Suppose that �� � � is feasible for ��, i.e, � ���� � � for all � � �.
a) If �� is a global minimizer for ��, then it is also a global mini-

mizer for ��.
b) If �� is a local minimizer for��, then it is also a local minimizer

for ��.
c) If �� is a stationary point for��, then it is also a stationary point

for ��.
Proof: Clearly, since �� is feasible for �� it is also feasible for

��.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009 1131

a) Suppose that �� is not a global minimizer for��. Then there exists
an �� such that � ����� � � for all � � � and ������ � ������.
Now, �� is also feasible for �� and hence �� cannot be a global
minimizer for ��, a contradiction.

b) Suppose that �� is not a local minimizer for ��. Then there ex-
ists a sequence �������� such that �� � ��, ������ � ������ and
� ����� � � for all � and � � �. But this contradicts the assump-
tion that �� is a local minimizer for ��.

c) Since �� satisfies the F. John conditions for ��, there exist mul-
tipliers �� � �, �� � �, � � �, such that �� �

��� �� � �,

�
�������� �

���

�
��� ����� � � (12)

and

���

�
�
�
����� � �� (13)

Clearly, �� also satisfies the F. John conditions for �� with mul-
tipliers �� � � for all � �� � and otherwise as for ��.

Combining the above lemmas, we get the following convergence re-
sult.

Theorem 5: Suppose that the problem �� has feasible solutions,
i.e., there exist vectors �� such that � ����� � � for all � � �.

a) If Algorithm 1 constructs a finite sequence ��������, exiting in
Step 2, with � � � � �, then �� is a global, local, or stationary
solution for ��, depending on the exit message from the solver
defined by 	�	�.

b) If �������� is an infinite sequence constructed by Algorithm 1 in
solving ��, then any accumulation point �� of this sequence is
feasible and stationary for ��.

Proof:
a) If the sequence �������� is finite, then, by the exit rule, it is fea-

sible for �� and it is a global, local, or stationary solution for
�� . It now follows from Lemma 4, that it is also a global, local,
or stationary solution for ��.

b) Since the sets�� grow monotonically, and since � is finite, there
must exist an �� and a set �
 �, such that �� � � for all
� � ��. Next, it follows from the fact that 	�	� is convergent,
that for any accumulation point ��,
����� � �. Let � be an
infinite subset of the positive integers, such that the subsequence
������� converges to ��. Since the accumulation point �� is the
limit point of the subsequence ������� , it follows from Lemma
2 that ������
 �. Applying Lemma 3 to this subsequence, we
conclude that
���� � �, i.e., that �� is a feasible point for ��. It
now follows from the fact that 	�	� is convergent and Lemma 4
that any accumulation point �� is stationary for ��.

III. NUMERICAL RESULTS

All numerical experiments were performed using MATLAB V7.2
and TOMLAB V5.5 [4] in Windows XP, on a desktop computer with an
Intel Xeon 3.2 GHz processor with 3 GB RAM. Optimization solvers
tested in this technical note were the Schittkowski SQP algorithm with
cubic line search [7], NPSOL 5.02 [6], SNOPT 6.2 [5], and KNITRO
[8]. It should be clear from the form of Algorithm 1, that our strategy
benefits considerably from warm starts of the nonlinear programming
solvers, to be used after the construction of the active set ��. Hence
it is desirable to use solvers with as extensive a warm start capability
as possible, so that one can transmit the last value of important in-
formation from the last iteration of a solver on the problem �� as
initial conditions for solving the problem �� . SNOPT allows the

user to provide initial variables and their states and slack variables.
NPSOL allows the user to provide initial variables and their states, La-
grange multipliers, as well as an initial Hessian approximation matrix
for quasi-Newton updates. conSolve, the TOMLAB implementation of
the Schittkowski SQP algorithm, allows the user to provide an initial
solution vector and initial Hessian matrix approximation. KNITRO al-
lows the user to provide only the initial solution vector. For maximum
efficiency, this data must be saved at the end of the �-th run and trans-
mitted as initial data for the �� �-th run of the solver.

As we will see from our numerical results, the performance of Al-
gorithm 1 is much more sensitive to the parameters ����� and
 when
using a solver, such as KNITRO, that has minimal warm start features,
than when it is using a solver with extensive warm start features.

A. Trajectory Planning for Multiple Fixed-Wing UAVs

Our numerical example consists of controlling multiple UAVs. Sup-
pose that we have �� UAVs, each with the same dynamics. We assume
that each UAV flies at a constant speed � and that the scalar control �
determines the yaw rate of the UAV. In spite of its simplicity, this model
describes quite well the dynamics of a fixed-wing aircraft, whose atti-
tude, altitude, and forward speed are stabilized by an autopilot. It was
used in other papers, including air traffic management [14], and UAV
trajectory planning [15]. In order to state the optimal control problem
as an end-point problem defined on [0, 1], we rescale the state dynamics
using the actual terminal time � , ��, and augment the 3-dimensional
physical state with a fourth component, so that

�
���� �

�

�

�

�
�
��� ��� (14)

represents the energy used. The resulting dynamics have the form

���

��
�

�

��

��	�

��	�

��	�

��	�

�

�� 	
���	�

�� ��
��	�

���

�
�����

�
� � �

����� ����� (15)

where � � ��� �� � � � � ��� denotes the UAV index, with the initial state
����� given for all �. Here, the components of the state ���	�� ��	��
represent the position of the �-th UAV in the plane, and the component
��	� represents the heading. We will denote the solution of the dynamic
(15) by ����� ���, with � � ��� ��.

