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ABSTRACT
Camera networks are widely used for tasks such as surveil-
lance, monitoring and tracking. In order to accomplish
these tasks, knowledge of localization information such
as camera locations and other geometric constraints about
the environment (e.g. walls, rooms, and building lay-
out) are typically considered to be essential. However,
this information is not required for tasks such as es-
timating the topology of camera network coverage, or
coordinate-free object tracking and navigation. In this
paper, we propose a simplicial representation (called
CN -Complex) that can be constructed from discrete lo-
cal observations, and utilize this novel representation to
recover topological information of the network coverage.
We prove that our representation captures the correct
topological information for coverage in 2.5D layouts,
and demonstrate its utility in simulations as well as an
experimental setup. Our proposed approach is partic-
ularly useful in the context of ad-hoc camera networks
in indoor/outdoor urban environments with distributed
but limited computational power and energy.
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1. INTRODUCTION
Future generations of sensor networks are invariably

going to include multiple types of sensors - including
spatial sampling sensors such as cameras or active range
scanners. Sensors like cameras will be the dominant
consumers of bandwidth and power in such heteroge-
neous sensor networks. Thus, a clear understanding of
the constraints (such as bandwidth consumption, power
consumption, spatio-temporal sampling) posed by cam-
era sensors in the context of computation and communi-
cation will play a critical role in defining the bounds for
feasibility of performing certain tasks in a heterogeneous
sensor network. In other words, such an understanding
in the context of cameras could tell us whether our de-
sign of the heterogeneous network will be able to per-
form the designated task or not - and what conditions
are necessary in order to perform such tasks.

Identification of the exact location of targets and ob-
jects in an environment is essential for many surveillance
applications in the realm of sensor networks. However,
there are situations in which the localization of the sen-
sors is not known (e.g. unavailability of GPS, or ad-hoc
network setup). A common approach to overcoming this
challenge has been to determine the exact localization
of the sensors and reconstruction of the surrounding en-
vironment. Nevertheless, we will provide evidence sup-
porting the hypothesis that many of the tasks at hand
may not require exact localization information.

Let us describe two potential scenarios in which some
basic geometric information can aid in tracking and nav-
igation for a large non-localized camera network:

1. Consider tracking of a target through an urban en-
vironment. In this scenario, it may be of interest
to classify the path followed by the target. For
example, it would be desirable for the network to
specify whether the target went around a specific



landmark instead of returning a list of cameras in
which the target was visible. In this work, we pro-
pose to identify paths that are homotopic to each
other (i.e. that can be deformed continuously from
one to another). This allows distinguishing be-
tween paths that go around a building clockwise or
counter-clockwise without worrying about specific
cameras visited. Note that this cannot be done by
knowledge of pairwise connectivity between cam-
eras (as in the case of so called connectivity/vision
graphs).

2. A second scenario where topological information is
useful is navigation through an urban environment.
This task can be accomplished by making use of
local target tracking and a set of directions such
as where to turn right, and when to keep going
straight. In this case, a general description of our
surroundings and the target location is sufficient
to guide us around obstacles.

One of the fundamental questions in the context of
camera networks is whether a network is limited to per-
form only tasks that a single camera can perform but at
a larger scale, or if the total network is “greater” than
the sum of the parts. Imagine a camera network where
no inter-relationship between the cameras is known. It
is natural to ask what the spatial relationship between
cameras is. For surveillance application in which multi-
ple views are certainly useful, we investigate how object
tracking information from multiple cameras can be ag-
gregated and analyzed. A related and important ques-
tion here is as to how we manage the processing and
flow of data between the cameras. We note that all of
these questions can be approached using knowledge of
the topology of the coverage of the network. In particu-
lar, topology awareness makes it possible to design more
efficient routing and broadcasting schemes as it is dis-
cussed by M. Li et al [10]. This knowledge in turn can
also aid the control mechanism for more energy-efficient
usage.

Figure 1: Physical layout (left) and simplicial
representation (right) of an environment. In
both cases we observe the paths of a target.

Figure 1 serves as a didactic tool to understand the in-

formation required for our approach to coordinate free
tracking and navigation problems. Observe that the
complete floor plan (left) and corresponding simplicial
representation (right) serve an equivalent purpose. The
simplicial representation allows us to track a target and
navigate through the environment. Our goal in this con-
text is to use the continuous observations from camera
nodes to extract the necessary symbols to create this
representation.

In this paper, we consider a camera network where
each camera node can perform local computations, and
extract symbolic/discrete observations to be transmit-
ted for further processing. This conversion to symbolic
representation alleviates the communication overhead
for a wireless network. This is a significant benefit as
self-localization algorithms can be computationally ex-
pensive and require the exchange of large volumes of
data. We then use these discrete observations to build a
model of the environment without any prior localization
information of objects or the cameras themselves. Once
such non-metric reconstruction of the camera network is
accomplished, this representation can be used for tasks
such as coordinate-free navigation, target-tracking, and
path identification.

The rest of the discussion is as follows: Section 2 gives
a brief discussion about different approaches to captur-
ing topological information in sensor networks and the
related work in this domain; sections 3 and 4 contain
our main theoretical contributions defining the prob-
lems and the assumptions made for topological recovery
of the camera network coverage; simulations and actual
experiment are discussed in sections 5 and 6. The con-
tributions of this paper include the introduction of for-
malized topology recovery problems by making explicit
assumption about the environment model, and the uti-
lization of topological information for tracking and nav-
igation.

2. RELATED WORK
Finding the topology of a domain embedded in R

2 is
closely related to detecting holes. There has been much
work on the detection and recovery of holes by topolog-
ical methods for sensor networks, most of which consid-
ers symmetric coverage (explicitly or implicitly) or high
enough density of sensors in the field. In particular, Vin
de Silva and Ghrist [5] obtain the Rips complex based on
the communication graph of the network and compute
homologies using this representation. These methods
assume some symmetry in the coverage of each sensor
node (such as circular coverage), however, such assump-
tions are not valid for camera networks. Spatial sam-
pling of plenoptic function [2] from a network of cameras
is rarely independent and identically distributed. The
notion of spatial coherence encountered in the context



of camera networks is not handled in traditional sensor
network literature.

