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Abstract—Human movement models often divide movements
into parts. In walking, the stride can be segmented into four dif-
ferent parts, and in golf and other sports, the swing is divided into
sections based on the primary direction of motion. These parts are
often divided based on key events, also called temporal param-
eters. When analyzing a movement, it is important to correctly
locate these key events, and so automated techniques are needed.
There exist many methods for dividing specific actions using data
from specific sensors, but for new sensors or sensing positions, new
techniques must be developed. We introduce a generic method for
temporal parameter extraction called the hidden Markov event
model based on hidden Markov models. Our method constrains
the state structure to facilitate precise location of key events. This
method can be quickly adapted to new movements and new sen-
sors/sensor placements. Furthermore, it generalizes well to sub-
jects not used for training. A multiobjective optimization tech-
nique using genetic algorithms is applied to decrease error and
increase cross-subject generalizability. Further, collaborative tech-
niques are explored. We validate this method on a walking dataset
by using inertial sensors placed on various locations on a human
body. Our technique is designed to be computationally complex for
training, but computationally simple at runtime to allow deploy-
ment on resource-constrained sensor nodes.

Index Terms—Biped locomotion, body sensor networks, hidden
Markov models, intelligent sensors.

1. INTRODUCTION

HE ANALYSIS and monitoring of human movement of-
fers many useful applications in geriatrics, fall risk assess-
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ment, disease monitoring, law enforcement, sports training, and
rehabilitation. Such applications often start with a model de-
scribing human movement for a given population. This model
may be parametrized by variables, such as the severity of the
disease or walking speed. Then a recognition system is created
to match the model and determine useful parameters using data
from a sensor or combination of sensors.

Many movement models divide an action into several parts. In
sports, many swings can be divided into phases. The golf swing
is separated into “takeaway,” “backswing,” “downswing,” and
“follow through” portions [1]. In walking, the human stride
is marked by several events such as “initial stance” (the foot
placed on the ground), “mid-stance,” “initial swing” (the foot
has just been lifted from the ground), and “mid-swing” which
repeat indefinitely [2]. These events are referred to as temporal
parameters. Various papers identify different key events for the
same action depending on the application and model. Some-
times these divisions can be used directly. For instance, high
standard deviation of stride time during walking is indicative
of Parkinson’s disease or Huntington’s disease and can be used
to assess the risk of falling [3], [4]. Many models define these
events based on limb position. However, these events also occur
at specific temporal locations in the movement sequence. Iner-
tial sensors provide movement data directly, therefore, these
events can be found by looking for patterns in the sensor
data.

Systems extracting these parameters have mostly used cam-
eras or marker-based approaches to extract limb positions and
orientations [5]. However, recently a new modality has been
used that employs wireless sensors mounted on a human body.
This configuration is called a body sensor network (BSN). While
a variety of sensors can be used, the most common are ac-
celerometers and gyroscopes because of their small size, low
power usage, and useful motion data [5]. BSNs are always with
a person, and can collect data at any location the subject travels
to. Sensors must be placed directly on the subjects. However,
if the application permits, these sensors can be placed in cell
phones and other artifacts already carried by the subjects. Re-
searchers are experimenting with incorporating these sensors
into clothing, potentially easing the wearability concerns in fu-
ture [6], [7].

Methods have been developed to recognize key events for
specific movements and sensor configurations. However, the
rapid development of sensors, wearable electronics, and the
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corresponding proliferation of new applications motivate the
need for a generic system that can be rapidly retrained for new
applications and sensor configurations without significant re-
search. We envision a scenario where a designer has training
data recorded from one or more subjects using the desired sen-
sors. The desired key events occur in a specific order and are
labeled in the training data. The system should then be able to
train with this data to recognize the key events.

In this paper, we present such a system called the hid-
den Markov event model (HMEM). The HMEM uses a hid-
den Markov model (HMM) with a specific state structure to
find key events. Certain elements of the state structure can
be parametrized and the specific statistical features used to
recognize key events can be selected from a potentially large
list. Genetic algorithms (GAs) are used to select features and
parametrize the model with the objectives of reduced error,
small feature set, and increased generalizability to previously
unknown subjects. The novelty of this work is the development
of a generic technique for event extraction. The specific model is
based on HMMs, but uses a unique structure designed to extract
these events.

II. RELATED WORK

Many models for temporal parameter extraction first estimate
the position of limbs over time, then label key events based on
this data. Our work uses statistical techniques that bypass the
position estimation phase. However, much work in this field
has concentrated on position tracking; therefore, we will look at
some of these techniques in the following paragraphs. There are
three primary types of position tracking systems: marker track-
ing, vision-based recognition, and inertial sensing, respectively.

Marker systems track the position and possibly orientation
of markers placed on the subjects limbs. Ultrasonic, magnetic,
or vision systems may be employed. Ultrasonic systems use
markers that emit ultrasonic pulses in response to an infrared
transmission from the base. The position is determined by mea-
suring the time it takes for the sonic pulse to reach several fixed
sensors in the room. Orientation cannot be determined with ul-
trasonics alone [8]. Other systems use magnetic markers whose
position and orientation can be tracked. These systems are ex-
tremely vulnerable to interference from ferrous materials [5],
[9]. Vision systems use multiple video cameras to track passive
optical markers (reflectors) or active optical markers (flashing
LEDs) [5]. The advantage of marker systems is their ability to
get highly accurate position information for each limb segment.
Unfortunately, markers must be placed on precise positions on
the subject’s body, and the subject is restricted to movement
within a small geographical area. Some of these systems also
require extensive post-processing work to correlate markers over
time.

