
Robust Construction of the Camera Network
Complex for Topology Recovery

Edgar Lobaton, Ram Vasudevan, Shankar Sastry, Ruzena Bajcsy
Electrical Engineering and Computer Sciences Department

University of California
Berkeley, CA 94720, USA

Email: {lobaton, ramv, sastry, bajcsy}@eecs.berkeley.edu

Abstract—While performing tasks such as estimating the
topology of camera network coverage or coordinate-free object
tracking and navigation, knowledge of camera position and other
geometric constraints about the environment are considered un-
necessary. Instead, topological information captured by the con-
struction of a simplicial representation called the CN-Complex
can be utilized to perform these tasks. This representation can
be thought of as a generalization of the so-called vision graph of
a camera network. The construction of this simplicial complex
consists of two steps: the decomposition of the camera coverage
through the detection of occlusion events, and the discovery of
overlapping areas between the multiple decomposed regions. In
this paper, we present an algorithm for performing both of these
tasks in the presence of multiple targets and noisy observations.
The algorithm exploits temporal correlations of the detections to
estimate probabilities of overlap in a distributed manner. No
correspondence, appearance models, or tracking are utilized.
Instead of applying a single threshold on the probabilities,
we analyze the persistence of the topological features in our
representation through a filtration process. We demonstrate the
validity of our approach through simulation and an experimental
setup.

I. I NTRODUCTION

Though the identification of the exact location of targets
and objects in an environment is considered essential in
many applications in the realm of sensor networks, there
exist numerous tasks wherein simple topological information
about the network is sufficient. For example, knowledge of
the topology of a camera network makes it possible to design
efficient routing and broadcasting schemes as discussed by M.
Li et al. [1], or it makes it possible to build powerful coordinate
free tracking and navigation algorithms as discussed by E.
Lobaton et al. [2]. Given its utility, the construction of this
topological information becomes a critical task.

Topological information is traditionally captured through
what are called vision graphs where vertices represent sensors
and edges represent overlap between their fields of view.
Unfortunately the topology of a domain embedded inR

2

is intimately related to detecting holes, and these graphs
are unable to detect this information. In order to deal with
this shortcoming, E. Lobaton et al. introduced a combinato-
rial representation for a camera network called the Camera
Network Complex, orCN -Complex [2]. It is a simplicial
complex built after decomposing the fields of view of cameras
at occluding contours and identifying the overlap of two or

1
2

3

Fig. 1. TheCN -Complex for a network of three cameras constructed using
the methodology presented in this paper. The views from different cameras
(top-left). Bisected views due to occluding objects (top-right). Simplicial
complex built by finding the overlap in the coverage of the cameras (bottom).
The simplicial complex, correctly, contains a single hole (i.e. the loop with
vertices1a, 1b, 3b, 3c and3d) that corresponds to the column which acts as
an occluding object in the physical coverage.

three sets with edges or triangular faces, respectively (see
section III for more details). This representation, which can be
thought of as a generalization of a vision graph, was proven to
capture the appropriate topological information regarding the

coverage of a camera network in scenarios where occlusions
are due to vertical structures (e.g. walls and entrances). Though
simulations and a simple experiment constructed with a single
target and perfect foreground detection were presented in the
original paper, no algorithm was given for handling multiple
targets and noisy observations. This paper will present an
approach to constructing theCN -Complex robustly (a sample
construction is illustrated in figure 1).

Our approach will only employ temporal correlation be-
tween observations rather than a correspondence or appearance
model, in order to determine the connectivity information
between cameras. A distributed version of the algorithm will
be outlined in which data will be processed and stored on
sensors with limited computing capability. The result will
be a collection of simplices with assigned probabilities of
occurrence, which can then be thresholded to select the most
likely simplices.

The rest of the discussion proceeds as follows: a brief
review of similar work is presented in section II; the required
mathematical background is introduced in section III; section
IV shows how to find bisecting lines in a robust way; section
V describes how to compute points in the intersection between
different cameras and outlines a distributed implementation of
the process; finally, the validity of this approach is verified in
section VI through a real life experiment with multiple targets.