Connectivity between overlapping camera views by
determining the correspondence models between cam-
eras and extracting homography models has been ap-
proached by Stauffer and Tieu [18]. Cheng et al [4]
build a vision graph in a distributed manner by ex-
changing feature descriptors from each camera view.
In their work, each camera encodes a spatially well-
distributed set of distinctive, approximately viewpoint-
invariant feature points into a fixed-length “feature di-
gest” that is broadcast throughout the network to estab-
lish correspondence between cameras. Yeo et al [19] uti-
lize a random projection based framework to exchange
compact feature descriptors in a rate-efficient manner to
establish correspondence between various camera views.

Marinakis et al [12] work on finding connectivity be-
tween non-overlapping coverage of cameras by using only
reports of detection and no description of the target.
They use a Markov model for modeling the transition
probabilities and minimize a functional using Markov
Chain Monte Carlo Sampling. They also present a dif-
ferent formulation of the same problem with“timestamp
free” observation with only ordering available (still no
target description) [13]. Other approaches to solving
the same problem with target identification have been
explored by Zou et al [20]. Camera network with over-
laps have been studied using the statistical consistency
of the observation data by Makris et al[11]. Rahimi et al
[17] describe a simultaneous calibration and tracking al-
gorithm (with a networks of non-overlapping sensors) by
using velocity extrapolation for a single target. Funiak
et al [7] introduce a distributed algorithm for simultane-
ous localization and tracking with a set of overlapping
cameras.

3. THE ENVIRONMENT MODEL
In this section the assumptions made for our problem

are made explicit. Even though they may seem very
restrictive, they are introduced in order to simplify the
problem and facilitate the analysis.

3.1 The Problem in 2.5D
Our problem will be defined in terms of the detection

of a target moving through an environment. For the
sake of mathematical clarity, we first focus on the case
of a single target moving through the environment. Let
us start by describing our setup:

The Environment in 2.5D : We consider a domain
in 3D with the following constraints:

• All objects and cameras in the environment will be
within the space defined by the planes z = 0 (the
“floor”) and z = hmax (the “ceiling”).

• Objects in the environment consists of static“walls”
erected perpendicular to our plane from z = 0 to
z = hmax. The perpendicular projection of the
objects to the plane z = 0 must have a piecewise
linear boundary. Objects must enclose a non-zero
volume.

Cameras in 2.5D : A camera α has the following
properties:

• It is located at position o3D
α with an arbitrary 3D

orientation and a local coordinate frame Ψ3D
α .

• Its camera projection in 3D , Π3D
α : Fα → R

2,
is given by

Π3D
α (p) = (px/pz, py/pz),

where p is given in coordinate frame Ψ3D
α , and

Fα ⊂ ({(x, y, z) | z > 0}), referred to as the field
of view (FOV) of the camera, is an open convex
set such that its closure is a convex cone based at
o3D

α . The image of this mapping, i.e. Π3D
α (Fα),

will be called the image domain Ω3D
α .

The Target in 2.5D : A target will have the following
properties:

• The target will be a line segment perpendicular to
the bounding planes of our domain which connects
the points (x, y, 0) to (x, y, ht), where x and y are
arbitrary and ht ≤ hmax is the height of the target.
The target is free to move along the domain as long
as it does not intersect any of the objects in the
environment.

• A target is said to be detected by camera α if
there exists a point p := (x, y, z) in the target
such that p ∈ Fα and o3D

α p does not interscect
any of the objects in the environment.

Note that these assumptions may seem very restric-
tive, but they are satisfied by most camera networks in
indoor and outdoor environments. Also, some of these
choices in our model (such as the vertical line target
and polygonal objects) are made in order to simplify
our analysis. We will see that our methods work in
real-life scenarios through our experiments.

The example in figure 2 shows a target and a camera
with its corresponding FOV.

Problem 1. (2.5D Case): Given the camera and
environment models in 2.5D , our goal is to obtain a
representation that captures the topological structure of
the detectable set for a camera network (i.e., the
union of the sets in which a target is detectable by a
camera). The construction of this representation should
not rely on camera or object localization.



Figure 2: Mapping from 2.5D to 2D : A cam-
era and its FOV are shown from multiple per-
spectives (left and middle), and its correspond-
ing mapping to 2D (right). In 2.5D , the planes
displayed bound the space that can be occupied
by the target.

The formulation of the problem is very generic. We
are choosing a simplicial representation because we are
after a combinatorial representation that does not con-
tain metric information. We are also after a distributed
solution, i.e. processing information at local nodes.

3.2 Mapping from 2.5D to 2D
The structure of the detectable set for a camera net-

work becomes clear through an identification of our 2.5D
problem to a 2D problem. Since the target is con-
strained to move along the floor plane, it is possible
to map our problem to a 2D problem. In particular:

• Cameras located at locations (x, y, z) are mapped
to location (x, y) in the plane.

• Objects in our 2.5D domain are mapped to objects
with piecewise linear boundaries in the plane.

• We can also do a simple identification between the
FOV of a camera to a domain Dα of a camera in
2D . A point (x, y) in the plane is in Dα if the tar-
get located at that point intersects the FOV Fα.
The set Dα is the orthogonal projection (onto the
xy-plane) of the intersection between Fα, and the
space between z ≥ 0 and z ≤ htarget. Since the lat-
ter is an intersection of convex sets, and orthogonal
projections preserve convexity, then Dα is convex.
We can also check that Dα will be open.

• Also, we can give a 2D description of the coverage
of a camera. A point (x, y) is in the coverage Cα of
camera α if the target located at (x, y) is detectable
by the camera.

3.3 The Problem in 2D
We now proceed by characterizing our problem after

mapping the original configuration from a 2.5D space to
2D . The following definitions are presented to formalize
our discussion.

The Environment: The space under consideration
is similar to the one depicted in figure 1 (left), where

cameras are located in the plane, and only sets with
piecewise-linear boundaries are allowed (including ob-
ject and paths). We assume a finite number of objects
in our environment.

Cameras: A camera object α is specified by: its po-
sition oα in the plane; and an open convex domain Dα,
referred to as the camera domain.