Another type of system uses cameras to track movements in a
natural setting without requiring the subject to wear specialized
equipment or clothing. Signal processing and pattern recogni-
tion steps must be applied to determine the number of people in
a scene and their postures at any given time. Successive frames
can be combined to analyze motion [10]. Such systems have
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been used to track activities of the elderly, identify people from
their gait, detect suspicious activity, etc. [11]-[13]. The main
advantage of these systems is that they scale well with the num-
ber of people in a room, and do not require the subjects to wear
special clothing or markers. The disadvantages include privacy
concerns, and the inability to follow subjects beyond the range
of the cameras.

Unlike the marker and vision systems, inertial sensors can-
not directly track limb position and orientation. State estimation
techniques can be used to approximate joint position/orientation
if the initial conditions are known, but is subject to significant
drift error. Drift-free estimations have been obtained by assum-
ing specific models of motion for specific actions [14]-[16].
But these models break down if the subject moves in a way that
violates the assumptions.

For the specific application of human gait analysis, there
already exist several techniques to segment the gait using data
from inertial sensors. In [14], the authors derive equations for
determining all four of the gait events using a gyroscope and
accelerometer placed on the foot. The events are determined
using the gyroscope, and the accelerometer is used to find stride
length and inclination of the walking surface. Miyazaki [17]
demonstrates the use of just a gyroscope placed on the thigh
to extract stride time, stride length, and walking speed [17].
Using a gyroscope attached to both shanks and thigh, Aminian
etal. [18] were able to estimate the time of each of the events and
other information such as stride length. They used a simplified
physical model of the shank and thigh during walking to derive
equations and pick features from a wavelet transform.

These systems accurately extract not only the events, but
spatial parameters such as stride length. They are all based on
specific physical models of walking. If a new type of sensor
is employed or the sensor is placed in a new location, a new
model must be derived, and new techniques are required to
extract the parameters. In contrast, our method focuses on ex-
tracting the temporal parameters, also called key events, but can
be used without modification with new sensor types and po-
sitions. Furthermore, the assumptions made for HMEM apply
to movements other than walking, so the same framework can
capture information about a variety of actions.

Another approach is to extract model parameters without di-
rectly calculating angle and position. Researchers at the Royal
Veterinary College in the University of London attached a sensor
to seven horses and used a left-right HMM model to determine
if a horse was galloping or not, and if it was, to separate the
movement into strides [19]. Our approach bears similarity to
this paper, especially with our choice of the left-right HMM for
stride segmentation. However, our model differentiates itself by
being able to identify multiple key events using event states, the
use of collaborative processing, and explicit feature selection
and parameterization using genetic algorithms to reduce error
and choose only relevant features.

Quwaider and Biswas [20] apply HMMs to BSNs. They di-
vide actions, which they refer to as postures, based on the ac-
tivity level measured with accelerometers. With high-activity
postures, such as running, the postures are identified based on
energy level on each limb. For relatively quiet postures, such as
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sitting and standing, they employ an HMM used on radio signal
strength (RSSI) differences between sensor nodes. In contrast,
once the action is known, our model finds key events within the
action using an HMM.

III. SENSING ARCHITECTURE AND EXPERIMENTAL PROCEDURE

Data collection for our experiments revolve around the con-
cept of a BSN composed of multiple sensor nodes. Each sensor
node comprises several sensors, a processing unit, and a radio
as shown in Fig. 1(b). The sensor nodes use the commercially
available Tmote Sky with a custom-designed sensor board and
are powered by two AA batteries. The Tmote Sky uses the
16 bit, 4 MHz TI MSP430 processor. The sensor board includes
two MEMS sensors: a triaxial accelerometer and a biaxial gyro-
scope. The gyroscope uses the coriolis force to measure angular
velocity about the two planar axes, but not the axis normal to
the plane of the sensor board.

We placed eight sensor nodes on our subjects as shown in
Fig. 1(a). The sensor nodes sampled data at 22 Hz and broadcast
all samples to a base station node using the TDMA protocol
and recorded on a PC. The sampling rate was experimentally
chosen to provide sufficient resolution of human motion data
while compensating for bandwidth constraints on our sensor
platform. For the results in this paper, all further processing was
performed in MATLAB, although the next goal of our research
is to train our system in MATLAB and implement it on the
sensor nodes.

A. Experimental Protocol and Data Annotation

We recruited eight subjects ages 18—23 who were directed to
walk around a large conference table with approximately 100
steps each. The data were synchronized with video that was
used by a volunteer to manually identify four key events in each
stride. The two most important events in literature, the toe leave
and heel touch can be easily recognized from the video. The
volunteer used criteria based on knee and leg positions for the
other two events, which may not correspond precisely to the
definitions used by the bio-mechanical community, but which
were consistent for all our data. An example of the walking data
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Fig. 2. Example walking signal with annotations (acceleration X, Y, Z, and
angular velocity 6, ¢). The dashed signal is from the right ankle and solid is
from the right thigh. The annotations are initial swing (x), mid-swing (square),
initial stance (diamond), and mid-stance (triangle).

is shown in Fig. 2. The four events, identified relative to the
right foot, are [2]:

1) Initial swing: the toe of the right foot leaves the ground.

2) Mid-swing: the middle of the swing.

3) Terminal swing/intial stance: the heel touches the ground.

4) Mid-stance: the leg is oriented vertically in stance.

One problem with statistical methods is choosing the com-
plexity of the model. The more complex a model, the better it
describes the given data, but the more likely the model is con-
forming to specific noise and eccentricities present in the train-
ing data. This is called the overfitting problem. Cross-validation
is a classic way to avoid over-fitting [21]. For this method, train-
ing data is divided into two sets, the cross-validation set and
the training set. The sets are mutually exclusive. Several models
of varying complexity are trained using the training data, then
tested on the cross-validation dataset. The model with the lowest
cross-validation error is considered to be the correct model.

