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Abstract—This paper describes a supervisory controller for pur-
suit and evasion of two fixed-wing autonomous aircraft. Novel con-
tributions of the work include the real-time use of model-predictive
control, specifically nonlinear model predictive tracking control,
for predictions of the vehicle under control, as well as predictions
for the adversarial aircraft. In addition to this inclusion, the eva-
sive controller is a hybrid system, providing switching criteria to
change modes to become a pursuer based on the current and fu-
ture state of the vehicle under control, and that of the adversarial
aircraft. Results of the controller for equally matched platforms
in actual flight tests against a US Air Force trained F-15 test pilot
are given. Extensive simulation analysis of the symmetric games is
provided, including regressive analysis based on initial conditions
of height advantage, and relative velocity vectors, and in particular
the effect of allowing the evading aircraft to switch modes between
“evader” and “pursuer” during the game.

Index Terms—Nonlinear control systems, optimization, path
planning, predictive control, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

R ECENT successes of the unmanned aerial vehicle (UAV)
in gathering military intelligence [3] have invigorated

basic research into autonomy and methods to design intelligent
controllers, while preserving safety of operation [4]. UAVs are
exciting alternatives to manned aircraft for many purposes, due
to its smaller size, reduced risk of loss of life, etc. Further, many
UAVs are not fully autonomous, but are rather remote piloted
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aircraft, which allows for longer mission times as remote pilots
can tradeoff without needing to land the vehicle. Efforts to en-
able autonomous refueling [5]–[8] will further expand mission
lengths. Reducing landings also lessens time lost to use-based
maintenance and inspection of the aircraft.

UAVs have been shown as reliable and effective against ad-
versaries on the ground, since their high cruising altitude avoids
small arms fire. However, if UAVs were to encounter unfriendly
aerial adversaries, several issues must be addressed. Such re-
mote vehicles are controlled through sending waypoints, or di-
rect joystick control. With these interfaces, time lag, which can
measure on the order of seconds to and from the remote pilot,
makes human-controlled maneuvers difficult [9]. It also rules
out the application of evasive maneuvers that require tight cou-
pling between sensed, and predicted, locations of the adversary
and control inputs, if those inputs are given by a human-in-the-
loop. Even if time lag is not a consideration, the lack of situa-
tional awareness and visual sensors of the remote pilot means
that optimal behavior is difficult, if not impossible, to achieve.
Given these conditions, the use of the current controller methods
is infeasible for this application, and would lead to quick cap-
ture of the UAV.

In order to be successful against an airborne adversary (ei-
ther manned or unmanned) there are five possible dimensions in
which to obtain an advantage: speed, maneuverability, observ-
ability, munitions, and intelligence. Increasing the capability of
the UAV in any of the first four categories will require either a
redesign of the aircraft to increase its payload, maneuverability,
form factor, engine size, or perhaps all four. Even discounting
the cost of the redesign, changing these parameters reduces the
advantages which a UAV has over manned aircraft in size and
efficiency. Improving the intelligence of the aircraft allows for
current aircraft designs to be reused with software changes and
enhancements.

This paper provides a description of such a “best effort” con-
troller, which will improve on the best behavior of a remote
pilot due to an autonomous controller’s low-latency response
when compared to a remote pilot. The paper extends work in [1]
and [2] through extended analysis and simulation to evaluate the
equilibrium of the game. We begin the paper with a discussion
in Section III of the details and background of a pursuit/eva-
sion game. In particular, we describe the roles of the evader and
pursuer, along with strategies which each can employ in order
to attempt to optimize their performance against the other. This
portion of the paper will acquaint the reader with several impor-
tant conditions and requirements for winning the game, and will

1063-6536/$26.00 © 2011 IEEE



EKLUND et al.: SWITCHED AND SYMMETRIC PURSUIT/EVASION GAMES 605

provide a foundation upon which we can discuss the particular
live game demonstration in which we participated with a US Air
Force trained test pilot.

Section IV gives a brief review of the important aspects of
model predictive control (MPC), particularly those relevant to
strategy and the implementation of nonlinear model predictive
tracking control (NMPTC) used here. Readers who are unfa-
miliar with MPC on a technical level, but who perhaps under-
stand it intuitively, will benefit from the mapping we provide
between the numerical and computational portions of the con-
troller and its design, which are discussed in Section IV-A, and
the definition of the specific game in which we demonstrated
the technology. This section applies a methodology which will
be useful for future implementations of MPC-based controllers.
We also discuss here the dual nature of our controller as both
evader and pursuer, and how this enhanced our testing and sim-
ulation phases of controller design. We describe the symmetric
controller in which the evader can switch modes to become a
pursuer, and back again if necessary.

Section V presents the simulation, development and test plat-
forms used in this project, as well as preliminary results used
to validate the flight models identified and used. These include
software- and hardware-in-the-loop simulations, as well as the
flight test platform used.

In Section VI the results of the demonstration are given, and
some discussion regarding how the manned vehicle was oper-
ated in order to maintain symmetry is provided. We transition
into Section VII, where we describe our extensive simulation
experiments that were conducted following the flight test val-
idation of the control strategy within the context of these pur-
suit/evasion games. We also discuss the ramifications of the in-
troduction of this notion of a “switched” game.

II. RELATED WORK

A. Constrained Nonlinear MPC

A significant hurdle in the real-time or autonomous applica-
tion of nonlinear MPC is the guarantee that the control inputs,
and predicted paths, will satisfy the constraints of the system.
For hard constraints, such as obstacle avoidance or physical lim-
itations of the vehicle, this is a critical effort. Work by Richards
and How provides guarantees on completion time of certain ma-
neuvers with the introduction of terminal constraints into the
cost function summation [10]. In [11] a similar approach is used
to guarantee obstacle avoidance, through the comparison of a
basis (or safe) state in which the vehicle must remain throughout
the lookahead horizon, and a subsequent guarantee that such
basis states do not intersect with any obstacles. A comprehen-
sive treatment of predictive control can be found in [12].

The satisfaction of constraints for these nonlinear dynamics
(or perhaps the nonlinear application of constraints) requires
sophisticated techniques to produce the optimal control input.
Nonlinear programming packages such as NPSOL [13] and
TOMLAB [14] are commonly applied in these cases. However,
when the constraint set becomes large, finding an optimal value
that satisfies such constraints can become computationally
infeasible. Work by Chung [15] presents methods that will sat-
isfy such high-constraint (on the order of 640) problems with

speedups of up to two orders of magnitude. With such methods,
flight in unknown urban environments can be performed with
high confidence [16].

In many cases the time required for optimization, or storage
required for optimization, becomes the limiting resource for
real-time application of nonlinear MPC (linear models and con-
straints can use dynamic programming to provide control in-
puts [17]). Recent work by Zeilinger [18] examines how to re-
duce the approximation in order to produce suboptimal, but
bounded-time to compute, control inputs. Related issues of sta-
bility are discussed by Morari et al. in [19].

B. Game Theory and Optimal Control

The two-person pursuit/evasion game (PEG) is a differen-
tial game with a zero-sum outcome. In [20] this kind of game
and several interesting variations are explored and defined, and
strategies to solve them are discussed and illustrated. Generally,
PEGs [20]–[22] are a well-established abstraction for optimal
control.

The concept of a PEG has been previously used as an abstrac-
tion for design and/or verification of a safe controller, and was
described in [23] as a particular example among several topics
in game theory. In such applications, a disturbance is modeled
as some pursuer, and the plant is an evader: the job of the con-
troller is to choose a strategy that always lets the evader win (i.e.,
the plant is in a controllably safe state for all future time). In the
game described in this paper, our application does not need this
logical layer as our notion of safety is winning or losing of the
game itself.

As discussed in [24] there are four major types of strategies
(or controls) for the PEG—open loop, state feedback, nonan-
ticipative, and anticipative. In this experiment, the open loop
strategy is utilized in which the players decide their input sig-
nals without any knowledge of the other player’s input vector.
The other strategies assume progressively more knowledge of
the other players input vector (i.e., intentions).