The camera domain Dα can be interpreted as the set
of points visible from camera α when no objects oc-
cluding the field of view are present. The convexity of
this set will be essential for some of the proofs. Some
examples of camera domains are shown in figure 4.

Definition 1. The subset of the plane occupied by
the i-th object, which is denoted by Oi, is a con-
nected closed subset of the plane with non-empty interior
and piecewise linear boundary. The collection {Oi}No

i=1,
where No < ∞ is the number of objects in the environ-
ment, will be referred to as the objects in the environ-
ment.

Definition 2. Given a camera α, a point p ∈ R
2

is said to be visible from camera α if p ∈ Dα and
oα p∩

(⋃No

i=1 Oi

)
= ∅, where oα p is the line between the

camera location oα and p. The set of visible points is
called the coverage Cα of camera α.

We consider the following problem:

Problem 2. (2D Case): Given the camera and en-
vironment models in 2D , our goal is to obtain a simpli-
cial representation that captures the topological structure
of the coverage of the camera network (i.e., the
union of the coverage of the cameras). The construc-
tion of this representation should not rely on camera or
object localization.

Observation 1. Note that the camera network cov-
erage has the same homology (i.e. topological informa-
tion) as the domain (R2 − ⋃

Oi) if these two sets are
homotopic (i.e., we can continuously deform one into
the other).

4. THE CN-COMPLEX
Our goal is the construction of a simplicial complex

that will capture the homology of the union of cam-
era coverages

⋃ Cα. One possible approach for accom-
plishing this task is to obtain the nerve complex (see
appendix A) using the set of camera coverage {Cα}.
However, this approach will only work for simple con-
figurations without objects in the domain. An example
illustrating our claim is shown in figure 3.

The reason figure 3 (right) does not capture the topo-
logical structure of the union of camera coverage is be-
cause the hypothesis of the Čech Theorem (see appendix



Figure 3: Nerve complexes obtained from the
collection {Cα}. One complex captures the cor-
rect topological information (left) but the other
does not (right).

A) is not satisfied (in particular, C1 ∩ C2 is not con-
tractible). From the physical layout of the cameras and
the objects in the environment, it is clear how we can di-
vide C1 in order to obtain contractible intersections. We
are after a decomposition of the coverage that can be
achieved without knowing the exact location of objects
in the environment.

4.1 The Decomposition Theorem
Before we precede let us consider the following useful

definitions:

Definition 3. Given the objects {Oi}No

i=1, a piece-
wise linear path Γ : [0, 1] → R

2 is said to be feasible if
Γ([0, 1]) ∩ (

⋃Oi) = ∅.
Definition 4. Given camera α with camera domain

Dα and corresponding boundary ∂Dα, a line Lα is a
bisecting line for the camera if:

• Lα goes through the camera location oα.

• There exists a feasible path Γ : [0, 1] → R
2 such

that for any ε > 0 there exists a δ such that 0 < δ <
ε, Γ(0.5 − δ) ∈ Cn, Γ(0.5 + δ) /∈ Cα, Γ(0.5) ∈ Lα,
and Γ(0.5) /∈ ∂Dα.

If we imagine a target traveling through the path Γ,
we note that the last condition in the definition of a
bisecting line identifies when an occlusion event is de-
tected (i.e., the target transitions from visible to not
visible, or vice versa). However, we will ignore the oc-
clusion events due to the target leaving through the
boundary of the camera domain Dα.

Definition 5. Let {Lα,i}NL

i=1 be a finite collection of
bisecting lines for camera α. Consider the set of ad-
jacent cones in the plane {Kα,j}NC

j=1 bounded by these
lines, where NC = 2 · NL, then the decomposition of
Cα by lines {Lα,i} is the collection of sets

Cα,j := Kα,j ∩ Cα.

Note that the decomposition of Cα is not a partition
since the sets Cα,j are not necessarily disjoint.

Figure 4: Three examples of camera domains
Dα. Cameras can be inside or outside their do-
mains. Our camera model spans projection mod-
els from perspective cameras to omni-directional
cameras. Decompositions are shown for each set.

The construction of the camera network complex
(CN -complex) is based on the identification of bisecting
lines for the coverage of each individual camera. This
construct will capture the correct topological structure
of the union of coverage of the network.

Figure 5 displays examples of CN -complexes obtained
after decomposing the coverage of each camera using
their corresponding bisecting lines. The CN -complex
captures the correct topological information, given that
we satisfy the assumptions made for the model described
in section 3. The following theorem (see appendix B for
proof), states this fact.

Figure 5: Examples of CN-complexes. In both
cases, camera 1 is decomposed into three regions,
each of which becomes a vertex in the complex.

Theorem 1. (Decomposition Theorem)
Let {Cα}N

α=1 be a collection of camera coverage where
each Cα is connected and N is the number of cameras
in the domain. Let {Cα,k}(α,k)∈AD

be the collection of
decomposed sets by all possible bisecting lines, where AD

is the set of indices in the decomposition. Then, any
finite intersection

⋂
(α′,k′)∈A Cα′,k′ , where A is a finite

set of indices, is contractible.

Hence, the hypothesis of the Čech Theorem is satisfied
if we have connected coverage which are decomposed by
all of their bisecting lines. This implies that computing



the homology of the CN -complex returns the appropri-
ate topological information about the network coverage
as a whole.

Observation 2. Note that there are many ways to
decompose a set in order to obtain subsets with con-
tractible intersections. However, by using the bisecting
lines, we ensure that the decomposition can be done lo-
cally (at each camera node) without knowledge of the
physical structure of the environment.

We note that the steps required to build the CN -
complex are two-fold:

• Identify all bisecting lines and decompose each cam-
era coverage.

• Determine which of the resulting sets intersect.

The first step makes sure that any intersection will be
contractible. The second step allows us to find the sim-
plices for our representation. These two steps can be
completed in different ways which depend on the sce-
nario under consideration. In sections 5 and 6, we il-
lustrate the construction of the CN -complex for a very
specific scenario.

4.2 From 2D to 2.5D
We can build the CN -complex by decomposing each

camera coverage using its bisecting lines and determin-
ing which of the resulting sets intersect. However, a
physical camera only has access to observations avail-
able in its image domain Ω3D. Therefore, it is essential
to determine how to find bisecting lines using informa-
tion in the image domain.