For our data, three unique subjects are used for training, three
for cross-validation, and two for testing. Half the data from the
cross-validation and training subjects is reserved for testing.
The testing set is used to report data on the performance of our
system, and so cannot be involved in training at all. All three
sets are mutually exclusive. The use of different subjects in
the training and cross-validation set encourages generalizability
across subjects.

IV. HMEM TRAINING AND USE

The HMEM is the name of our key event labeling system,
which uses an HMM with a specific state structure and a modi-
fied training procedure designed to find key events. The model
also adds a feature selection and model parametrization system
based on GAs. The HMEM makes several assumptions about
the underlying data:

1) there are a number of different event types;

2) the events always occur in a specific order and for cyclical

movements they repeat;

3) every single event type is represented in every action;

4) there are a number of unlabeled samples between two

adjacent events.
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Fig. 3.  HMEM model and structure.

A traditional pattern recognition technique used for time-
varying signals is the HMM. A basic HMM describes a discrete-
time Markov process. At a particular moment the process is in
just one state. At fixed time intervals the process produces an
output and then transitions to another state (or remains in the
current state). The transitions and outputs are probabilistic and
based exclusively on the present state. The process generates
a sequence of outputs, and a corresponding sequence of states.
The states cannot be directly observed, and are thus hidden. An
HMM is completely described by initial state probabilities, state
transition probabilities, and output probabilities. Algorithms
exist to:

1) build an HMM to describe a given set of output sequences;

2) choose which of several models best describe an output

sequence;

3) find the most likely current state of an HMM given the

output sequence up until now;

4) the most likely state sequence associated with a particular

output sequence for a specified HMM [22], [23].

For a general HMM, it is possible for any state to transition to
any other state. This is called an ergodic model. Another variant
is to enforce a specific ordering for the states: each state can only
transition to itself or state to the “right” of it in the ordering.
This is called a left-right model [23].

Each key event can be represented by a unique state. Ideal
events occur at a specific time but have no duration. However,
given the idea that the key event might be associated with unique
features in the observation sequence, the key event state should
have a one sample duration. The HMEM encodes this concept
into an HMM by removing the self-transition from states associ-
ated with key events, forcing a transition after one sample. The
samples between key events are represented by transition states
which support both self-transitions and forward transitions, as
seen in Fig. 3. States are grouped into cohorts that start with
a key event state and end with the last transition state before
the next key event state. For any observation sequence in the
training data, the positions of the key event states are known.
This means that training each cohort independently is identical
to training the whole system at once.

A. Overview

There are several stages required to train the HMEM as shown
in Fig. 4.

1) Preprocessing and Feature Extraction: The signal is
filtered with a five-point moving average to remove high-
frequency noise. Then, it is normalized by subtracting a large-
window mean and dividing by a large-window standard devia-
tion. This window size is 101 samples in our system. Several pa-
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Fig. 4. HMEM training procedure.

rameters representing the action data inside the signal, referred
to as features, are extracted at each sample. These features are
further quantized with a ten-level uniform quantizer based on
the range of the features in the training data. The details for this
are discussed in Section IV-B and I'V-C.

2) HMM Training: The HMM is effectively a finite-state
machine with probabilistic transitions and certain emission
probabilities. These probabilities must be specified as part of
the mathematical model defining an HMM. The exact loca-
tions of all key events states and what observations they emit
are known from the annotations in the training data. However,
the number of transition states and their transition and emis-
sion probabilities are unknown and must be trained. There are
several well-known techniques for training HMMs, including
Baum—Welch and Viterbi path counting (VPC) [22], [24].

The training data are segmented using the canonical annota-
tions. Each cohort is trained independently using a set of seg-
ments that start with a sample that should be labeled with the
cohorts event and end just before the next labeled event. Accord-
ing to our model, the first state must be the cohort’s event state,
and the last sample must be associated with the last transition
state in the cohort. During training, it is important to make sure
that all considered paths meet this constraint. VPC produces a
single path for each event that can be edited to meet the con-
straints if necessary, while Baum—Welch can also be constrained
in this way VPC is much faster, which is important given the
already high training times. This feature is one of the primary
reasons for choosing VPC over Baum—Welch. The details of the
training process are discussed in Section IV-D.

3) Parametrization and Feature Selection: HMMs are
trained to represent a process, not to minimize segmentation
error. It is possible to explicitly attempt to increase classifica-
tion accuracy by choosing model parameters with that goal in
mind. The parameters we tune are selected features and number
of transition states for each cohort. We use a genetic algorithm
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with uniform crossover to train the model. The population fit-
ness is evaluated using the training model, and then at the end,
the model that gives the best results for the cross-validation data
is selected. Further discussion follows in Section IV-E.

B. Feature Extraction

The HMM must have a new observation o € X every sample.
In our system, the observation is actually a multidimensional
vector, called a feature vector f Features are essentially num-
bers summarizing the data in some way. The most basic feature
vector would include the value of each sensor at time of obser-
vation. However, other types of features, such as the derivative,
might better represent important information for recognizing
key events.

The feature vector for a given sample is composed of features
extracted from each sensor, and perhaps features extracted from
the past and the future. The feature extraction functions used
are described shortly. For sensor and node at time ¢, the feature
vector is FZ" = (v;,d;,dd;, p;).

1) Sample value v;: The value of the preprocessed signal at

time 7.

2) Derivative d;: The approximation of the derivative for

time i. d; = (UH—l — Ui_l)/Q

3) Second derivative dd;: dd; = (d;+1 — d;—1)/2

4) Peak detector p;: This is the current sample value divided

by the maximum value in a window centered on the current
value (we use a 15-sample window). For a peak in the
signal, p; = 1. The value is less for nonpeaks
Uj
pi = w/2

max;_ ., /oVi+j

The feature vectors from each sensor and each sensor node
are concatenated to form the feature vector F;’ .