A state feedback strategy allows knowledge of each player’s
current input vector during the decision process. Nonanticipa-
tive strategies allow a player to use any input vector of the other
player as long as the input vector does not correspond to a
timestep in the future (with respect to the input being decided,
not necessarily the current timestep). Finally, anticipative strate-
gies place no restrictions on the current or future values of the
input vectors being analyzed. Of course, it is important to note
that the input vectors under consideration are only predicted in-
puts, and that they are subject to change if the other players use
any of the four types of strategies.

C. Aerial Pursuit/Evasion Games

Ménec [25] describes strategies for what are called “Modern
Aerial Duels.” The PEG in that paper is predicated on medium-
or long-range missiles which provide a firing envelope. Tra-
ditional strategies for human-piloted aircraft are presented in
Shaw’s text [26].

Application of real-time games on rotorcraft is discussed in
[27]. Various equilibrium points for such games are discussed in
[28]. The application of vision as the primary sensor is discussed
further in [29].
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In this work, our constraints from the physical system (to
maintain lift of the fixed-wing aircraft) provides an additional
extension of these mission-critical examples, where flight-crit-
ical response must be accounted for while simultaneously par-
ticipating in the game.

D. Comparison With Existing Approaches

Previous approaches to solving pursuit/evasion games
leverage the above results from game theory, fighter tactics,
model-predictive control, and optimal control. However, each
of these approaches makes some assumption or accommodation
that this paper does not relax.

The algorithm presented by Ménec [25] describes a single,
maneuver in the plane at a particular decision point, but does not
provide optimization over some horizon. In fact there is only one
objective which is to evade targeting by a missile, and there is
no constraint which targets arrival at a final location. The work
presented in this paper requires a repeated evaluation of whether
the evader may be targeted within the prediction horizon, while
simultaneously preferring to fly toward a final waypoint.

In [27] the game is also 2-D, though that game provides an
interesting perspective of utilizing a rotorcraft to coordinate
ground vehicles in the search for an evader. That example has
three pursuers searching for the evader, using an estimation
policy for determining the evader’s location. In that case, the
vehicles, like those presented in this work, are considered to
be symmetric, but have no constraints on minimum forward
velocity-which is crucial for fixed-wing vehicles. In that work,
the evader’s behavior is random in the plane, and at a speed
much slower than the pursuers: thus, capture by the pursuers is
expected, given the advantages in number and speed, despite
the limited horizon for detection. It is worth noting that the
work presented in this paper is in three dimensions, and also has
angular constraints for ending the game if one vehicle targets
the other.

The work in [28] utilizes a horizon for control of probabilistic
games in a plane. However, those games are played using dis-
crete motion across a grid, and do not consider the continuous
dynamical constraints of the vehicle. Rather, the standard topo-
logical constraint of motion in a grid (moving only to adjacent
cells) is chosen, although the speeds of vehicles are used in order
to provide advantage to one vehicle over the other. The state of
the evader is available to the pursuer, but only in adjacent cells,
whereas in the approach of this paper each vehicle has perfect
state data from the other.

A search algorithm using fixed horizon based on vehicle
parameters is found in [30], and a search strategy similar to
a pursuit strategy is based on a probabilistic threat exposure
map (PTEM). That work could be used to extend the approach
presented in this paper if, in future work, state data were not to
be shared by each vehicle. One strength of the work presented
in this paper, however, is that evasion (and pursuit) is performed
using full state information, and with predictions based on the
actual strategies used by the adversary’s vehicle; thus, the
game’s loser cannot claim lack of information as the reason
for losing the game, as it is (to some degree) predetermined by
initial conditions, and the strategies used by each player.

Fig. 1. Game is restricted into some linearly defined space.

One approach closely related to that presented in this paper
comes from Shim et al. [31], in which MPC is used to con-
trol a rotorcraft to track a trajectory, based on an optimal con-
trol formalism, while simultaneously avoiding obstacles. In that
paper, the constraints on vehicle performance are taken into ac-
count; however, a rotorcraft has fundamentally different con-
straints from a fixed-wing aircraft in terms of minimum velocity
and rate of turn. Also, in that work, the optimization algorithm
is not performed online.

In summary, the approach presented in this paper differs from
previous work that uses a receding-horizon approach in that this
paper considers more than one way to win (either elapsed time,
or arrival at a final waypoint). Also, this work places constraints
on vehicle motion such as a minimum and maximum velocity,
and maximum turn rate. Previous work that considers vehicle
motion constraints does not consider fixed-wing aircraft con-
straints, and also does not solve the problem using online op-
timization. Work that considers analytical solutions to the pur-
suit/evasion game either does not permit multi-step games, does
not consider more than one winning strategy, does not solve
the problem in three dimensions, or does not allow a player to
switch strategies during game play.

III. DEMONSTRATION PURSUIT/EVASION GAME DESCRIPTION

All the PEGs discussed in this paper share a common playing
area, which is a clearly defined airspace shown in Fig. 1, limited
to altitudes between 10 000–20 000 ft. The aircraft are required
to remain within this airspace for the duration of the PEG.

In our basic PEG there are asymmetric objectives for the pur-
suer and evader. The goal of the evader is fulfill one of the fol-
lowing objectives:

• fly for a predetermined period of time, , since the start of
the game;

• reach the objective area, called the “Endpoint” or “End
Zone” near the opposite corner without being targeted by
the pursuer.

The objective of the pursuer is quite simply to target the evader
before the end of the game. Both evader and pursuer are further
required to remain within the game boundary throughout the
game. In the symmetric game, the evader win conditions include
the targeting of the pursuer.
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Fig. 2. Targeting rules for these PEGs. In the condition on the left the evader is
not in the pursuer’s cone. In the middle, the pursuer is not in the evader’s cone.
On the right, a successful targeting condition is shown with the pursuer behind
and oriented with the evader.

The time limit 20 min is imposed to prevent a trivial so-
lution by the pursuer of haunting a position near the exit point to
target the evader on exit and to reflect the constraints of the flight
test experiments. In our game, the pursuer can target the evader
by aligning its heading with that of the evader and locating itself
within a spherical cone (of predefined height and angle) aligned
with the tail of the evader. This targeting condition is shown in
Fig. 2, and in these games a 10 cone of length 3 nm (nautical
miles) is used.

We use two angular definitions for the game. The angle off
tail, , is the bearing of the pursuer from the evader’s tail. The
angle off nose, , is the bearing of the evading aircraft from the
pursuer’s nose. These values can be calculated as

(1)

where is the directional vector of the adversary’s (pursuer’s)
motion, and is the directional vector of the relative position of
the evader with respect to the pursuer. is defined similarly
with respect to the evader (see Fig. 3). corresponds to
the pursuer being directly behind the evader, and corre-
sponds to the evader being directly in front of the pursuer (the
direction of flight of the former in each case is not considered
except by combining the two angles). Thus, to be “targeted”,
the vehicles must be in each other’s cones, i.e., ,

, and 3 nm.
As will be seen in the results, these objectives and rules for

the PEG favor the evader aircraft; however these rules were de-
termined for a flight test demonstration, well in advance of any
simulation results. The results and analysis of the flight test and
simulation results should be viewed as relative to those validated
in the flight test based on various parameters, but not as an at-
tempt to improve the controller design, which is a matter for
future work.

IV. CONTROLLER DESIGN

The implementation of the hierarchical MPC-based con-
troller required the development of several components which

Fig. 3. Angular definitions for the game. � is the angle off nose, defined as
the relative heading of the evading aircraft from the pursuer. � is the angle off
tail, defined as the relative heading of the pursuing aircraft from the evader. The
distance between the centers of the aircraft is �.

are described next. These include the vehicle modeling nec-
essary for MPC including the model constraints, and the cost
functions for the two modes of operation within the PEGs of
interest.