We note that occlusion events occur when the target
leaves the coverage Cα of camera α along the bound-
ary of the camera domain Dα or along a bisecting line.
We can verify that a target leaving through the bound-
ary of Dα will be detected in the image domain Ω3D

α as
having the target disappearing/appearing through the
boundary of Ω3D

α . If the target leaves Cα through one of
the bisecting lines, we will observe an occlusion event in
the interior of Ω3D

α . Note that bisecting lines in the 2D
domain correspond to vertical planes in the 2.5D config-
uration, whose intersection with the FOV of the camera
map to lines in Ω3D

α . Hence, all that is required is to
find the line segment in which an occlusion event takes
place in the image domain. From an engineering point
of view, this can be done by performing some simple
image processing to find the edge along which target
disappears/appears in an image. The result will be a
decomposition of the image domain Ω3D

α which will cor-
respond to a decomposition of the camera coverage Cα.
We also emphasize that these computations can be done
locally at a camera node without any need to transmit
information.

The problem of finding intersections of the sets for
the 2D problem corresponds to having concurrent de-
tections at corresponding cameras for the case of a sin-
gle target in the environment. Finding overlap between
these regions can be solved for the multiple-target case
by using approaches such as the ones outlined in [12, 13,
20, 19, 4] in which correspondence and time correlation
are exploited.

5. SIMULATIONS IN 2D
We consider a scenario similar to the one shown in

figure 1 (left) in which a wireless camera network is
deployed and no localization information is available.
Camera nodes will be assumed to have certain computa-
tional capabilities and they can communicate wirelessly
with each other.

The assumptions for this particular simulation are:

The Environment in Simulation: The objects in
the environment will have piecewise linear boundaries
as described earlier. The location of the objects will be
unknown. The location and orientation of the cameras
is also unknown.

Cameras in Simulation: A camera α has the fol-
lowing properties:

• The domain Dα of a camera in 2D will be the inte-
rior of a convex cone with field of view θα < 180o.
We use this model for simplicity in our simulations.

• A local camera frame Ψ2D
α is chosen such that the

range of the field of view is [−θα/2, θα/2] when
measured from the y-axis.

• Its camera projection Π2D
α : Dα → R, is given

by

Π2D
α (p) = px/py,

where p is given in coordinate frame Ψ2D
α . The

image of this mapping, i.e. Π2D
α (Dα), will be called

the image domain Ω2D
α .

The Target in Simulation: A single point tar-
get is considered in order to focus on the construc-
tion of the complex without worrying about correspon-
dence/identification of our target.

Throughout our simulations we will have the target
moving continuously through the environment. At each
time step the cameras compute their detections of the
target and use their observations to detect bisecting
lines. Observations at the regions obtained after de-
composition using the bisecting lines are stored. These
observations are then combined to determine intersec-
tions between the regions which become simplices in the
CN -complex.



As mentioned before, the topology of the environment
can be characterized in terms of its homology. In partic-
ular we will use betti numbers β0 and β1 (see appendix
A). The β0 number tells us the number of connected
components in the coverage while β1 gives the number
of holes. The PLEX software package [1] is used for ho-
mology computations and corresponding betti numbers.

Figure 6: A layout with two objects (left) where
C3 is shown. A circular hallway configuration
(right) is shown. Dashed lines represent corre-
sponding bisecting lines. Dotted curves repre-
sent the paths followed by the target.

Figure 6 (left) is a three-camera layout with two ob-
jects in their field of view. In this case, we observe
three bisecting lines for camera 1, two for camera 2,
and four for camera 3. Note that cameras 1 and 2
have different number of bisecting lines since there are
not placed symmetrically in the diagram. The cover-
age C3 is decomposed into 5 regions, namely {C3,a, C3,b,
C3,c, C3,d and C3,e}. The list of maximal simplices ob-
tained by our algorithm is: [1a 1b 1c 1d], [2a 2b 2c],
[3a 3b 3c 3d 3e], [1a 1b 2c 3c], [1d 2a 3c], [2a 2b 3a],
[1a 2b 2c 3a], [1a 2c 3a 3b], [1a 2c 3b 3c], [1a 2c 3c 3d],
[1a 1b 1c 2c 3d 3e], [1c 1d 3e] and [1d 2a 3e]. The ho-
mology computations returned betti numbers: β0 = 1
and β1 = 2. This agrees with having a single connected
component for the network coverage and two objects
inside the coverage of the cameras.

In figure 6 (right) we observe similar results for a
configuration that can be interpreted as a hallway in
a building floor. There is a single bisecting line for all
cameras. Our algebraic analysis returns β0 = 1 and
β1 = 1. The latter identifies a single hole correspond-
ing to the loop formed by the hallway structure. The
list of maximal simplices recovered by our algorithm:
[3b 4a 4b], [2b 3a 3b], [1b 2a 2b], [1a 1b 4b].

6. EXPERIMENTATION
In order to demonstrate how the mathematical tools

described in the previous sections can be applied to a
real wireless sensor network, we setup an experiment
tracking a robot in a simple maze. Figure 1 shows the
layout to be used. We placed a sensor network consist-
ing of CITRIC camera motes [6] at several locations in

our maze and let a robot navigate through the environ-
ment. The CN -complex is constructed for this particu-
lar coverage and used for tracking in this representation.
Homology computations are performed using the PLEX
software package [1].

Time synchronization is required in order to deter-
mine overlaps between the different camera regions. The
Flooding Time Synchronization Protocol (FTSP) [14]
was used for this purpose.

At each camera node, background subtraction is per-
formed at each frame. Once a target is detected, we
perform further processing to detect bisecting lines (as
shown in figure 7). However, note that the bisecting line
processing occurs sparsely and hence power consump-
tion is mostly due to background subtraction. Statistics
on the power consumption for the CITRIC platform can
be found in [6]. Note that the information extracted
from each camera node is just a decomposition of the
image domain with a list of times at which detections
were made.