1) Temporally Proximate Features: A variation tried was to
use features from the near past and future of the current sample
to compose a larger feature vector. This is based on the idea that a
key event may actually occur a few samples before or after a dis-
tinguishable characteristic appears in feature space. This leads to
the vector F; = <F¢Lw/2anLw/2+1a L EL .,Fi’+w/2>. We
use a window size of 11 samples. Section VI will show the
increase in accuracy gained from this approach. A feature vec-
tor that includes these future and past values is said to contain
temporally proximate features.

C. Feature Quantization

The observations may be continuous or taken from a finite
alphabet. In either case, the probability density function (PDF)
of the model needs to be estimated for each state. During appli-
cation, the probability must be computed. A common model is
the Gaussian mixture model that uses multiple weighted normal
distributions to represent the probability distribution. However,
such a model would greatly tax the processing resources of a
sensor node during application. For this reason, the features
were quantized and the probability for each of the values es-
timated and stored. Features are quantized by observing the
range of each feature in the training set and uniformly divid-
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ing the range into K levels. All features are quantized like this
before proceeding to the next step. We used K = 10. Uniform
quantization is very simple to compute, which is why it was
chosen. This technique seems naive, but it was effective.

D. HMM Training and the Viterbi Algorithm

A Markov process has N states S = {s1,82,...,5n},
and can emit M observations X = {x1,22,...,2) }. For a
given observation sequence O = (01,02,...,0r) with T ob-
servations, there is a corresponding state sequence Q(r) =
(1,92, --,q9r). The HMM A = {m, A, B} is defined by three
sets of probabilities: initial state probabilities m = {m;|m; =
P(q, = s;)}, state transition probabilities A = {a;;la;; =
P(q = sj|gprev = $i)}, and observation probabilities B =
{b;(K)[bj (k) = P(o = ar|qg = s;)}.

The most common training algorithm is the Baum—Welch al-
gorithm [22]; however, a newer algorithm, the VPC algorithm
is more appropriate for our paper [24]. Both algorithms follow
the training procedure shown in Algorithm 1. They start with a
fixed number of states and an initial set of model parameters,
then extract probabilistically weighted state sequences using
the model parameters. Next, the transition and emission prob-
abilities are updated based on the transitions and observations
associated with each state sequence. The initial model is up-
dated with these new probabilities. This process repeats until
some desired level of convergence is reached. It will implicitly
converge to a local minima.

The difference between the two training approaches lies in the
state sequences considered. The Baum—Welch approach consid-
ers all possible state sequences for each observation sequence,’
while the VPC approach considers only the most likely state
sequence for each observation sequence. The reasoning behind
VPC is that in a classification scenario, the most likely se-
quence, given the current HMM model parameters, is chosen
and all others are discarded, so it is best to train the system
exclusively using the most likely sequence. The other reason
we chose VPC is that various state sequences might not end on
the final state in the event cohort as required. Using VPC, we
can edit the state sequences to enforce the requirement before
re-estimating the probability. We choose initial parameters by
splitting the samples evenly among all states as done in [19].

The key to VPC is extracting the most likely state sequence.

Q(rymax = argmaxq , esr P (Qr), Ory) - M

A dynamic programing algorithm, called the Viterbi algo-
rithm [22], solves this problem. Using the most likely state se-
quence extracted using the Viterbi algorithm, the transition and
emission probabilities are found simply by counting the occur-
rences in all the most likely state sequences for each observation
sequence in the training set. Since we are training one cohort at
a time, each observation sequence is a sequence starting on the
key event and ending right before the next key event.

Because of certain properties of Markovian processes, the probabilities can
be determined without literally examining every state sequence, even though all
are considered.
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Algorithm 1 HMM Training Procedure

— . __ number of times in state s; at time 1

Require: )\, O = {O(lTl),O?TZ), .. ’Oé“y)}
I A Ao
2: for i 1 to K do {estimates from Q}
3: Q «— 0
4. for all Oy € O do
5: Q(r) < collect weighted state sequences using A
6: Q— QUQ(r)
7:  end for
8:
9:

T = g fer of times at time 1
G — number of transitions from state s; to state s,
CV R number of transitions from state s;
10: 7 (k‘) __ number of times in state s; observing symbol zj,
: - number of times in state s;
1: A {7, 4, B}
12: end for

One of the model parameters is the number of states. This
training method requires the number of states to be known, so
each cohort is trained five times with one to five transition states.

Maximizing the probability is equivalent to maximizing the
log probability; therefore, we use log probabilities to prevent
numerical underflow and facilitate faster computing.

1) Algorithmic Complexity: The order of the Viterbi al-
gorithm for a left-right model with independent features is
O(Viterbi) = O(TxN)O(Prest), where O(Pres;) is the or-
der of algorithm required to estimate probability. This or-
der is constant time for the state transition probability, but
based on the number of features for the observation proba-
bility estimation, as explained in the next section. This means
O(Viterbi) = O(TzNz|F|).

2) Estimating Observation Probability: The observation
probability at time ¢ is P(o¢|q: ). There are F features and K
quantized feature levels. There are then F' X K possible observ-
able values. In our data, using F' = 4 features X 5 sensors =
20 and K = 10, we get 200 observable values. This is of the
same order as the size of our training set, making proper prob-
ability estimation difficult. This is called the small sample size
problem [25]. We adopt one of the suggested solutions: we con-
sider each feature to be independent of all other features. This

means
Z log P (o;(

The order of this estimate is linear with respect to the number
of features.

log P(o¢]q:) Dlar) - (2

E. Feature Selection and Model Parametrization Using
Genetic Algorithms

The choice of whether or not to include each feature and
the choice of the number of transition states for the cohorts
are all tunable parameters of the HMEM. The feature selec-
tion U = {4y |ty € {0,1},4=1,...,|F|} represents a choice
of which features out of an exhaustive list are to be included
and which are to be discarded. The number of selected fea-
tures is || = >, 1. Feature k is selected if ¢ = 1 and is
discarded if v = 0. The other parameter is the number of
transitions states for each cohort 2 = {w, |w, € {1,...,5},e =
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Algorithm 2 Select Operator

1: function poyu: = select(F, P)
X « Y ¢ { Compute total fitness}

»

:for]<<—1t0|]-'|do
pj— %

: end for

: i < choose ¢ from 1 to |F| weighted by p;

: return p; taken from P

: end function

® N LA W

1,..., E'}, where E is the number of key events. The full HMEM
model is represented by Auvem = {Aamm, ¥, Q2}.