A. Model Predictive Control

MPC problems, in general, consist of the following steps: 1)
solve for the optimal control law starting from the state at
time ; 2) implement the optimal input
for ; and 3) repeat these two steps at time .
The solution for the optimal control law can be found by for-
mulating a cost function and considering it when performing
the optimization. As described in [31] and [32] it is possible to
compose this cost function by using the specific details of the
application, and the designers’ best knowledge of optimal per-
formance of the object being tracked. Computational speed, and
method, of this technique is discussed in detail in [31].

In particular, we follow the approach of [31] and [33] in which
MPC is formulated as a nonlinear tracking problem in the pres-
ence of input and state constraints. This approach is referred
to as NMPTC and provides the trajectory generation layer and
tracking control within a hierarchical control scheme. Within
the context of this application, this is very well suited as the
lower level control is provided by an existing hardware autopilot
system which is only accessible through higher level control in-
puts.

With NMPTC, separate cost functions are used to effect the
trajectory generation and tracking control; however both sets of
functions are used, as well as the state and input constraint func-
tions, in the same cost minimization step to determine the op-
timal control decision at each time step. The specific cost func-
tions used in the work and their descriptions are provided in
Section IV-D.

The definition of the cost function, , clearly plays a sig-
nificant role in the behavior of the system for both MPC and
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NMPTC. For our purposes in this paper we consider a cost func-
tion defined as

(2)

where

(3)

where is the state vector and is the input vector. rep-
resents constraints on the final state vector , which is the en-
coding of the error on the current trajectory, and is defined as

, where . The vector is the
desired trajectory of the aircraft at the given timestep, and the
values for , as well as the remaining inputs to and definition
of , are given in Section IV-D following the layout of rules for
the pursuit/evasion games.

Optimization of the cost function is performed as
, which requires a predictor function

, which we later fully define for our
application. Using this predictor function, the vector (which
is of length ) provides a control input for .
Performing this optimization in real-time is nontrivial, and
discussed in Section II.

B. Vehicle Modeling

Dynamically accurate simulation of the UAV was possible
through the DEMOSIM application, provided by Boeing for use
in these experiments. As described in more detail in [1], this
simulator provided real-time outputs that were guaranteed to
match the final physical platform with sufficient accuracy.

1) State Vector: The overall system state vector is defined
as

(4)

The vector , which is the overall system dynamics, is parti-
tioned in (4) into the kinematics (denoted by the superscript )
and system-specific dynamics (denoted by the superscript )
matrices. The kinematics of the system is given as the current
state of the system in 3-D space, and with respect to the 3-axis
posture of the body

(5)

The kinematics is shown in (5), where is the position
of the center of mass in three dimensions, is the roll, is the
pitch, and is the yaw. The dynamics of the system is given as
the time rate of change of the kinematic state variables, along
with incidental changes, which are represented in classical no-
tation as

(6)

where , , , , , . Two
state variables, the angle of attack and the angle of sideslip, are

absent due to the lack of sensors available on the aircraft, and
the autopilot’s ability to guarantee heading and attitude of the
aircraft.

2) Input Vector: The input state vector , which is the space
of possible inputs to the controller to modify the system state,
is determined by the autopilot interface through which we have
control of the system (as previously described). We define the
input state vector as

(7)

where is the desired rate of change of airspeed velocity,
is the desired rate of change of turn, and is the desired rate
of change of altitude.

3) Comparison With DEMOSIM: As previously mentioned,
mathematical versions of the physical model were unavailable,
and would have presented difficulties in simulation due to com-
plexity. So we selected Eulerian models for the vehicle behav-
iors, and compared recorded trajectories to determine whether
our kinematic models were sufficiently close to the DEMOSIM

behaviors.
This would enable us to make accurate decisions for ma-

trix weighting during rapid simulation/resimulation phase, and
would also show that our predictive model was reasonably close
to how the aircraft would actually behave. By modifying the la-
tency gains for the Eulerian equations, we were able to get a
reasonably accurate dynamics model. Fig. 4 shows the aircraft
behavior predicted by our model and used by the NMPTC con-
troller at various look-ahead ranges, versus the DEMOSIM model
behavior, for a simulation of time 3 min. This simulation time
selected chiefly to validate the sufficient approximation of the
controller’s model to the dynamically accurate DEMOSIM model
for various discrete lookahead step sizes of 5, 10, 20, and
30, each with the discrete timestep 1 s.

C. States, Constraints, and Measurements

For the live demonstration, the aircraft were to have access
to the adversary’s state data at each timestep, and this was also
enabled within the simulation environment. This was done to
keep the issue of sensing and detection separate from the issue
at hand, which is that of control and trajectory generation in
PEGs. The issue of adversary state uncertainty is a concern for
future work. However, the various constraints on the states and
inputs of the system were very important to the development
and demonstration.

The state space is constrained, for example by minimum
and maximum altitudes and airspeeds and the input space is
constrained by the existing autopilot capabilities as determined
from the DEMOSIM simulator, which were 50 ft/s for airspeed
rate, 50 rad/s for turn rate and 10 ft/s for rate of climb. These
input limits were scaled for the NMPTC controller as a
matrix.

In addition, boundaries for the values of the state vector are
integrated into the optimization cost function to prevent flight
out of the test range and autopilot flight envelope, and to prevent
violation of the minimum or maximum safe values for speed and
altitude.
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Fig. 4. Comparison between the predicted behavior of the aircraft used by the controller (dashed line), and the DEMOSIM “actual” behavior (solid line).

D. Controller Design for the Evader

Taking into account the rules of the PEG we were able to de-
sign the evader controller by incorporating our desired outcome
of the game and encoding some basic aerial tactics as described
in [26]. Additionally, state and game constraints necessary for
the flight test were added to the basic controller described in [1].
For our final design, we chose the timestep 1 s, and a looka-
head length of 30 steps. The 30 s lookahead proved suffi-
cient in simulation to produce good evasion and pursuit tactics
in the aircraft. Note, that the 1 s timestep is the trajectory plan-
ning timestep which is used to send commands to the avionics
system which does the low level control at a 0.01 s timestep.

The desired trajectory of the evader, the location and orien-
tation of the pursuer, the input constraints, and the state con-
straints, are each a part of the cost function. We now define
values previously abstracted in (2)

(8)

The vectors and are the horizontal proximity of the air-
craft to the two nearest boundaries of the playing area/experi-
mental test range. The vector is the proximity danger vector
between the evader and its adversary, and is the of the pur-
suer with respect to the evader.

The , , , , , , and square matrices each serve as
weighting factors in the cost function. By modifying their rela-
tive values, it is possible to give more “weight” to certain por-
tions of the cost function. We chose to give values to these ma-
trices so that in an equilibrium condition no single factor would
outweigh the others, and the aircraft would continue at the same
speed on its heading. For this controller ad hoc methods were
used to find these weighting factors, which required the ability
to perform simulations rapidly to reduce the time of develop-
ment.

In the definition of , acts as a filter to remove elements in
that are unimportant to the rules of the game. The values for
differ from those in , necessarily, as the matrix is used to

ensure that the statically defined constraints on the state vector
(e.g., maximum/minimum velocity) are not violated, while the

matrix is used to ensure that the state values important to win-
ning the game are properly weighted. Furthermore, deadbands
are applied to the and vectors such that and only have
an effect when one or more states/inputs approach their limits,
such as a turn rate limit imposed by the autopilot, minimum and
maximum altitude limits imposed (in this case) by the experi-
ment scenario and safety conditions, etc.

The vector is the difference in position and heading of the
evader and the pursuer. It is used to calculate the proximity of
the adversary, and figures into the cost function to outweigh the
desired trajectory, should the adversary invade the safe region
surrounding the evader. Note that contains position informa-
tion, as well as the angle off tail measurement, which describes
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Fig. 5. Basic forms of the cost functions used by the NMPTC. (a) An attractive CF. (b) A one-sided attractive CF. (c) A pointwise repulsive CF. (d) A linearly
repulsive CF.

Fig. 6. Conditions for switching between pursuit/evasion parameters.

the relative relationship of the position of the adversary (regard-
less of its heading) to the evader’s tail. The matrix, then, is
used to appropriately weight this component of the cost func-
tion.