For our experiments the camera motes were capable
of processing grayscale images at 4 frames per second
at a resolution of 320 × 240 pixels. Symbolic informa-
tion was then extracted and transmitted at a rate of 1
packet of 100 bytes every 10 seconds. We transmitted
regularly even when there were no observations to trans-
mit. If raw image data (without any compression) was
to be streamed over the network, this would correspond
to about 300 kBytes/s of data from a single mote. In-
stead, transmitting symbolic information in our experi-
ment only accounts for 10 Bytes/s.

Figure 7: View of camera 5 from the layout in
figure 1 before (left) and after (right) a bisecting
line is found.

The complex is built by combining all local informa-
tion from the camera motes. Each camera mote trans-
mits the history of its detections wirelessly to a central
computer that creates the CN -complex. The result-
ing complex contains the maximal simplices: [1a 1b 4b],
[1b 2a 2b], [2b 3a 3b], [3b 4a 4b 5b], [3b 5b 6], and
[5a 5b 6]. A pictorial representation of the complex
is shown in figure 8 (right plots).

As mentioned earlier, this representation can then be
used for tracking and navigation without actual metric
reconstruction of the environment. Figure 8 shows a set
of recorded paths for our robot. By determining which



simplices are visited by the robot’s path we can extract
a path in the complex as shown by the dashed path in
the complexes of figure 8. The main advantage of this
representation is that the path in the complex gives a
global view of the trajectory of the robot, while local
information can be extracted from single camera views.

Figure 8: Paths in the maze (shown in dashed
lines): In the physical layout (left), and in the
CN-complex (right). These paths can be com-
pared by using the algebraic topological tools
covered in appendix A.

It is possible to identify paths in the simplicial rep-
resentation that are homotopic (i.e., that can be con-
tinuously deformed into one another). The tools re-
quired for these computations are already available to
us from appendix A. In particular, by taking two paths
that start and end at the same locations forming a loop,
we can verify that they are homotopic if they form the
boundary of some combination of simplices. Equiva-
lently, since a closed loop σ is just a collection of edges
in C1, we need to check whether the loop σ is in B1 (i.e.,
in the range of ∂2). This is just a simple algebraic com-
putation. By putting the top and middle paths from
figure 8 together we note that the resulting loop is not
in the range of ∂2 (i.e., they are not homotopic). On
the other hand, the top and bottom paths can be easily
checked to be homotopic.

7. SUMMARY AND DISCUSSION
In this paper, an algebraic representation of a camera

network coverage is obtained through the use of discrete

observations from each camera node. The mathemati-
cal tools used for this purpose are those of algebraic
topology. In particular, we showed that given enough
observations our model does capture the correct topo-
logical information.

The experiment using wireless camera motes illus-
trates how our representation can be used to track and
compare paths in a wireless camera network without
any metric information. For coordinate-free navigation,
our representation can give an overall view of how to ar-
rive at a specific location, and the transitions between
simplices can be accomplished in the physical space by
local visual feedback from single camera views. Us-
ing this proposed model allows for local processing at
each node and minimal wireless communication. A list
of times at which occlusion events were observed is all
that needs to be transmitted. Also, all algebraic com-
putations can be performed using integer operations as
described in [9], which opens the doors to implementa-
tion on platforms with low-computational power. The
homology computations in the experiment are done in
a centralized fashion, however, distributed algorithms
such as the ones introduced by A. Muhammad and A.
Jadbabaie [15] can be used.

The approach described above can be extended to
more complex environments with stairs, windows and
building with multiple levels. In the future, we hope
to extend this work to handle multiple targets and de-
tection errors. In our experiments, simplices are drawn
every time concurrent detections are observed. How-
ever, false detections can cause the discovery of incor-
rect simplices. This can be solved by constructing a
non-deterministic complex that assigns probabilities to
simplices. This will be the focus of our future research.
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APPENDIX

A. MATHEMATICAL BACKGROUND
In this section we cover the concepts from algebraic topol-

ogy that will be used throughout this paper. This section
contains material adapted from [8, 5] and it is not intended
as a formal introduction to the topic. For a proper intro-
duction to the topic, the reader is encouraged to read [16, 9,
8].

A.1 Simplicial Homology

Definition 6. Given a collection of vertices V we define
a k-simplex as a set [v1 v2 v3 . . . vk+1] where vi ∈ V and
vi �= vj for all i �= j. Also, if A and B are simplices and the
vertices of B form a subset of the vertices of A, then we say
that B is a face of A.

Definition 7. A finite collection of simplices in R
n is

called a simplicial complex if whenever a simplex lies in
the collection then so does each of its faces.

Definition 8. The nerve complex of a collection of
sets S = {Si}N

i=1, for some N > 0, is the simplicial complex
where vertex vi corresponds to the set Si and its k-simplices
correspond to non-empty intersections of k + 1 distinct ele-
ments of S.

The following statements define some algebraic structures
using these simplices.

Definition 9. Let {si}N
i=1 (for some N > 0) be the k-

simplices of a given complex. Then, the group of k-chains
Ck is the free abelian group generated by {si}. That is,

σ ∈ Ck iff σ = α1s1 + α2s2 + · · ·αNsN

for some αi ∈ Z. If there are no k-simplices, then Ck := 0.
Similarly, C−1 := 0.

Definition 10. Let the boundary operator ∂k applied
to a k-simplex s, where s = [v1 v2 · · · vk+1], be defined by:

∂ks =

k+1∑
i=1

(−1)i+1[v1 v2 · · · vi−1 vi+1 · · · vk vk+1],

and extended to any σ ∈ Ck by linearity.
A k-chain σ ∈ Ck is called a cycle if ∂kσ = 0. The set of

k-cycles, denoted by Zk, is the ker ∂k and forms a subgroup
of Ck. That is,

Zk := ker ∂k.

A k-chain σ ∈ Ck is called a boundary if there exists
ρ ∈ Ck+1 such that ∂k+1ρ = σ. The set of k-boundaries,
denoted by Bk, is the image of ∂k+1 and it is also a subgroup
of Ck. That is,

Bk := im ∂k+1.

Even further, we can check that ∂k(∂k+1σ) = 0 for any σ ∈
Ck+1, which implies that Bk is a subgroup of Zk.

Observe that the boundary operator ∂k maps a k-simplex
to its (k − 1)-simplicial faces. Further, the set of edges that
form a closed loop are exactly what we denote by the group
of 1-cycles. We will be interested in finding out holes in
our domains; that is, cycles that cannot be obtained from
boundaries of simplices in a given complex. This observation
motivates the definition of the homology groups.