In essence, parametrization consists of choosing several good
models based on one or more objective functions applied to
the training set. These models are then compared against each
other using the same objective function(s) applied to the cross-
validation set. The best model on the cross-validation set is
chosen. Because the cross-validation set exclusively contains
data from subjects not in the training set, generalizability of the
models to new subjects is improved. Further objective functions
are discussed below. GAs are used to generate the list of “good”
models.

1) GAs: GAs are a class of random optimization problems.
Like other optimization problems, they attempt to minimize an
objective function. GAs do not by nature converge to a solution,
but try to find a population that contains the solution. Given
infinite time, GAs will find the global optimum [26].

Our objective function is 7, as described in Section VI-A.
Each solution must be representable by a chromosome p. For our
system, this chromosome is p = (¥, Q2). The basic idea behind
GAs is that a set of parametrizations is created randomly by
assigning values to the genes. This set is called a population, P.
At each generation, each gene p; in the population is assigned a
fitness (; in the fitness vector F corresponding to population P.
Members of one generation are randomly selected for cloning,
mutation, or crossover (two-parent reproduction) to populate
the next generation. A higher fitness value ensures a greater
chance of reproduction by one of these means. The population
evolves over many generations until some stopping criteria is
reached [27]. The algorithms are shown in Algorithms 2—4.

The best solutions from each generation are saved, and mem-
bers are selected for crossover and mutation using a Roulette
wheel approach in which the probability of selection is directly
related to fitness. Our GA employs uniform crossover [27] as
adjacent features have no relation to each other. In addition,
feature set union and intersect operators were used for mating.

With this simple type of genetic algorithm, the parametrized
HMEM generally performed worse than the original HMEM as
aresult of overfitting. The main culprit seemed to be weakness at
generalizing to all subjects. Furthermore, the population tended
to converge to similar feature selections so that there was not
enough diversity in the final population to guarantee a good
choice when testing against the cross-validation set. The solution
to both problems was the NGSA algorithm, which looks at
multiple optimization objectives and uses sharing to increase
diversity in the population.
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Algorithm 3 Mutation Operator

1: function pey: = mutate(p;,)

20 (T, Q) — pin,

3: cflipy < 0.1 {The chance of a feature being deselected}
4: cflip; < 0.1 {The chance of a feature being selected}
5. {Mutate the feature selection}

6: for all ¢; € ¥ do

7

8

9

if rand(0 — 1) < cflip, then
;<0
else if rand(0 — 1) < cflip, then
10: Qp] — 1
11:  end if
12: end for

13: {Change the number of transitions in at most one cohort}

14: if rand(0 — 1) < 0.5 then {Only a 50% chance of
mutation}

15:  randomly select a cohort w € Q2

16:  w <« number drawn uniformly from {1,...,5}

17: end if

18: return (U, Q)

19: end function

Algorithm 4 Crossover Operator

1: function poyr = crossover(pq, pPp)
2: (‘Ilay Qa) ~ Pa

30 (Up, ) — po

4: {Crossover for the feature selection}

5: s < rand(0 — 1)

6: if s < § then {Select the union operator}

7 Vout — ¥q U W,

8 else if s < Z then {Select the intersect operator}
9: Vout — ¥q Ny

10: else {Uniform crossover operator}

11:  for j — 1to |¥,| do

12: if rand(0 — 1) < 0.5 then
13: ’wout,j - d}a,j

14: else

15: Yout,j — Vb,

16: end if

17:  end for

18: end if

19: {Crossover for number of transitions per cohort}
20: for j « 1 to |2| do
21:  if rand(0 — 1) then

22: Wout,j < Wa,j
23:  else

24: Wout,j < Wh,j
25:  end if

26: end for

27: return (W, Qout)
28: end function

2) Multiobjective GA: Single-objective optimization defines
a point as optimal if there is no other point that performs better
with regard to the objective function. For multiobjective opti-
mization, a point is considered optimal if there is no point at
least as good for all but one objective, and better for at least
one objective. Such a point is called pareto-optimal. Multiple
pareto-optimal points can exist for a problem. This collection of
points forms a hypersurface known as the Pareto front. Multiob-
jective genetic algorithms (MOGA) are one possible approach.
Oliveira et al. [28] suggested using multiple objectives to assign
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Application of the HMEM as described in Section IV-F.

fitness for feature selection, using the NGSA algorithm detailed
in [29]. Essentially, the Pareto front from the population is as-
signed a certain fitness value, then the Pareto front chosen by
ignoring the points in the first Pareto front is assigned a lower
fitness value. This repeats until all points in the population have
been accounted for.

This initial method suffers from the problem that the popula-
tion tends to converge to a few points on the Pareto front as the
number of generations increase. NGSA reduces this problem by
reducing the probability of similar solutions being chosen [29].

The objectives are minimization of total error, maximum per-
subject error, and maximum per-annotation-type error. With the
more diverse population of solutions, the GA-based feature se-
lection and model parametrization outperformed the default “no
feature selection.” The final parametrization was chosen by se-
lecting the individual with the highest performance for the “total
error” objective on the cross-validation data. Membership in the
Pareto front was determined using Yi Cao’s Pareto front MAT-
LAB script citeyicao.