The choice of which boundaries to use for the computation of
vectors and is made by computing the distance from all
boundaries (five in these experiments, as shown in Fig. 11) and
choosing the two nearest. This method is clearly effective only
inside a non-convex area. Furthermore, the and matrices
are set to zero when the aircraft is further than a preset distance
from the respective closest range boundary.

Similarly, when the pursuer is more than a preset distance
from the evader, the final cost function element (containing )
goes to zero and has no affect on the NMPTC controller.

Fig. 7. Pursuit evasion game with the trajectories shown in three dimensions.
Only the first 10 min are shown for clarity. Note that the vertical axis is scales
about 10 times larger to make it easier to see the flight paths, and roughly ap-
proximates the relative forward and vertical speed characteristics of the aircraft.

E. Controller Design for the Pursuer

An NMPTC controller design for the pursuer aircraft was ini-
tially necessitated by the need for an opponent for the evader in
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Fig. 8. Same game as Fig. 7 viewed from different perspectives and with the
full 20 min shown. Note again the scaling difference of the vertical axis. (a) Top
View. (b) Side View (facing North).

the software-in-the-loop system (SILS) testbed, and later to en-
able the evader UAV to assume the role of pursuer.

When in “pursuer” mode, the UAV used the same controller
software as in “evader” mode, but with different matrix values
for , , and , the other terms in (8) omitted and the computa-
tion for was modified for pursuit. Additionally, the pursuer’s

used to compute depended on the pursuer’s position and
relative direction compared to the evader, specifically to offset
its approach prior to turning into a position on the tail of the
evader, as discussed in [26].

F. Topology of Cost Function Elements

The first three terms in (8) are quadratic and zero-mean at-
tractive functions: they penalize deviation from the zero valued
inputs, as shown in Fig. 5(a). The fourth and fifth functions (of

and ) are one sided versions of the previous type, that is to
say that they penalize deviation in one direction only, as shown
in Fig. 5(b). The last two functions are quadratic and zero-mean
repulsive functions, meaning that they penalize inputs that ap-
proach zero values. The first of those two is a point repulsive
function, the second is repulsive along the axis extending be-
hind the aircraft, as shown in Fig. 5(c) and (d), respectively. The
forms of these functions were chosen to allow for the easy com-
putation of their derivatives to facilitate the optimization pro-
cedure. Note also that the last two (repulsive functions) contain
the additional parameter in the order of the denominator polyno-
mial function which affects the shape of the repulsive function.

Fig. 9. Win conditions for the pursuit/evasion game (��� � � and��� �
� must both be less than 10 and the distance less than 3 nm). The first 10 min
of the test are shown which included a successful targeting of the evader by the
pursuer at 392 s.

The solution to the cost-function optimization (using the
iterative technique described in [33] and [34]) requires the
calculation of the derivatives of the vehicle dynamics with
respect to both the state and input vectors. Since mathematical
equations were not available for the vehicle dynamics—only
the DEMOSIM interface—we used a simplified model using the
Eulerian equations of motion, input latency gains and limits
on the states to capture our “projected” values for the state of
the evader (and pursuer) in the predictive component of the
controller.

In order to reduce the computational burden of the nonlinear
gradient-descent optimization, the result from the previous time
step is used to initialize the optimizer [34], and a limit on the
number of iterations is imposed. The second measure may re-
sult in a sub-optimal solution being found, however this gener-
ally occurs during a period of rapid change in which (particu-
larly in a PEG) a rapid, sub-optimal decision is preferable to a
delayed optimal solution based on estimates of future states that
will most likely be made inaccurate by the changing and unpre-
dictable actions of the other aircraft.

G. Switching Between Pursuer/Evader Modes

In the symmetric version of the PEG, in which the evader is
able to target the pursuer to win the game, the aircrafts’ distance
and conditions may trigger a switch to the pursuer NMPTC
parameters until such time as the favorable conditions are lost.
These parameter bounds are defined as the evader’s1 angle off
nose and tail ( , ), and the pursuer’s same values (shown as

, for clarity). As shown in Fig. 6, transition occurs from
“evader” to “pursuer” mode only if all conditions are satisfied.
Transition can return the vehicle to “evader” mode if any of the
other conditions are satisfied. The conditions can be described,
respectively, as evader is in a favorable position to chase the
pursuer (opportunity), while at the same time the pursuer is not
is a good position to catch the evader (safety) and they are close
enough that is it worth trying rather than continuing towards the
End Zone objective (benefit).

1The � is the angle off nose for the inverse of the positions shown in Fig. 3;
i.e., the evader is in a more advantageous position than the pursuer.
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Fig. 10. Experimental sensitivity analysis. Visualization of cost function slices of (8), for the runs shown in Figs. 7–9. Only the first 10 min of the test are shown.
(a) Trajectory cost function for NMPTC. (b) Evader/pursuer position difference cost function for NMPTC. Angle off tail (� ) cost function for NMPTC. (d) State
cost function for NMPTC.

The conditions to switch back to evader mode use the re-
verse conditions with a deadband to prevent cyclic switching
behavior. Analytical bounds to prevent chattering are a subject
of future research. The specific values used for these thresholds
in these experiments are provided in Section VII-B.

V. DEVELOPMENT AND TEST PLATFORMS

For the live demonstration, our vehicle had access to the ad-
versary’s state data at each timestep. Details regarding our ve-
hicle’s behavioral specifications, as well as the anticipated spec-
ifications of the adversary, are given throughout this section. We
also provide the predictor function we used for our controller.

A. Flight Aircraft

A Boeing Aircraft Company owned T-33 (originally man-
ufactured by the Lockheed Martin Company) two-seater jet
trainer was modified by Boeing for use in the live flight testing
in June 2004, and functioned as a UAV surrogate aircraft.
The T-33 included a third party autopilot system which did
not include airspeed control of the aircraft. This aircraft will
hereafter be referred to as the UAV. The UAV carried a safety
pilot who could take control of the aircraft in the event of con-
troller malfunction or poor decision making. Due to limitations
on the autopilot system used for the controller interface, the
safety pilot manually controlled the airspeed based on indicator
alerts and a displayed target airspeed. The route and trajectory
of the UAV was controlled by CORBA-based experimental
Technology Developer (TD) applications running on a laptop
PC with a Linux operating system and Boeing’s Open Control
Platform (OCP) that was interfaced to the avionics of the
aircraft. The TD applications sent the control commands to the

avionics pallet that transformed them into autopilot maneuver
commands. The state of the UAV, as well as the state of the other
aircraft (an F-15 which exchanged state data with the UAV on
a wireless link), was available via this avionics interface.

B. Software-In-the-Loop Simulation Testbed

In order to facilitate development, reliable testing, rapid
integration, and a uniform interface independent of operating
system, a software in-the-loop simulator (SILS) platform
was provided by Boeing. This interface used Boeing’s Open
Control Platform (OCP), a black-box aircraft simulator called
DEMOSIM and Java based UAV Experiment Controller GUI.
The SILS versions of OCP and the Experiment Controller were
identical to the ones that would be used in the final flight test
experiments. This interface provides state information based
on the DEMOSIM model of the UAV, as well as the F-15, to
the NPMTC controllers and the various other experimental
applications that uses it. In addition, a high-level interface
to the simulated UAV autopilot is provided that allows the
interfacing application to control the rate of change of heading,
altitude, and velocity. This included a model of the UAV
test pilot’s implementation of the airspeed commands from
the NMPTC controller, the functionality missing from the
third-party autopilot described above. This is just one example
of model-mismatch for which the NMPTC controller would
have to demonstrate sufficient robustness.

In order to test dynamic PEGs, Boeing modified the SILS
to allow for two simulated UAVs to fly against each other, one
as evader and the other pretending to be an F-15 pursuer. This
allowed for extensive SILS testing of the NMPTC in PEGs with
two simulated players.
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Fig. 11. UAV Experiment Controller: UAV is light gray, F-15 is dark.