Definition 11. The k-th homology group is the quo-
tient group

Hk := Zk/Bk.

The homology of a complex is the collection of all homology
groups. The rank of Hk, denoted the k-th betti number
βk, gives us a coarse measure of the number of holes. In
particular, β0 is the number of connected components and
β1 is the number of loops that enclose different “holes” in
the complex.

A.2 Example
In figure 9 we observe a collection of triangular shaped

sets labeled from 1 to 5. The nerve complex is obtained by
labeling the 0-simplices (i.e., the vertices) in the same way
as the sets. The 1-simplices (i.e., the edges in the pictorial
representation) correspond to pairwise intersection between
the regions. The 2-simplex correspond to the intersection
between triangles 2, 4 and 5.

For the group of 0-chains C0, we can identify the simplices
{[1], [2], [3], [4], [5]} with the column vectors {v1, v2, v3, v4, v5},
where v1 = [1, 0, 0, 0, 0]T and so on.



Figure 9: A collection of sets (left) and correspond-

ing nerve complex (right). The complex is formed

by simplices: [1], [2], [3], [4], [5], [1 2], [2 3], [2 4], [2 5],

[3 5], [4 5] and [2 4 5].

For C1, we identify {[1 2], [2 3], [2 4], [2 5], [3 5], [4 5]} with
the column vectors {e1, e2, e3, e4, e5, e6}, where we define
e1 = [1, 0, 0, 0, 0, 0]T and so on.

Similarly for C2, we identify [2 4 5] with f1 = 1.
As we mentioned before, ∂k is the operator that maps a

simplex σ ∈ Ck to its boundary faces. For example, we have:

∂2[2 4 5] = [4 5] − [2 5] + [2 4] iff ∂2f1 = e6 − e4 + e3,

∂1[2 4] = [4] − [2] iff ∂1e3 = v4 − v2.
That is, ∂k can be expressed in matrix form as:

∂1 =

⎡
⎢⎢⎢⎣

−1 0 0 0 0 0
1 −1 −1 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 1 1

⎤
⎥⎥⎥⎦ , ∂2 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
−1
0
1

⎤
⎥⎥⎥⎥⎥⎦

.

Since C−1 = 0,

H0 = Z0/B0 = ker ∂0/im ∂1 = C0/im ∂1.

We can verify that

β0 = dim(H0) = 1.

Hence, we recover the fact that we have only one connected
component in the diagram of figure 9. Similarly, we can
verify that

β1 = dim(H1) = dim(Z1/B1) = dim(ker ∂1/im ∂2) = 1,

which tells us that the number of holes in our complex is 1.
Also, Hk = 0 for k > 1 (since Ck = 0).

A.3 Čech Theorem
Now we introduce the Čech Theorem which has been used

in the context of sensor networks with unit-disk coverage [5]
and has been proved in [3]. Before we proceed further, we
will require the following definition:

Definition 12. Given two spaces X and Y , a homo-
topy between two continuous functions f0 : X → Y and
f1 : X → Y is a continuous 1-parameter family of contin-
uous functions ft : X → Y for t ∈ [0, 1] connecting f0 to
f1.

Definition 13. Two spaces X and Y are said to be of the
same homotopy type if there exist functions f : X → Y
and g : Y → X with g ◦ f homotopic to the identity map on
X and f ◦ g homotopic to the identity map on Y .

Definition 14. A set X is contractible if the identity
map on X is homotopic to a constant map.

In other words, two functions are homotopic if we can con-
tinuously deform one into the other. Also, a space is con-
tractible if we can continuously deform it to a single point.
It is known that homologies are an invariant of homotopy
type; that is, two spaces with the same homotopy type will
have the same homology groups.

Theorem 2. (Čech Theorem) If the sets {Si}N
i=1 (for

some N > 0) and all nonempty finite intersections are con-

tractible, then the union
⋃N

i=1 Si has the homotopy type of
the nerve complex.

That is, given that the required conditions are satisfied,
the topological structure of the union of the sets is captured
by the nerve. We observe that in figure 9 all of the inter-
sections are contractible. Therefore, we can conclude that
the extracted nerve complex has the same homology as the
space formed by the union of the triangular regions.

B. PROOF OF THEOREM 1
Throughout this section we consider a finite set of cameras

indexed by α ∈ {1, 2, 3 · · ·Nc} with corresponding domains
Dα and coverages Cα. Each camera coverage is decomposed
by all possible bisecting lines {Lα,i}. The collection {Cα,j}
is the result of this decomposition, where Cα,j := Cα ∩ Kα,j

and Kα,j is the convex cone resulting from decomposing the
plane using the lines {Lα,i} (see definition 4).

Observation 3. It may be useful for the reader to think
of the set Cn (the visible set after object occlusions have been
removed) as the intersection of a convex set (i.e., the camera
domain) with a star convex set (due to visibility from oα).

Observation 4. The number of bisecting lines for a given
camera in our environment is finite since we are considering
finite number of objects in the coverage with piecewise linear
boundaries.

Definition 15. The line segment joining points p
and q is denoted by p q. The line passing through points
p and q is denoted by L(p, q).

Definition 16. The triangle formed by points a, b
and c ∈ R

2 is the convex hull of these three points and it is
denoted Δa,b,c.

Lemma 1. Given that oα, p ∈ Cα then oα p ∈ Cα.

Proof. Since, oα and p ∈ Cα ⊂ Dα, then oα p ⊂ Dα

due to convexity of Dα. Let r ∈ oα p. If r is not visible then
oα r∩⋃Oi �= ∅ (where {Oi} is the collection of objects in the
environment). However, this implies that oα p ∩ ⋃Oi �= ∅.
Hence, we conclude that p is not visible, which is a contra-
diction. Therefore, r must be visible. Since r was arbitrary
then oα p is visible.

Lemma 2. Given that p, q ∈ Cα with

L(p, oα) = L(q, oα),

then p q ∈ Cα. That is, if p and q are visible and are in the
same line of sight, then the line joining them is visible too.