3) GA Parameters: The population was initialized with 40
individuals with randomly created chromosomes. Each genera-
tion, the best 20 individuals were carried over to the new gen-
eration, up to 20 additional individuals were selected using the
Roulette wheel approach (any that were the same as existing
members of the population were discarded). There were 15 mu-
tated, and 25 pairs chosen for crossover. The whole process was
carried out for 40 generations. Relative to existing literature,
we have a much smaller population and fewer generations. The
objective function involved evaluating the actual error of the
HMEM for all our training data. This took approximately 1 s
per individual on a 2.4 GHz Intel Core 2 Duo iMac with 2 GB
of RAM running MATLAB; therefore, running the genetic al-
gorithm for a single sensor node took approximately 20 min.
An increase in the population or generations would have made
it take a prohibitively long amount of time to evaluate different
scenarios.

F. HMEM Application Procedure

After the HMEM is trained, it can be used to find key events
in a data stream for the movement it has been trained on. The
data flow for the algorithm is shown in Fig. 5. First, the data are
filtered using the procedure described earlier, then features are
extracted and quantized. Next, the feature selection is applied,
and finally the most likely state sequence is extracted using the
Viterbi algorithm. The annotation converter finds all the event
states in this sequence and outputs an ordered set where each
element consists of a time and event label.
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V. COLLABORATIVE SEGMENTATION

One of the main properties of a BSN is the capability of dis-
tributed sensing and collaboration. The design of the HMEM so
far has been based on individual sensor nodes labeling the key
events. An interesting question is “how much do the segmenta-
tion results improve by allowing collaboration between nodes?”
A simple form of collaboration splits the nodes into a coordi-
nator node and several operator nodes. It requires each operator
node to extract the key events independently, then transmit the
annotations to the coordinator node for final event labeling. This
scheme has a relatively lowcommunication overhead, and the
star-topography also introduces less delay than a more general
directed acyclic graph (DAG) collaboration scheme might.

HMEM already provides a framework for extracting key
events that can be extended for use in collaborative segmen-
tation. All the operator nodes independently label the events
using an HMEM that can observe the features extracted from
their sensors. The coordinator node has an HMEM that not only
observes the data from its own sensors, but also the labels as-
signed by the operator nodes. Since the HMEM requires an
observation for each sample, samples unlabeled by a specific
operator node receive a label of “0.”

VI. RESULTS

We performed the experiments as described in Section III-A.
The results are reported with precision (P), recall (R), quality
[root mean square error (RMSE)]. The first and last annotations
were ignored because the algorithm needs context to determine
annotations, and we are interested in the steady-state perfor-
mance only. For each comparison, the results from the default
parametrization (greedy choice of transition states, all features),
and the GA feature/parameter selection are shown. We show er-
ror for each mote using just the accelerometer readings, look at
per-subject error for a poor performing sensor node and a well-
performing sensor node. Also, various combinations of sensors
are explored.

A. Error Measures

The quality of the results can be evaluated against two pri-
mary criteria: 1) how accurately can the events be labeled?; and
2) how close in time are the accurate event labels to the actual
event? Precision (P) and recall (R) can assess accuracy of la-
beling. Precision is the percentage of labeled events which are
actual events, and recall is the percent of actual events which
are labeled. The second criterion can be addressed with the
RMSE of difference in time between the estimated time of cor-
rectly identified key events and the actual time those events
occurred. Equations (3), (4), and (10) give precise mathematical
definitions for these concepts based on true positives (tp), false
positives (fp), and false negatives (fn). The functions used to
define RMSE are explained in the following paragraphs:

p
P= 3
tp+ fp 3)

p
= . 4
i tp+ fn @)
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It is necessary to describe a method for determining whether
an annotation is a true positive, false negative, or false posi-
tive. This method should find a mapping from the canonical
to the generated annotations. Any mapped annotation is a true
positive, and the unmapped ones are either false negative or
false positive depending on whether they are in the generated
or canonical annotation set. More formally, there is a set of
canonical annotations C, and a set of generated annotations G,
and an injective function ¢ = f(g) that maps generated annota-
tions to corresponding canonical annotations. dom( f) C C and
ran(f) C G, and there is also a function t(e), e € (G U C) that
determines the time the given event occurred. To define f, we
first define a helper function, h(e, E'), which finds the closest
event to the annotation e in the annotation set E.

he, E) = min,, e [t(e) — t(e)) )
h’(ga C)v lfg = ( ( C) s ) and
flg) = W <|t(g) —t(h(g,C)) (6)
undefined, otherwise.

In other words, f(g) produces a mapping between a pair of
annotations c¢ and g if the closest generated annotation to ¢ in G
is g and the closest canonical annotation to g in C'is ¢ and the
temporal interval between them is less than V.

tp = [[ran(f)| O
fp =G0 (ran(f))| ®)
fn=[1Cn (dom(f))- ©)

Now that the measure for accuracy has been thoroughly ad-
dressed, a measure for quality must be presented. We use the

popular RMSE.
RMSE = \/dedom(f) [t(g) - t(f(g))]Q '
tp

Finally, an error measure is needed for training. The error
measure should be unified (one measure that includes qual-
ity and accuracy), and should penalize a model more for
false positives and false negatives than for a small deviation
from the actual position. The following measure satisfies these
requirements.

docecltlc) —

(10)

t(h(c, G))I* + X [t(g) —

t(h(g, )P
2min(|[CT, [G) '

(1)

n=

B. Event Annotation Using Only Accelerometer Readings

Accelerometers are commonly available in many devices in-
cluding laptops, cell phones, and PDAs. This means that if our
algorithm can extract the key events using accelerometer data ex-
clusively from positions these devices are worn, the device could
be used to compute gait parameters. Because of this, many of
our experimental results consider only the accelerometer read-
ings, and discard the gyroscopic data. Since people commonly
wear cell phones on their thigh, this data shows the potential for
using cell phones to segment gait in the background. In Table I,
features from the present sample as well as features up to five
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TABLE I
RESULTS USING ONLY ACCELEROMETER WITH TP FEATURES