C. Hardware In-the-Loop Simulation Testbed

All software developed for the test flight was provided to
Boeing for integration and testing in their hardware in-the-loop
simulator (HILS). The HILS system included an interface to the
same avionics system used on the UAV and to a proprietary air-
craft simulation system. Along with software, the experiment
test plans were provided with which Boeing developers tested
and validated all the software for the various experiments, in-
cluding the NMPTC controller for pursuit/evasion.

One of the major limitations on the HILS testbed was the
lack of a human piloted pursuit aircraft. The modification to the
DEMOSIM aircraft simulation that allowed for the pursuer to use
a similar NMPTC controller as the evader aircraft could not be
integrated into the HILS system; thus the pursuer aircraft could
only execute a preprogrammed, non-responsive search pattern.
This meant that only the basic functionality of the NMPTC con-
troller could be validated. The actual performance of the con-
troller in a real PEG could only be evaluated during the actual
flight test.

D. Implementation

The NMPTC algorithm and the PEG were implemented in
C++ and run in a Windows environment. The evader aircraft’s

NMPTC controller was tuned by building it up, component by
component of (8) to provide for a successful game outcome in
terms of exiting the playing area and avoiding the pursuer air-
craft. The trajectory, state and input matrices , , and were
first tuned to ensure that aircraft would follow a set trajectory
as both evader and pursuer. Then the evader matrices and
were tuned for the evader to prevent the pursuer from taking
up a targeting position as per the rules of the PEG. Then the
boundary matrices and along with the former criterion
was encoded in the algorithm through the matrix of (8), the
latter in the matrix along with the choice of states that were
included in the vector , as described above. Multiple iterations
were required.

The pursuer algorithm was tuned to close on the evader using
its matrix and the choice of as a path toward the predicted
position of the evader. Both aircraft controllers used the and

matrices to constrain the states and inputs.
In this manner, as the final flight test of the system was with

a trained pilot flying the pursuer aircraft as described below, the
tuning of the cost functions was aimed at provided behavior sim-
ilar to a real pilot, not an attempt to optimize the game outcome
with respect to one player over the other. A discussion of the
sensitivity of outcome to the cost function parameters is pro-
vided in Section VII-C.
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Fig. 12. 30-min simulation game: the pursuer (dark trace) started near the bottom, the evader (light trace) started on the left.

In the SILS experiments, two instances of the aircraft were
simulated, one as the pursuer and one as the evader. For these ex-
amples, the performance characteristics of the two aircraft were
identical, as was the case in all the simulations leading up to the
final test flight due to the constraints of the DEMOSIM interface.

In the HILS experiments and in the flight test experiments
only one aircraft used the NMPTC algorithm. In the HILS a
dummy aircraft was used as the other aircraft to verify the soft-
ware for flight testing. In the flight test the other aircraft was an
F-15 flown by a USAF-trained Boeing test pilot.

VI. RESULTS OF SIMULATION AND DEMONSTRATION

A. Simulation Results

In Fig. 7 the first half of a typical game result from simulation
is shown. The evader enters in the northwest corner of the lin-
early defined play area, and its goal is to exit through the north-
east corner of the play area. Simultaneously, the pursuer, who
is on station in the southern region of the playing area, imme-
diately begins to pursue the evader. In this particular result, the
evader initially tries to bypass the pursuer and heads for the ob-
jective to the east; however when the pursuer approaches it turns
toward the pursuer to avoid being in a targeting position. The re-
mainder of the game includes descent and turning maneuvers,
with the evader avoiding being targeted, but getting somewhat
trapped near the lower (10 000 ft) altitude boundary. After 20
min, the game expires. In Fig. 8 two 2-D graphs provide more
detailed views of the aircraft flight paths. The win conditions for
this example are as discussed in Section III.

In Fig. 9 the and values from the perspective of the
evading aircraft are shown, with a reference angle of 10 . Note
that the evader’s success is shown by keeping the and
values from being below this line at the same time, right up until
the 392 s mark when the pursuer managed to very briefly target
the evader.

It can be observed from this result that the winning condi-
tions are very difficult to achieve. For example, increasing the
targeting range from 3 to 4 nm decreases the evader’s success
rate from 69.3% to 36.1%. However, these prescribed game con-
ditions were used in the flight test experiments, and we retain
them for our additional analysis.

The generated control inputs at each timestep were a direct
result of the cost function at the previous timestep. For tuning
the weights of individual portions of the cost function, we care-
fully selected subsets of the cost function and graphed them
according to the prediction horizon and any strategies we se-
lected. From another simulation result in which the pursuer suc-
cessfully targeted the evader, Fig. 10(a) shows the cost function
component for trajectory error ( , for steps, varying by
the simulation time). Large values indicate undesired cost, due
ostensibly to deviations from the trajectory to avoid loss by tar-
geting conditions. The predicted cost function value, calculated
at each time step, can be sliced across the “Simulation Time”
axis to see the predicted values of this cost element based on the
selected strategy at that timestep. These cost functions are the
collection of all control inputs for the first 10-min of simulation
time, and a 30-step lookahead is used.

Another set of interesting plots deserve some special discus-
sion. For example, in Fig. 10(b) the cost function of proximity of
the evader and pursuer is shown. Fig. 10(c) shows the separate
cost of , which the evader should use to “shake” the pursuer
off its tail. The cost of violating constraints on the evader’s state
are shown in Fig. 10(d), in which the controller considers lim-
itation on speed, altitude, etc. These are for the same example
used above and shown in Figs. 7–9.

These plots also provide an ability to see how this particular
game developed in time. After 5 minutes, there were high costs
for trajectory, which indicates that the evading vehicle was ei-
ther threatened, or perceived a threat. This can be verified by
the spikes in proximity difference around 2–3 min; in a brief
spike is observed; more significant spikes occur around 5 min
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when the evader manages to avoid being targeted; and finally at
about 6.5 min when the evader is targeted by the pursuer. The
errors in state were fairly low overall, and only anticipated er-
rors in state (shown in the “Lookahead” axis) are seen with a
high cost, except at the very start of the experiment when the
aircraft is getting on track from its initial conditions.

B. Simulation in the Experiment Controller

The experiment controller used in the simulation and flight
test experiments is shown in Fig. 11 at the start of a SILS exper-
iment. In this case the evader has entered from the west and it
trying to reach the end zone to win the game. The pursuer was
in the southern half of the area, turned to engage the evader and
then turned to get behind it.

Fig. 12 shows the outcome of this experiment after about 30
min of real time (experiments were often allowed to continue
past the 20 min PEG rules to further evaluate the controllers).
The tracks of the two aircraft can be seen as the evader carries
out a series of maneuvers to prevent the F-15 from adopting a
targeting position behind it. It can also be seen that the UAV
tries to break contact and head for the end zone when it feels
safe to do so, although it only gradually makes its way in that
direction. The effect of the game boundary constraints can also
be seen as the UAV’s evasive maneuvers bring it close to the
southeast boundary. The UAV is forced back into the game area
at these times.

C. Flight Test Validation

The NMPTC controller was provided to Boeing for final in-
tegration, hardware testing in the HILS and experimental flight
tests. These flight tests were carried out as part of the SEC Cap-
stone Demonstration at Edwards AFB during the weeks of June
14–25, 2004. This experiment was run four times as part of three
different sorties, in which the NPMTC controller and the Boeing
platform performed as expected from the simulations, despite
significant wind and other conditions.

The first two test flights were flown without the F-15 in order
to verify the system. In this case, the same method was used
as on the HILS in which the F-15 was simulated, and as in the
HILS it could only follow a preprogrammed flight path. In these
cases the simulated F-15 flew a figure-8 pattern through which
the UAV successfully flew to its desired destination virtually
unimpeded.

In the third experiment, the UAV was set to only evade. In
this case the F-15 was able to get behind the UAV, though the
UAV executed evasive maneuvers for several minutes. In this
experiment, the F-15 used its speed advantage to great benefit.

In the fourth and final experiment, the UAV was able to switch
to pursuer mode if it detected favorable conditions to do so. In
this experiment, shown in Fig. 13, the paths of the aircraft can
be seen. The F-15 was carrying out a search pattern as the UAV
approached, and in this experiment the F-15 flew at the same
velocity as the UAV.