Proof. This follows from the definition of Cα and the
domain of a camera Dα. We know that Dα is convex, so
p q ⊂ Dα since p, q ∈ Cα ⊂ Dα.

From our assumption L(p, oα) = L(q, oα), it is possible
to conclude that for r ∈ p q then r ∈ Dα, and r ∈ oα p or
r ∈ oα q. Basically, there are only two cases, both p and q
on the same side of oα or on opposites sides. Either way, r
must be in oα p or oα q.

Without loss of generality, assume r ∈ oα p. If r was not
visible, the

oα r ∩
⋃

Oi �= ∅
(where {Oi} is the collection of sets representing the objects
in the space). This implies that

oα p ∩
⋃

Oi �= ∅,
since oα r ⊂ oα p. This implies that p /∈ Cα which is a
contradiction. Therefore, r must be visible too.



Figure 10: Steps of the construction of a monotone convex path for lemma 6.

Lemma 3. Given a closed path Γ([0, 1]) ⊂ Cα, then the
space enclosed by Γ is also in Cα.

Proof. Let R be the enclosed area by the path Γ. Since
Γ : [0, 1] → R

2 is bounded, then

∃M > 0 such that ||Γ(t) − oα|| < M,

where oα is the location of camera α. Hence,

r /∈ R if ||r − oα|| > M.

Also, if a point r′ is connected to r /∈ R through a path γ
that does not cross Γ, then r′ /∈ R.

Let p ∈ R and define

L := L(p, oα) ∩ Γ([0, 1])

(i.e., points in Γ and in the line passing through p and oα),
then there must be points q1, q2 ∈ L such that and p ∈ q1 q2.
Otherwise, there would exist a point r ∈ L with ||r − oα|| >
M (i.e., r /∈ R) such that r p does not intersect Γ([0, 1]). This
implies p /∈ R which is a contradiction. Therefore, p ∈ q1 q2.

Next, we consider three cases:

• Assume q1 �= oα and q2 �= on. Since q1, q2 ∈ Γ([0, 1]) ⊂
Cn with L(q1, oα) = L(q2, oα), then p ∈ q1 q2 ⊂ Cn by
lemma 2 (which makes p visible).

• Assume q1 �= oα and q2 = oα. Then p ∈ oαq2 ⊂ Cα by
lemma 1.

• Assume q1 = q1 = oα. Then, p = oα ∈ Cα.

In all cases p is visible, and since p was arbitrary we con-
clude that R is visible.

The previous lemmas are also true if we replace Cα by the
set Cα,j resulting from a decomposition of the coverage. The
reason why it works is because we can think of Cα,j as being
the coverage of a camera with a domain

Dα,j := Dα ∩ Kα,j ,

where Kα,j is the corresponding convex cone that generates
the region Cα,j . This new domain is still convex which is the
property used in the previous lemmas. However, note that
this Dα,j is not open.

Lemma 4. Every connected component of
⋂

(α,j)∈A Cα,j,

where A is a finite set of indices, is simply connected.

Proof. Let Γ be a closed loop in
⋂

(α,j)∈A Cα,j . By the

previous lemma, the space enclosed by Γ is inside Cα,j for
all (α, j) ∈ A.

Definition 17. Let Γ : [0, 1] → R
2 be a path connecting

points p to q (i.e. Γ(0) = p and Γ(1) = q). We define the
region enclosed by Γ, denoted by R(Γ), to be the region
enclosed by the set Γ([0, 1]) ∪ p q.

Definition 18. A path Γ : [0, 1] → R
2 connecting points

p and q is said to be a convex path if R(Γ) is convex.

Definition 19. A non-intersecting path Γ : [0, 1] → R
2

is monotone with respect to camera α if for any p ∈
S1

α, where S1
α is the unit circle centered at oα, we have that

Γ([0, 1]) ∩ L(p, oα) has a single connected component.

Lemma 5. Let R be a bounded convex set contained be-
tween the lines L(p, oα) and L(q, oα), where p and q ∈ R.
Then, either p q is the only path in R joining p to q, or there
are exactly two distinct images of monotone paths connect-
ing p to q (only intersecting at the end points), which form
the boundary of R.

The figure above illustrates the results from the previous
lemma.

Lemma 6. Given that Cα is connected with p and q ∈ Cα,
then there exists a path Γ connecting these points that is con-
vex and monotone with respect to camera α with Γ([0, 1]) ⊂
Cα ∩ Δp,q,oα .

Proof. We present an outline of the proof of this result.
Let p and q ∈ Cα, where Cα is connected.
The reader may be tempted to try the path p oα ∪ oαq.

However, we are not assuming oα ∈ Cα. Our proof takes
care of this case too.

Since Cα is connected then there exists a path Γ0 that
connects p to q with Γ0([0, 1]) ⊂ Cα. We illustrate this in the
diagram in figure 10 (a) in which the gray region corresponds
to the coverage under consideration.

Our first objective will be to construct a path that is con-
tained within Δp,q,oα .

We start with path Γ0 and consider the line L(p, oα) (see
figure 10 (a) ). This line will intersect the Γ0 at points {rk}.
By lemma 2, we know that the line segments between them
are visible, so we can construct path Γ1 (as shown in figure
10 (b)) which does not cross L(p, oα).

Next, we consider the intersections between L(q, oα) and
Γ1 (see figure 10 (b) ). As in the previous case, we can
construct a path Γ2 which does not cross L(q, oα).

If we consider the line L(p, q), then it will intersect the line
Γ2 at points {rk} (see figure 10 (c) ). Consider a segment
of Γ2 that is outside of the triangle Δp,q,oα , which intersects
L(p, q) at r1 and r2. For any r ∈ r1 r2, we see that r ∈ Dα

since rk ∈ Dα and Dα is convex. Also, there exists a point
r′ ∈ L(r, oα) ∩ Γ2([0, 1]) which is further away from oα than
r. Otherwise, the line segment in Γ between r1 and r2 would
not be outside the Δp,q,oα . Therefore, if r was not visible
then r′ would not be visible which is a contradiction. Hence,
r must be visible.

This implies that we can connect r1 to r2 by the line seg-
ment r1 r2 and construct path Γ3 which is inside Δp,q,oα .