Default (132 Features) | Genetic Algorithm
Node P R RMSE P R RMSE Fsel
Waist 99.7 99.7 2.33 100 100 2.21 26
R Arm 96.9 975 433 | 96.0 93.8 3.78 16
R Forearm 90.3 935 361 | 96.5 944 341 10
L Arm 97.2 999 325 | 983 985 3.01 23
L Forearm 99.6 98.6 257 | 99.6 98.8 2.40 11
R Thigh 100 100 1.97 100 100 1.92 38
R Leg 99.9 999 1.52 | 999 99.9 1.50 107
L Thigh 100 100 1.81 100 100 1.73 22
L Leg 100 100 2.00 100  99.6 1.85 15
TABLE II
USING ONLY ACCELEROMETER WITHOUT TP FEATURES
Default (132 Features) | Genetic Algorithm
Node P R RMSE P R RMSE Fsel
Waist 99.8 99.8 229 | 999 995 2.36 5
R Arm 96.3 96.9 423 | 97.8 96.8 2.93 5
R Forearm 91.1 94.4 3.65 | 952 928 3.74 4
L Arm 99.0 99.8 348 | 98.9 96.3 2.92 6
L Forearm 979 99.5 3.15 | 99.5 98.3 2.64 9
R Thigh 99.0 99.9 2251 999 995 2.06 2
R Leg 99.9 999 1.77 100  99.6 1.49 4
L Thigh 100 100 1.97 100 100 1.95 9
L Leg 99.5 99.9 2.43 100  99.6 1.98 2

samples in the future and five samples in the past are used.
These are called temporally proximate (TP) features. The re-
sults show the best performance on the legs and thighs, with
decent performance on the waist. When looking at diseases that
can influence inter-leg coordination, each sensor node should
be trained to look for temporal parameters related to the limb
on which it relies. In this case, all sensor nodes are trying to
extract parameters from the right leg. Another interesting thing
is that the arms even do a reasonable job, indicating relatively
strong coordination between the arms and the legs. Finally, it is
clear that using genetic algorithms improves performance and
reduces the number of features. In most cases, the performance
increase is modest, but the number of features is drastically
reduced, which can lead to a significant performance increase.

Table II shows the results from the same sensors without
the use of temporally proximate features. The performance is
noticeably degraded from the “TP” case, but the advantage is
that no feature buffer is needed, thus decreasing the time it takes
to produce an answer. Once again the GA produces lower error
for most cases with fewer features.

C. Examination of Per-Subject Error

One of the goals of the HMEM system is good generalization
to new subjects. Table III shows per-subject error for the sensor
on the right thigh. Initially subjects 2—4 were in training, 5-7
in cross-validation, and 8-9 in test. However, subjects 5 and 7
have walking patterns that differ significantly from the others,
but are similar to each other. Therefore, subjects 4 and 5 were
exchanged. It is likely that with a larger dataset the system could
generalize better to such subjects. All the results are shown from
the portion of the subjects’ data that was in the test dataset.

The sensor on the right thigh, as shown in Table III, performs
well. Subjects 8 and 9 perform a little worse than subjects in
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TABLE III
SUBJECT ERROR FOR R THIGH WITH ACCEL AND TP
Default (132 Features) | GA (38 Features)
Subject P R RMSE P R RMSE
Sub 2 Train 100 100 144 | 100 100 1.62
Sub 3 Train 100 100 1.33 | 100 100 1.11
Sub 4 Cross 100 100 1.36 | 100 100 1.38
Sub 5 Train 100 100 354 | 100 100 343
Sub 6 Cross 100 100 1.03 | 100 100 1.02
Sub 7 Cross 100 100 325 | 100 100 3.09
Sub 8 Test 100 100 1.74 | 100 100 1.76
Sub 9 Test 100 100 1.55 | 100 100 1.66
TABLE IV
CROSS-VALIDATED SUBJECT ERROR (R THIGH)
Subject P R RMSE Fsel
Sub 2 100 100 1.47 6.7
Sub 3 100 100 1.38 8.7
Sub 4 100 100 1.68 4.7
Sub 5 99.8  99.8 3.55 4.7
Sub 6 100 100 1.20 6.7
Sub 7 100 100 3.09 28.7
Sub 8 100 100 1.52  10.7
Sub 9 100 100 .59 16.0
TABLE V
SENSOR TYPES WITH TP FEATURES ON RIGHT THIGH
Default Genetic Algorithm
Set P R RMSE P R RMSE Fsel
Accel (132) 100 100 1.97 100 100 1.92 38
Gyro (83) 100 100 2.14 100 100 2.14 9
All (220) 100 100 1.84 100 100 1.84 33
Acc Mag (44) 994 99.8 202 | 999 100 1.97 5

the training and cross-validation sets. The worst per-subject
error comes from subjects 5 and 7. The reason for this is not
entirely clear. The use of the GA does not significantly reduce
the discrepancy in per subject error. Since the final selection
criteria for the solution is minimum total error, not minimum
worst-case subject error, this is not surprising.

Manual partitioning of the data into training, cross-validation,
and testing sets can artificially bias the results. Therefore, we
performed an experiment for each subject where the subject
was placed exclusively in the testing set, and the training and
cross-validation sets were selected randomly from the remaining
subjects. The results shown in Table IV are the average of three
tests after the GA. These results demonstrate that the model has
good generalization to many subjects, but performs poorly on
some. It would be interesting as a future work to investigate the
features of those subjects that cause the model to perform poorly.