During the flight demonstration, the UAV detected an advan-
tageous condition and switched to pursuer mode and success-
fully targeted the F-15. The experiment was allowed to con-
tinued after this (not shown) and the F-15 did shake the UAV

Fig. 13. Flight test experimental results: A symmetric PEG in which the UAV
(light trace) has just targeted the F-15 (dark trace).

off its tail and managed to get behind it as the UAV switched
back to evader mode and tried to reach the end zone.

The greatest variable in these experiments was the behavior of
the F-15 pilot, who commented very favorably on the behavior
of the UAV and the NMPTC controller. Paraphrasing the F-15
pilot after one experiment, the UAV did precisely what one is
taught to do in flight school for that situation (in which the F-15
got behind the UAV and tried to adopt a targeting position).

VII. SIMULATION ANALYSIS

After our successful flight demonstration, we performed
regressive analysis of the pursuer/evader controllers through
structured variation of the initial conditions of the game. We
used the same boundary conditions found in the live demon-
stration, and the DEMOSIM executable as the dynamics for the
vehicle. These results fall into two categories: those in which
we do not permit switching by the evader to pursuer mode, and
those which we permit the evader to change modes in order to
target the pursuer.

A. Unswitched PEGs

The results of these simulations are shown in Fig. 14. The
winning vehicle is shown as an “ ”, and the losing vehicle as
an “ ”. The initial velocity vector is indicated by the quiver
extending from the initial position, and a line connects
the ends of these quivers to correlate which points belong to a
single simulation.

While the two aircraft have identical performance character-
istics (due to the restrictions place by the DEMOSIM simulation),
an advantage could be given to either the pursuer or evader
through the dynamically accurate modeling characteristics of
DEMOSIM as follows: we operate one vehicle at a higher alti-
tude, which the dynamics engine accurately simulates with less
air density, and thus lower maneuvering performance but higher
speed. This higher altitude does not give a tactical height advan-
tage to that vehicle, however, as the relative height difference
was compensated for in the use of the shared state information
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Fig. 14. View of initial conditions from above, with winner as “�”, loser as “�”.
For clarity, a reduced set of simulations were chosen. The dashed lines connect
evader and pursuer starting positions for each test run, and arrows indicate initial
heading of each vehicle.

and the NMPTC cost functions. Thus, the vehicles believed they
were operating at the same altitude regardless of this offset.

An important note about the simulation results is in regard
to the nondeterministic behavior of the simulation itself. The
SIL simulation system includes four separately initiated pro-
gram processes, each of which have significant start up times
(on the order of several second). Communication between the
processes occurs through middleware, at data rates of approx-
imately 1 Hz. During startup, vehicles must move to maintain
flight, and if no data is received from the other vehicle, it cannot
be used as part of the predictive controller. The longer it takes to
communicate with the other vehicle, the more the pursuer (and
evader) will change their initial position and heading. Thus, the
jitter in establishing communication serves to locally randomize
starting game conditions, and it may directly affect individual
outcomes, despite identical starting simulation conditions.

In all, we ran 335 simulations with no switching permitted
by the evader. Table I shows the percentage win and loss by
evader/pursuer in these experiments. In the event that there was
no clear winner within the time limits, a win was granted to the
evader, per the rules of the game. Here we see that there is a bias
towards the evader, which is justifiable as the original objective
of the NMPTC controller was to focus on evasion within the pre-
defined rules of the PEG. This focus governed the development
of the controller that was validated in the flight test experiments
and has not been modified for these additional experiments.

These results were also examined to see the effect of initial
conditions on the outcomes, and Fig. 14 shows two distinct sets
of initial conditions. The first (upper) set of results begin with
the evader near the ingress point and the pursuer at a random
point around a circle in front of the evader. The dashed lines con-
nect the evader and pursuer starting positions to indicate each
test case. The second (lower) set of results show both aircraft at

TABLE I
SUMMARY OF WIN/LOSS OUTCOMES OF SIMULATIONS IN FIG. 14

TABLE II
SUMMARY OF WIN/LOSS OUTCOMES OF SIMULATIONS WITH CHANGES IN

THE WINNING CONDITIONS

TABLE III
SUMMARY OF WIN/LOSS OUTCOMES OF SIMULATIONS WHERE THE EVADER

IS PERMITTED TO SWITCH TO “PURSUER” MODE

a random point around their own circles, with the pursuer again
between the evader and the objective end point, labels the “End
Zone”.

The rules of the game are also a critical factor in determining
the outcome of the PEGs, and while the original rules were set
for the flight test experiments and used throughout the develop-
ment and testing of the NMPTC controller, it was possible to in-
vestigate the effect of these rules on the outcomes. As noted ear-
lier and seen in Fig. 9, the pursuer is often almost able to target
the evader. By way of post-processing the results with different
winning conditions, as shown in Table II, the win percentage
of the evader drops dramatically if targeting conditions are re-
laxed. This is true to a point; however it also becomes easier for
the evader to target the pursuer if the conditions are kept sym-
metric and it is allowed to switch modes.

B. Switched PEGs

Following the evaluation of the non-switching experimental
results, a specific starting position with roughly average chances
of success (66.8% for the evader in these results compared to
69.2% for the full set of results presented in the previous section)
was used to evaluate the effect of allowing for mode switching
for the UAV between “evader” and “pursuer” mode. During
these experiments, which permit the evader to switch to “pur-
suer” mode, we ran a total of 164 simulations, summarized in
Table III. The results clearly show that if the UAV is allowed to
switch to “pursuer” mode, it can extend its chances of survival
significantly. If those conditions are further relaxed, chances are
further improved.
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Recalling the switching controller from Fig. 6, we provide the
values of in that figure. Our first switching conditions, called
the tight conditions in the table, are

(9)

where angles are specified in degrees, and distance in nautical
miles. With these conditions, the likelihood of UAV survival
increases over the likelihoods presented in Table I. If we use
the following switching conditions:

(10)

called the easy conditions in Table III, we see that the evader’s
performance improves dramatically. Again, angles are specified
in degrees, and distances in nautical miles.

This improvement in the results for the evader can be inter-
preted as with the relative match in performance of the two air-
craft, when both are in “pursuer” mode there is an even (and
fairly low) chance that one will target the other, hence, the longer
the UAV stays in “pursuer” mode, the higher the odds that it will
remain in the game until the end at time .

C. Sensitivity Analysis

As explained in Section V-D above, the cost function parame-
ters used in these experiments were meant to produce reasonable
flight behavior similar to what would be expected from a real
pilot, which was successfully achieved as noted in Section VI-C.
However, it is naturally of interest to determine an optimal set
of cost functions to achieve one outcome over another, e.g., the
evader winning the game at the expense of the pursuer. This is
left largely for future work, however an initial analysis and dis-
cussion is provided here.

To evaluate the sensitivity of the outcome to the cost func-
tions used in the NMPTC algorithm, the effect of the angle off
tail cost function [i.e., the for the matrix in (8)] on the pur-
suer’s winner percentages was studied through simulation ex-
periments. This function was chosen as it directly affects the
evasive actions taken by the evader. A set of 20 new test re-
sults were conducted with the same initial conditions and the
maneuvering advantage given to the evader. Then was scaled
to increase the relative effect of the angle off tail cost function
by a factor of four and then by eight and the experiment was
repeated with the same initial conditions in each case. The re-
sult was an increase in the pursuer’s winning percentages from
60% with the baseline case to 70% and 75% for the latter cases,
respectively.

This demonstrates that there is considerable opportunity to
improve the winning outcomes for either the pursuer of the
evader through cost function tuning. For the simulations pre-
sented in Table III and Fig. 14, the fielded flight demonstration
cost function was preserved in order to demonstrate that the re-
sults from the live flight experiment were in line with expected
outcomes, and not just a chance occurrence. We leave further re-
sults in the experimental and analytical optimization of the cost
functions to future work.