In order to make Γ3 into a convex path, we take the convex
hull of Γ3 and by lemma 5 we know that there are at most
two monotone paths to choose from (see figure 10 (d)). We
choose the path Γ that is closest to oα. Clearly Γ is convex.
We can see that Γ is visible since for any line L(r, oα) for r ∈
Γ3([0, 1]), the line will have to intersect Γ at some location
s closer to oα than r.

This process yields the desired monotone and convex path
Γ (see figure 10 (e)) which images is in Cα ∩ Δp,oα,q.

Lemma 7. Given that Cα is connected with p and q ∈ Cα,j

for some j, then there exists a path Γ connecting these points
that is convex and monotone with respect to camera α with
Γ([0, 1]) ⊂ Cα,j ∩ Δp,q,oα .

Proof. Since p and q ∈ Cα,j , then p and q ∈ Cα ∩ Kα,j .
By the previous lemma, we know that there exists a path Γ
such that Γ([0, 1]) ⊂ Cα. Note that Γ([0, 1]) is inside the cone
formed by the lines L(p, oα) and L(q, oα) by construction.
This cone must be contained within Kα,j , otherwise p and
q could not be in Kα,j . Therefore, Γ([0, 1]) ⊂ Kα,j ∩ Cα =
Cα,j .

Lemma 8. Let Γ : [0, 1] → R
2 be a feasible monotone path

connecting p and q ∈ Cα with Γ([0, 1]) ⊂ Dα for some camera
α. If an object O is within the region enclosed by oα p ∪
Γ([0, 1]) ∪ q oα then there exists a bisecting line L passing
through a point in Γ that does not intersect L(p, oα) and
L(q, oα) (not including these lines).

Proof. For simplicity we just give an outline of this proof.
Since Γ([0, 1]) ⊂ Dα, we know that no point in Γ will be

in the boundary of Dα since Dα is open.
Since oα p∪Γ([0, 1])∪ q oα encloses an object, there exists

a transition between having a visible and a not-visible point
in the path (i.e. an occlusion event). This is guaranteed
since at least a point in the path is visible, and not all the
points can be visible due to the object O.

Assume that the transition event occurs in L(p, oα) or
L(q, oα) at some point r ∈ Γ([0, 1]) and nowhere else. With-
out loss of generality assume that r p ⊂ Γ([0, 1]) (due to
monotonicity of path). The object would have to occlude r
too (since objects are closed). Then either the path is not
feasible or p is not visible which contradicts our assumption.
Therefore, a transition must occur at some other point along
Γ and not in these lines.

Theorem 3. (Decomposition Theorem) Let {Cα}N
α=1

be a collection of camera coverages where each Cα is con-
nected and N is the number of cameras in the domain. Let
{Cα,k}(α,k)∈AD

be the collection of decomposed sets by all
possible bisecting lines, where AD is the set of indices in the
decomposition. Then, any finite intersection

⋂
(α′,k′)∈A Cα′,k′ ,

where A is a finite set of indices, is contractible.

Proof. For simplicity we just give an outline of this proof
for two cameras. The proof for multiple cameras can be
completed by induction.

Let p and q ∈ Cα1,k1 ∩ Cα2,k2 for some indices (αi, ki).
Part I:

First, consider cameras α1 and α2 on the same side of
the line L(p, q). We know that there exist convex monotone
paths Γi connecting p to q such that Γi([0, 1]) ⊂ Cαi,ki ∩
Δp,oαi

,q for i = 1, 2 (see left plot in figure 11).
By lemma 5, we can choose a path Γ corresponding to

a segment of the boundary of R := R(Γ1) ∩ R(Γ2) (see
right plot in figure 11). We choose the path that consists
of segments from Γ1 and Γ2 so Γ will be feasible. We note
that lemma 5 also tells us that Γ is monotone with respect
to camera αi (since R is between L(p, oαi) and L(q, oαi)).
Also,

Γ ⊂ R = R(Γ1) ∩R(Γ2) ⊂ Dα1 ∩ Dα2

due to convexity of Dαi .

Figure 11: Illustration of the construction of Γ.

By lemma 8, we know that there are no objects inside the
regions enclosed by p oαi ∪ Γ([0, 1]) ∪ q oαi (since otherwise
there would be a bisecting line and we assumed that we
already decomposed using all bisecting lines). Hence, s oαi

does not intersect any object for s ∈ Γ([0, 1]), which implies
that Γ is visible by both cameras (i.e. Γ([0, 1]) ⊂ Cα1,k1 ∩
Cα2,k2).
Part II:

Now we consider cameras α1 and α2 at opposite sides of
the line L(p, q). There are two main cases to consider.
Case 1:

For the first case we consider a configuration as seen in
figure 12 (left).

Figure 12: Illustrations for Case 1.

We would like to conclude that the path p q is visible by
both cameras. Assume that it is only visible up to a point r
(not including this point since objects are closed). Then, an
object must intersect r oα1 or r oα2 . By lemma 8, we notice
that the interior of Δr,oαi

,q must be empty; otherwise, there
would be a bisecting line.

Also, since Dα2 is open, we can find a ball B around q
that is contained in Dα2 (see right plot in figure 12(right)).
We choose a point s ∈ B ∩ q oα1 .

Then, Δp,s,q ⊂ Dα1 ∩ Dα2 . From there, we can choose
a point s′ as shown in the diagram such that s′ q ⊂ Dα2
is feasible. This is possible since there are no objects in
Δr,oα1 ,q. However, if there was an object intersecting r oα2 ,
then L(r, oα2) would be a bisecting line. But, it is not. So,
there are no objects intersecting r oα2 .

Similarly, there are no objects intersecting r oα1 . This
means that r is visible by both cameras, which contradicts
our initial assumption. This shows that p q is visible to both
cameras, i.e. p q ⊂ Cα1,k1 ∩ Cα2,k2 .
Case 2:

For the second case, we consider
a configuration as shown to the left.

By following the same analysis as
before, we can show that p r − {r}
and r q − {r} must be visible by
both cameras. However, we could
have an object in oα1 oα2 . Never-
theless, objects must enclose some
area which does not allow an object
to be contained in this line. There-

fore, p q ⊂ Cα1,k1 ∩ Cα2,k2 .
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