D. Exploration of Different Sensor Types

Another goal for HMEM is the ability to use new sensors and
combination of sensors without having to develop new methods
to extract the key events. To simulate this, we examine the
HMEM trained with different subsets of sensors, as shown in
Table V. The sensor types considered were:

1) accelerometer only;

2) gyroscope only

3) all sensors; and

4) just the magnitude from the accelerometer.
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Fig. 6.  Number of features versus error for the right thigh.

The accelerometer performs better than the gyroscope and a
combination of all the sensors has the best performance. How-
ever, the most interesting test is using just the magnitude of the
accelerometer. The magnitude of the accelerometer would be
invariant for any rotation of the sensor. This could be especially
important if the sensor is a cellphone in the subject’s pocket.
Even though exclusive reliance on the magnitude of accelera-
tion gives the worse results, the performance is still reasonable.

E. Explicit Feature Reduction

Feature selection can be used to explicitly reduce the number
of features. The algorithmic time for the HMEM event annota-
tion algorithm increases linearly with the number of features; so,
feature reduction can improve performance considerably. The
NSGA framework can be used as described earlier with the ob-
jectives of global error minimization and feature minimization.

The two objectives imply a two-dimensional Pareto front.
We take the population at the final generation and select the
Pareto front when the population error is judged using the cross-
validation set. The same trained models are then judged against
the test set. The results from both the test and cross-validation
sets are shown in Figs. 6 and 7. The error is reported using
the training error 7), which is approximately equal to the square
of the RMSE. Fig. 6 shows the results where each generation
saves just the Pareto front for the training data. The GA used to
generate Fig. 7 saved several successive fronts so that at least
20 of the best were saved each generation, resulting in lower
error. Further, using just the two features found in Fig. 7 results

in performance almost as good as with no feature reduction.
The starting number of features was 132; so, this results in a
performance increase of approximately 66 times.

Moreover, while the performance on the cross-validation set
and the test set are different, both have an “elbow” at the same
place, where the error increases drastically with an increased
number of features. This suggests that an effective way of pick-
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TABLE VI
RESULTS FROM COLLABORATIVE EVENT LABELING
Default (220 Features) | Genetic Algorithm
Coordinator P R RMSE P R RMSE Fsel
Waist 100 100 1.70 100 100 1.46 74
R Arm 99.1 100 1.61 100 100 1.40 61
R Forearm 98.7 100 1.55 100 100 1.36 124
L Arm 99.7 100 1.65 100 100 1.33 46
L Forearm 99.4 100 1.66 100 100 1.38 26
R Thigh 100 100 1.59 | 99.8 100 1.34 27
R Leg 100 100 1.33 100 100 1.30 116
L Thigh 100 100 1.55 100 100 1.34 61
L Leg 100 100 1.64 100 100 1.38 17

ing the best HMEM is to pick the HMEM right before the
cross-validation error starts increasing significantly.

F. Collaborative Event Extraction

The collaborative scheme outlined in Section V requires one
node to be chosen as the coordinator, and the rest become op-
erator nodes. We ran an experiment for each possible choice
of the coordinator nodes and show the results. The data fed
into each node come from using just the accelerometer and TP
features without GA parametrization. Results are shown in Ta-
ble VI for a coordinator using default parametrization as well
GA parametrization to select features.

These results exhibit several interesting properties. The re-
sults for any mote as coordinator are not guaranteed to be as
good as just picking the results from the best operator node.
However, the quality of the results obtained by using a given
node as the coordinator are always better than using the results
from that node individually. Furthermore, the ranking of each
of each of the nodes as coordinator is the same as the indepen-
dent ranking. This suggests that a good strategy for picking the
coordinator node is to pick the best individual node and make it
the coordinator.

When using GA parametrization, these patterns no longer
hold true. There is no longer a predictable correlation between
individual rank and coordinator rank. In all but one case, the re-
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sults of collaboration are better than the best performance of any
individual node. The best performance from a GA parametrized
node is not significantly better than the best performance from
a default parametrization, but the average performance is much
better.

Using a collaborative scheme poses communication overhead
with associated higher power costs. The improvements even for
the best individual node are large, however, not all problems
may require that high precision. It also is reasonable to assume
that a sensor node mounted on the right shin or right thigh is
picking up cues from the sensors directly related to right leg
movement. However, a sensor mounted on the left leg or left
arm is likely picking up cues related to limb coordination in
the training population. If a system’s goal is to label events
accurately even if the subject has unusual limb coordination,
such as in a disease scenario, then relying on specific types of
coordination could introduce fairly error compared with just
using results from a sensor mounted on the right leg.

VII. CONCLUSION AND FUTURE WORK

The HMEM was designed to label key temporal events within
an action. It is meant to be trainable on a wide variety of sen-
sor types and a wide variety of actions, and to generalize well
to new subjects not encountered during training. We proposed
using algorithms and node collaboration to further improve the
accuracy of the system. The results demonstrate that this model
effectively meets the design goals. One surprise was that the
GA, improved accuracy, but not dramatically. Instead, the GA
appears to be effective when applied to feature reduction goals.

Another factor in the design was algorithmic simplicity so
that the HMEM could be reasonably implemented on a sensor
node. Our research efforts are currently focused on porting a
version of HMEM to the TelosB platform.

The initial goal of our research was to see how effective an
HMM-based solution would be at event labeling. Specifically,
given the knowledge that the subject is walking, the HMEM
can do stride labeling. The next important step is determining
whether or not the subject is walking. HMMs have long been
used in this way for continuous speech recognition, and we
believe, we can adapt some of their approaches to the problem
of human movement monitoring. It is also important that we
determine what scenarios would cause a trained HMEM to be
ineffective. For example, would an HMEM trained on a set of
young people be able to accurately extract walking events on
older subjects?

We believe that HMEM provides an important set of features
for human movement monitoring. Its simplicity and generaliz-
ability to new sensors and new subjects make it attractive for
many problems, and with some improvements it can be used for
event recognition as well as event labeling.
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