D. Baseline Analysis

In addition to the validation of the simulation methods with
the flight test, the algorithm was compared to four baseline tests
to validate the following assumptions:

• the pursuer can likely catch an unaware evader;
• the pursuer can likely catch a naive evader;
• the evader can reliably avoid an unaware pursuer;
• the evader can reliably avoid a naive pursuer.

This led to the following baseline experiments to validate the
approach:

1) the evader flies directly to the end zone, and is not given
access to the pursuer’s state;

2) the evader flies a figure-8 maneuver with no access to the
pursuer’s state;

3) the pursuer flies a figure-8 maneuver, with no access to the
evader’s state unless the evader flies into the pursuer’s cone
in any orientation (as shown in Fig. 2);

4) same as the previous, except that the evader can switch to
pursuer mode.

In each experiment where one of the opponents was flying a
figure-8, the other vehicle was restricted to the same altitude.
For each experiment 26 flight tests were performed to establish
the rates of success.

1) Baseline Experiment 1—Unaware Evader: In this exper-
iment, the evader ignores any pursuer data and flies directly to-
ward the end zone. Experiments where the pursuer began in an
advantageous or neutral initial condition resulted in 100% pur-
suer wins. In cases where the pursuer was clearly at a disadvan-
tage due to initial position and orientation, the evader was able
reach the end zone. When sampled over the entire space, the
pursuer won 73% of the time.

2) Baseline Experiment 2—Naive Evader: In this experi-
ment, the evader flies a figure-8 path in the middle of the playing
space and the pursuer has full access to evader state. Here the
pursuer was successful in 92% of the cases with the evader man-
aging to win through elapsed time in cases where the pursuer is
at a disadvantage due to initial conditions.

3) Baseline Experiment 3—Unaware Pursuer: In this case,
the pursuer flies in a figure-8 pattern as a test to ensure that
the evader algorithm would successfully avoid the pursuer and
complete the mission of reaching the End Zone. In this case the
evader won by reaching the End Zone in 100% of the matches.
Note that none of the experiments placed the evader within the
targeting criteria as an initial condition.

4) Baseline Experiment 4—Naive Pursuer: This final base-
line experiment uses the same conditions as Baseline Experi-
ment 3, except that the evader was able to switch to the pursuer
mode if an advantage was detected. In this case, the evader still
won 100% of the games, however reaching the End Zone ac-
counted for only 23% of the wins. The other wins came from
time elapsed for (54%) and targeting the pursuer (23%). An ex-
ample of the last result is shown in Fig. 16. Similarly, these re-
sults can be accounted for in that when the evader choses to
switch to a pursuer mode it may have less chance of reaching
the End Zone, however it does not jeopardize its chances of win-
ning due to the expiration of game time.



618 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012

Fig. 15. Graphical summary of Table III. Note that the easy switching condi-
tions always improve the evader’s behavior over the original switching condi-
tions.

Fig. 16. Baseline experiment in which the pursuer flies a figure-8 pattern (coun-
terclockwise at the bottom and clockwise at top of figure-8) and the UAV is able
to switch to pursuer mode on its way to the End Zone. The evader does so and
is successful in targeting the pursuer.

E. Comparison With Related Work

These results show that an evader strategy of a simple evasive
maneuver (figure-8) loses the vast majority of the time to a pur-
suer equipped with the predictive controller. When the evader
succeeds, it is due to a clear disadvantage in initial conditions
for the pursuer. In cases where the evader is unaware it is being
targeted, the evader loses 74% of the time, with wins coming
when there is a clear disadvantage for the pursuer in initial con-
ditions (i.e., the evader is much closer to the end zone than it is
to the pursuer).

When the pursuer has a naive (or no) strategy, the evader
clearly has the advantage, winning in every case, either by
reaching the end zone, or by elapsed time. As was shown in
the earlier results, if the pursuer has knowledge of the evader,
then initial conditions may determine the winner, but with no
knowledge by the pursuer of the evader’s state, the evader can
only lose by blundering into the targeting criteria zone.

Some discussion in merited with regards to how existing ap-
proaches from Section II-D might fare in these scenarios. Most

of those approaches are not suited for these scenarios, with the
following exceptions. The probabilistic threat exposure map
[30] is relevant to Baseline Experiment 1, where state data of
the pursuer are unavailable to the evader, and the construction
of the threat exposure map would be an interesting topic, as in
order to stay within the necessary boundaries, the boundaries
would need to be encoded as threats. Further, the construction
of the map would be ill-posed in some sense, as the location
of the pursuer would be unknown after some time. Thus some
prediction is still required, based on the estimated strategy of
the pursuer.

The probabilistic games in a plane [28] and the single deci-
sion point for evasive maneuver [25] are relevant to Baseline Ex-
periment 2, where the decision for which maneuver to perform
(without further knowledge of the state of the pursuer) is im-
portant. Each of these approaches may provide an improvement
in the success rate that was observed in Baseline Experiment 2
by selecting a different evasive maneuver to follow, based on
particular knowledge of the pursuing vehicle. However, if the
pursuer can predict the evader’s strategy, then even this naive
approach may not succeed.

VIII. FUTURE WORK

Some significant portions of the framework are reusable, and
perhaps subject to parameterization on a higher level. Develop-
ment of a computational, real-time guaranteed, platform-inde-
pendent MPC framework is an ongoing area of interest for the
authors. We saw some success in the reuse of the algorithms
across platforms from rotorcraft [31], [34] to fixed-wing air-
craft [1], [2], although the implementation for our fixed-wing
example was rewritten from published equations, not from ex-
isting code.

We did see software codebase reuse when the Sydney-
Berkeley Driving Team [35] used the software from this flight
demonstration (i.e., fixed-wing air vehicles) after substituting
the kinematic model of a four-wheeled, front steering ground
vehicle. This required, of course, rewriting the cost equations
since the game no longer involved a pursuer. Further dividing
the portions of the generic infrastructure into a reusable com-
putational toolbox is in some sense an exercise in abstraction,
though we expect that research tasks involving anytime results
from various optimizers, heuristics for optimization (such as
the alternative path planner used in [36]) including simulated
annealing and genetic algorithms, to pose interesting investiga-
tion avenues for selecting the appropriate controller based on
the evaluation of performance metrics such as time, memory,
and game conditions satisfaction.

An interesting further computational avenue is the introduc-
tion of adaptive controllers to attempt to enforce the predictive
model’s behavior, regardless of the dynamics involved. For air
vehicles, this could allow the kinematic model to be supple-
mented by this adaptive module, which could enable the traces
to be more reflective of actual behavior, and thus allow the pre-
dictive paths to be much closer to actual paths.

Undoubtedly, the most time-consuming portion of the system
development is the tuning of the cost function. In order to more
closely represent human behaviors, the use of offline computa-
tional methods such as those by Raffard et al. [37], to globally
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optimize the parameters of the cost function based on desired
behavior of some initial conditions would enable human-based
training of the predictive controller. This would permit, for ex-
ample, a combat pilot to record behavior in the simulator over
several months, and then push this information into the cost
function of the NMPTC controller.

As demonstrated in Section VII-C, there is considerable
opportunity to improve the outcomes in favor of one participant
over the other, and this would perhaps be most effectively
achieved in a competitive forum where the pursuer and evader
algorithms are developed separately, or in which the pursuer is
piloted in the simulation environment by a trained pilot.

There are interesting applications to this for ground vehicles
as well, such as autonomous driving controllers for automobiles,
that can emphasize smooth steering, smooth acceleration, etc.,
based on learning a driver’s preferences—achieving personal-
ization significantly more advanced than seat depth and mirror
position.

IX. CONCLUSION

In this paper we have presented experimental results of the ef-
fectiveness of the nonlinear model-predictive tracking controller
approach to a pursuit/evasion game for fixed-wing aircraft in a
time-critical application.