II. RELATED WORK

The recovery of topological information about camera net-
work coverage has generally been pursued by the computation
of activity topology and vision graphs. Activity topology refers
to the set of possible paths that moving targets can take
through the field of views of cameras, and vision graphs are
graphs where every node represents a camera view and edges
specify the overlap between pairs of cameras. Usually, overlap
is determined through the use of correlation between temporal
detections, appearance models, or both.

A. van den Hengel et al. [3] introduce an exclusion approach
to the solution of the activity topology recovery problem
by starting with all possible combinations of topological
connections and removing links that are inconsistent with their
observations. An evaluation of the method and datasets are
made available in [4]. Though their method only relies on de-
tections of the target and avoids the use of appearance models,
it has the unfortunate shortcoming of requiring the continuous
streaming of detections from each camera. Other approaches
include the study of camera networks with overlap through
the use of the statistical consistency between observationby
Makris et al.[5].

Rahimi et al. [6] describe a simultaneous calibration and
tracking algorithm (with a networks of non-overlapping sen-
sors) by using velocity extrapolation for a single target. Funiak
et al. [7] introduce a distributed algorithm for simultaneous
localization and tracking with a set of overlapping cameras.
Stauffer et al. [8] determine the connectivity between overlap-
ping camera views by calculating correspondence models be-
tween cameras in order to extract homography models. L. Lo

Presti et al. [9] also compute homographies by approximating
tracks using piecewise linear segments and appearance models.
M. Meingast et al. [10] utilize tracks and radio interferometry
to fully localize cameras. Although these approaches involve
accurate camera localization, no actual information aboutthe
coverage of the network is recovered (i.e. no characterization
of the objects occluding the field of view or holes in the
coverage is provided).

Marinakis et al. [11] work on constructing a vision graph
by finding the connectivity between the overlapping coverage
of cameras by using only reports of detection. They employ
a Markov model for modeling the transition probabilities and
minimize a functional using a Markov Chain Monte Carlo
Sampling method. They also present a different formulation
of the same problem using “timestamp free” observation [12].
Both of these presentations are computationally expensiveand
therefore difficult to construct in a distributed manner on
sensors.

Other approaches to obtaining a vision graph have been
pursued by utilizing target identification as explored by Zou
et al. [13]. Cheng et al. [14] build a vision graph in a dis-
tributed manner by exchanging feature descriptors from each
camera view. In their work, each camera encodes a spatially
well-distributed set of distinctive, approximately viewpoint-
invariant feature points into a fixed-length “feature digest”
that is broadcast throughout the network to establish corre-
spondence between cameras. Yeo et al. [15] utilize a random
projection based framework to exchange compact feature de-
scriptors in a rate-efficient manner to establish correspondence
between various camera views. Although both of these meth-
ods work efficiently, they suffer from being overly restrictive
by using appearance models.

In addition to their variety of shortcomings, all of the ap-
proaches mentioned to this point have the common shortcom-
ing of pursuing representations that are unable to characterize
holes in the coverage. Unfortunately, as we discussed earlier,
the topology of a domain embedded inR

2 is intimately related
to detecting holes. To address the detection and recovery
of holes by topological methods for sensor networks, most
assume symmetric coverage (explicitly or implicitly) or a high
density of sensors. In particular, Vin de Silva et al. [16] obtain
the Rips complex based on the communication graph of the
network and compute homologies using this representation.
Though this method captures the correct coverage of the
sensor network, the assumptions made are generally invalid
for camera networks.

E. Lobaton et al. introduce a combinatorial representation
for a camera network called theCN -Complex [2] to overcome
overly restrictive assumptions and prove that they can capture
the appropriate topological information about the coverage of
the camera network. This paper will present an approach to
constructing theCN -Complex robustly.

III. B ACKGROUND

This section is meant to introduce the mathematical frame-
work to be used throughout the rest of this paper. For a more

Fig. 2. A collection of sets (left) and corresponding nerve complex (right).
The complex is formed by simplices:[1], [2], [3], [4], [5], [1 2], [2 3], [2 4],
[2 5], [3 5], [4 5] and [2 4 5].

formal discussion of the topological concepts presented here,
we refer the interested reader to Hatcher [17] or Munkres [18].