We want them to stay in a circular region centered at the origin,
without incurring any collisions. The stay-in-a-circle constraints are
described by the following equations:

�
�	�

�	
��
��

�
� �

�	���� ���� � �
�	���� ���� � �

�
�	
� � � ��� ��� (16)

The collision avoidance constraints are given by

�
�	��	��

� ���� ���

�
� �

�	���� ���� �
�	���� ���

�

� �
�	���� ���� �

�	���� ���
�

� �
�

�� � � ��� ��� (17)

where ��� �� is an element of the set of all 2-combinations of the index
set ��� �� � � � � ���.

The optimal control problem has the form

��

� � 	����	���	� �

�
����

�
�

�

���

�
�	���� ��� (18)

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

1132 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009

subject to stay-in-a-circle constraints (16) and collision avoidance con-
straints (17).

In order to solve this problem, we must discretize the dynamics. We
use Euler’s method to obtain the discretized dynamics

��������� ������ � �� �������� ������� � ����� � ���� (19)

with �
�
� ��� , � � , ��

�
� �� and � � ��� �� � � � � ��. We use an

overbar to distinguish between the exact variables and the discretized
variables. We will denote the solution of the discretized dynamics by
������� ����, � � �� �� � � � � � . Letting

���
�
� �������� �������� � � � � ��������� � 	
� ��

�
�

���

...
���

(20)

we obtain the discretized optimal control problem

�

�� � ����������� �

�������
�
�

�

���

�������� ���� (21)

subject to the constraints

�����	
������
�
� �������� �������������� ������	�	
�� � � ��� � � � � �� (22)

and

����
������ ����� ����
�
� �������� ���� � �������� ����

�

� �������� ����� �������� ����
�

� 	���� � � ��� � � � � ��
 (23)

The total number of inequality constraints in this problem is
� ����� � ���� � � ��.

Clearly, (21) is a mathematical programming problem which is dis-
tinguished from ordinary mathematical programming problems only
by the fact that adjoint equations can be used in the computation of the
gradients of the functions ����� and ���
����. Another special feature of
this problem is that it has a very large number of inequality constraints,
of which only a small number are likely to be active due to the nature
of the dynamics.

The dynamics of the UAV’s are nonlinear and the non-collision con-
straints are non-convex. Hence this problem has many local minima.
Consequently, the solution trajectory may depend on the initial control
and on the evolution of the active sets during computation.

B. Numerical Results

For numerical experiments, we set 		
� � �, 	�� � �, � � �� and
�� � �, resulting in 640 nonlinear inequality constraints. The initial
conditions and initial controls for each agent are set as

��� � ��
�� �
�� �� ��� ��� � ���
�� ������� ��

��� � ���
����
������� ��� ��� � �����
�� ���� ��

���� � �
��� �������� �
 � ��� �� �� ��
 (24)

The numerical results are summarized in the Tables I–IV. In these
tables, ����	, the total number of gradient evaluations, and �
 , the
total CPU time for achieving an optimal solution using Algorithm 1,

TABLE I
EXTERNAL ACTIVE-SET STRATEGY WITH SCHITTKOWSKI

SQP ALGORITHM, FOUR-UAV EXAMPLE

TABLE II
EXTERNAL ACTIVE-SET STRATEGY WITH

NPSOL, FOUR-UAV EXAMPLE

are defined as follows:

����	 �

�

���

	��	 � �
����� �� ��	�
�
� ��
��
�
 �	���

���

�
� ��

��
���	�
�
�

�
 �

�

���

 !"# �
�� �$�
� ���
� ��

��
���	�
�

� !"# �
�� �$�
� ��� ����

� �$

� ��

��
���	�
�
%
 (25)

In the above, and in the tables,
� is the value of the iteration index
 at
which Algorithm 1 is terminated by the termination tests incorporated
in the optimization solver used, and
���	 is the value of index
 at which
	��	 is stabilized. Also, &�, the percentage of �
 with respect to the
computation time with the raw algorithm, i.e. using the solver with the
full set of constraints (shown in the last row of each table), is used in
all tables.