By using the NMPTC approach, rapid computations can be
performed, and (given accurate dynamics) the true advantages
of autonomy can be encoded using the concepts of competitive
games. By providing this autonomous evader mode to a UAV
operator, it is possible for a remote operator to relinquish con-
trol of the vehicle in time-critical situations, allowing the in-
telligent controller to serve as a surrogate that incorporates the
same theories and behaviors of the pilot. Because the safety and
functionality constraints of the aircraft are encoded into the cost
function, the UAV is not endangering itself or its environment.

The simulation results show that the encoding of the game
into the cost function was successful and these results were val-
idated in actual flight tests on a T-33 UAV surrogate in PEGs
with a piloted F-15. NMPTC had not yet been demonstrated on
full-scale fixed-wing aircraft for the pursuit/evasion problem,
and this work shows that this method is appropriate when pro-
viding input to an autopilot interface.
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[20] T. Başar and G. J. Olsder, Dynamic Non-Cooperative Game Theory,
2nd ed. San Diego, CA: Academic Press, 1995.

[21] “Annals of International Society of Dynamic Games,” in Stochastic
and Differential Games: Theory and Numerical Methods, M. Bardi,
T. Parthasarathy, and T. E. S. Raghavan, Eds. Cambridge, MA:
Birkhäuser, 1999, vol. 4.

[22] R. Isaacs, Differential Games. Hoboken, NJ: Wiley, 1967.
[23] S. LaValle and S. Hutchinson, “Game theory as a unifying structure for

a variety of robot tasks,” in Proc. IEEE Int. Symp. Intell. Control, 1993,
pp. 429–434.

[24] I. Mitchell, “Application of level set methods to control and reachability
problems in continuous and hybrid systems,” Ph.D., Scientific Comput.
Computat. Math. Program, Stanford Univ., Stanford, CA, 2002.

[25] S. Le Menec, “Differential games and symbolic programming to cal-
culate a guaranteed aircraft evasion in modern aerial duels,” in Proc.
33rd IEEE Conf. Dec. Control, 1994, pp. 3868–3870.

[26] R. L. Shaw, “Fighter combat: Tactics and maneuvering,” United States
Naval Inst., Annapolis, MD, 1985.

[27] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: Theory, implementation, and experimental
evaluation,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 662–669,
Oct. 2002.



620 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012

[28] J. Hespanha, M. Prandini, and S. Sastry, “Probabilistic pursuit-evasion
games: A one-step Nash approach,” in Proc. 39th IEEE Conf. Dec.
Control, 2000, pp. 2272–2277.

[29] R. Vidal and S. Sastry, “Vision-based detection of autonomous vehi-
cles for pursuit-evasion games,” presented at the IFAC World Congr.
Autom. Control, Barcelona, Spain, 2002.

[30] U. Zengin and A. Dogan, “Real-time target tracking for autonomous
UAVs in adversarial environments: A gradient search algorithm,” in
Proc. 45th IEEE Conf. Decision Control, 2006, pp. 697–702.

[31] H. Kim, D. Shim, and S. Sastry, “Nonlinear model predictive tracking
control for rotorcraft-based unmanned aerial vehicles,” , vol. 5, pp.
3576–3581, 2002.

[32] “Progress in Systems and Control Theory,” in Nonlinear Model Predic-
tive Control, F. Allgöwer and A. Zheng, Eds. Basel-Boston-Berlin:
Birkhäuser Verlag, 2000, vol. 26.

[33] G. J. Sutton and R. R. Bitmead, “Computational implementation of
nonlinear predictive control on a submarine,” in Nonlinear Model Pre-
dictive Control. Basel- Boston-Berlin: Birkhäuser Verlag, 2000, vol.
26, Progress in Systems and Control Theory, pp. 461–471.

[34] D. Shim, H. Kim, and S. Sastry, “Decentralized nonlinear model pre-
dictive control of multiple flying robots,” in Proc. 42nd IEEE Conf.
Decision Control, 2003, pp. 3621–3626.

[35] J. Sprinkle, J. M. Eklund, H. Gonzalez, E. I. Grøtli, B. Upcroft, A.
Makarenko, W. Uther, M. Moser, R. Fitch, H. Durrant-Whyte, and S. S.
Sastry, “Model-based design: A report from the trenches of the DARPA
Urban Challenge,” Softw. Syst. Model., vol. 8, no. 4, pp. 551–566, 2009.

[36] B. Upcroft, A. Makarenko, M. Moser, A. Alempijevic, A. Donikian, W.
Uther, and R. Fitch, “Empirical evaluation of an autonomous vehicle
in an urban environment,” J. Aerosp. Comput., Inf., Commun., vol. 4,
no. 12, pp. 1086–1107, Dec. 2007.

[37] R. Raffard, K. Amonlirdviman, J. Axelrod, and C. Tomlin, “Automatic
parameter identification via the adjoint method, with application to un-
derstanding planar cell polarity,” in Proc. 45th IEEE Conf. Decision
Control, 2006, pp. 13–18.

J. Mikael Eklund (S’98–M’03) received the B.Sc.
and M.Sc. degrees in engineering and the Ph.D.
degree from Queen’s University, Kingston, ON,
Canada, in 1989, 1997, and 2003, respectively.

He is an Assistant Professor and Program Director
for the Department of Electrical and Software
Engineering, University of Ontario Institute of Tech-
nology, Oshawa, ON, Canada. Until August 2006,
he was a Visiting Postdoctoral Scholar with the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley. His

research includes the area of autonomous systems including robotic vehicles
and in smart medical systems. Between his Bachelor and Masters studies he
was a Simulator Flight Control Systems Engineer with CAE Electronics in
Montreal, QC, Canada.

Jonathan Sprinkle (S’96–M’03) received the
B.S.E.E. degree in cursu honorum, cum laude from
Tennessee Technological University, Cookeville, in
1999, where he was the first graduate of the Com-
puter Engineering program, and the first electrical
engineering double major, the M.S. degree in 2000,
and the Ph.D. degree from Vanderbilt University,
Nashville, TN, in 2003.

He is an Assistant Professor with the Department
of Electrical and Computer Engineering, University
of Arizona, Tempe. In 2009, he received the UA’s

Ed and Joan Biggers Faculty Support Grant for work in autonomous systems.
Until June 2007, he was the Executive Director of the Center for Hybrid and
Embedded Software Systems, University of California, Berkeley. His research
includes the area of intelligent autonomous systems, through building blocks
of domain-specific modeling, metamodeling, and generative programming. He
was the co-Team Leader of the Sydney-Berkeley Driving Team, a DARPA
Urban Challenge collaboration with partners Sydney University, University of
Technology, Sydney, and National ICT Australia.

S. Shankar Sastry (S’79–M’80–SM’95–F’95)
received the M.A. degree (honoris causa) from
Harvard University, Cambridge, MA, in 1994 and
the Ph.D. degree from the University of California,
Berkeley, in 1981.

He is the Dean of Engineering with University
of California, Berkeley. He was on the faculty
of Massachusetts Institute of Technology as an
Assistant Professor from 1980–1982 and Harvard
University as a chaired Gordon McKay Professor in
1994. His areas of personal research are embedded

and autonomous software for unmanned systems (especially aerial vehicles),
computer vision, computation in novel substrates such as quantum computing,
nonlinear and adaptive control, robotic telesurgery, control of hybrid and em-
bedded systems, network embedded systems and software. He has supervised
over 50 doctoral students to completion and over 50 M.S. students. His students
now occupy leadership roles in several locations and on the faculties of many
major universities in the United States and abroad. He has coauthored over 400
technical papers and 9 books.

Prof. Sastry was a recipient of the President of India Gold Medal in 1977, the
IBM Faculty Development Award for 1983–1985, the NSF Presidential Young
Investigator Award in 1985, the Eckman Award of the American Automatic
Control Council in 1990, the Ragazzini Award for Distinguished Accomplish-
ments in teaching in 2005, the distinguished Alumnus Award of the Indian In-
stitute of Technology in 1999, the David Marr prize for the Best Paper at the
International Conference in Computer Vision in 1999, and an honorary doc-
torate from the Royal Swedish Institute of Technology in 2007. He is a member
of the National Academy of Engineering and the American Academy of Arts
and Sciences (AAAS).