Fig. 1 shows a locally optimal solution for this problem. There are
only 8 active constraints at the end. These are all associated with staying
in the circle; there are no active non-collision constraints. With cer-
tain values of �, Algorithm 1 accumulates fewer than 16 constraints.
Consequently, the reduction in the number of gradient computations is
huge, and the savings in CPU time is more dramatic than in the single
UAV case. There exist parameter pairs (� and ��
��) which, when used
with conSolve and KNITRO, achieve over 95% savings in computation

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009 1133

TABLE III
EXTERNAL ACTIVE-SET STRATEGY WITH

SNOPT, FOUR-UAV EXAMPLE

TABLE IV
EXTERNAL ACTIVE-SET STRATEGY WITH KNITRO, FOUR-UAV EXAMPLE

‘ ’indicates that no reduction in computation time was achieved.

Fig. 1. Initial trajectory (dashed red) and an optimal trajectory (solid blue).
Bounding circular region is represented by the dotted blue circle. Active con-
straints (constraints within feasibility tolerance) are marked as ‘ ’ and initial
positions are marked as ‘o’.

time. As can be seen from our tables, in several cases using NPSOL and
SNOPT, our algorithm used less than 1/100 of the CPU time required
by NPSOL or SNOPT to solve the example problem directly, i.e., using
the full set of constraints.

IV. CONCLUSION

We have presented an external active-set strategy for solving dis-
crete-time optimal control problems with state-space constraints, using
nonlinear programming solvers. Our numerical results show that this
strategy results in considerable savings in computer time. In our ex-
ample, the savings ranged from a factor ranging from around 20 to a
factor around of 135 on a problem with 640 constraints. The results de-
pend on the nonlinear programming solver. There is reason to believe
that the larger the number of inequalities in the discrete-time optimal
control problem, the larger the computational savings will be. This ob-
servation is consistent with the two examples presented in this technical
note. Finally, it should be obvious that one can add refinements to our
algorithm, such as restarting it after a certain number of iterations, so
as to avoid accumulating constraints that are not close to being active
at the solution.

ACKNOWLEDGMENT

The authors wish to thank Dr. M. Saunders, Stanford University,
for his advice on warm start of NPSOL and SNOPT, and M. Edvall,
TOMLAB Optimization, Inc., for his advice on our codes.

REFERENCES

[1] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
AIAA J. Guid., Control, Dyn., vol. 21, no. 2, pp. 193–207, 1998.

[2] A. Schwartz and E. Polak, “Consistent approximations for optimal
control problems based on runge-kutta integration,” SIAM J. Control
Optim., vol. 34, no. 4, pp. 1235–1269, 1996.

[3] E. Polak, Optimization: Algorithms and Consistent Approximations,
ser. Applied Mathematical Sciences. New York: Springer, 1997, vol.
124.

[4] K. Holmström, A. O. Göran, and M. M. Edvall, User’s Guide for
TOMLAB. San Diego, CA: Tomlab Optimization Inc., Dec. 2006.

[5] W. Murray, P. E. Gill, and M. A. Saunders, “SNOPT: An SQP algo-
rithm for large-scale constrained optimization,” SIAM J. Optim., vol.
12, pp. 979–1006, 2002.

[6] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s Guide
for NPSOL 5.0: A Fortran Package for Nonlinear Programming Sys-
tems Optimization Laboratory, Department of Operations Research,
Stanford University, Tech. Rep. SOL 86-2, 1998.

[7] K. Schittkowski, On the Convergence of a Sequential Quadratic Pro-
gramming Method With an Augmented Lagrangian Line Search Func-
tion Systems Optimization laboratory, Stanford University, Stanford,
CA, 1982, Tech. Rep..

[8] K. Holmström, A. O. Göran, and M. M. Edvall, User’s Guide for
TOMLAB/KNITRO v5.1. San Diego, CA: Tomlab Optimization Inc.,
Apr. 2007.

[9] C. T. Lawrence, J. L. Zhou, and A. L. Tits, User’s Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) Constrained
Nonlinear (Minimax) Optimization Problems, Generating Iterates
Satisfying all Inequality Constraints Institute for Systems Research,
University of Maryland, College Park, MD, Tech. Rep. TR-94-16r1,
1997.

[10] E. Polak, R. S. Womersley, and H. X. Yin, “An algorithm based on
active sets and smoothing for discretized semi-infinite minimax prob-
lems,” J. Optim. Theory Appl., vol. 138, no. 2, pp. 311–328, 2008.

[11] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Boston, MA:
Athena Scientific, 2003.

[12] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 1999.

[13] F. John, “Extremum problems with inequalities as side condtions,” in
Studies and Essays: Courant Anniversary Volume, K. O. Friedrichs, O.
W. Neugebauer, and J. J. Stoker, Eds. New York: Interscience Pub-
lishers, Inc., 1948, pp. 187–204.

[14] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Automat. Control, vol. 50, no. 7, pp. 947–957, Jul.
2005.

[15] Y. Kang and J. Hedrick, “Design of nonlinear model predictive con-
troller for a small fixed-wing unmanned aerial vehicle,” in Proc. AIAA
Guid., Navig, Control Conf., 2006, [CD ROM].

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