A. Simplicial Complex

Definition 1: Given a collection of verticesV we define a
k-simplex as a set[v1 v2 v3 . . . vk+1] where vi ∈ V and
vi 6= vj for all i 6= j. If A and B are simplices and the
vertices ofB form a subset of the vertices ofA, then we say
that B is a face of A.

Definition 2: A finite collection of simplices is called a
simplicial complex if whenever a simplex lies in the collection
then so does each of its faces.

Definition 3: The nerve complex of a collection of sets
S = {Si}

N
i=1, for N > 0, is the simplicial complex whose

vertexvi corresponds to the setSi and whosek-simplices cor-
respond to non-empty intersections ofk + 1 distinct elements
of S.

It is possible to define algebraic structures using this combi-
natorial representation calledhomologies, which capture all of
the topological information about the union of the collection
of sets. In particular, it is known that if every finite intersection
of the collection of setsS is contractible, then we can recover
the number of connected components and holes in the union
of these sets from the nerve complex. This information is
recovered from what are calledBetti numbers where β0

corresponds to the number of connected components andβ1

corresponds to the number of holes. Importantly, once these
have been calculated one can perfectly recover the topological
coverage of a sensor network. Software packages such as
PLEX [19] can be used to compute these quantities. An
example illustrating the construction of a nerve complex can
be found in figure 2. In this case,β0 = 1 since there is a
single connected component andβ1 = 1 since there is a hole.

B. Persistent Homology

In this section, we informally develop the notion of persis-
tent homology and barcodes, as introduced by Carlsson and
Zomorodian [20], [21], to robustly calculate the topological
features of a simplicial complex. In order to illustrate theidea,
we will consider complexes built from binary images which
are easier to visualize. Note that simplicial complexes canbe
built from a collection of pixels by defining simplices between
neighboring pixels. We consider a collection of simplicial
complexes,Cτ for τ ∈ [0, 1] obtained from setsSτ , constructed

0 0.2 0.4 0.6 0.8 1
τ

β
0
 Diagram

0 0.2 0.4 0.6 0.8 1
τ

β
1
 Diagram

τ = 0 τ = 0.1 τ = 0.2 τ = 0.5 τ = 1

Fig. 3. Snapshots for a family of setsSτ for τ ∈ [0, 1]. The collection starts
with two connected components which merge atτ = 0.4 as shown in theβ0

diagram. A hole is present untilτ = 0.15 as depicted in theβ1 diagram.

such thatCp ⊂ Cq wheneverp < q. An example of such a
collection is shown in figure 3.

It is possible to track topological features as a function of
the parameterτ . Most importantly, these features have a “life
span” corresponding to the time at which the feature appears
and the time at which it disappears. For example, figure 3
illustrates the collection of pixels start with two connected
components which eventually merge atτ = 0.4, and it also
illustrates the collection start with a hole that disappears atτ =
0.15. This information is depicted as a persistence diagram at
the bottom of figure 3. Carlsson and Zomorodian prove that
the computation of these life spans is equivalent to calculating
the roots of a polynomial.

We will exploit the persistence of topological features in
order to make computations robust to the choice of parameter
τ . Consider, for example, figure 4 for which we are trying
to calculate the number of connected components. The left
image in the figure corresponds to the output of a segmentation
algorithm. Using eight-neighbor connectivity we calculate
4 connected components. By comparing this result to the
persistence diagram (the right image in figure 4), we recognize
this result with an oversensitivity to a particular choice of
segmentation. By exploiting the persistence diagram, we arrive
at two more reasonable answers to the question at hand: either
1.6 connected components by computing the average number
of components over the specified range or a single component
since it is the most persistent number of components. We will
exploit the persistence of topological features in order tomake
our computations robust to the choice of parameterτ .

0 0.2 0.4 0.6 0.8 1
τ

β
0
 Diagram

Fig. 4. The S0 set corresponds to the segmentation of an image (left)
and the correspondingβ0 diagram (right). The collectionSτ is obtained by
dilating the setS0 over a chosen range. Given the diagram, we could conclude
an average of1.6 connected components or a single persistent connected
component.

Fig. 5. CN -Complex for two camera networks. Three cameras where no
bisecting lines are found due to occlusion (left). In this case, the complex
is the same as the vision graph. Two cameras wherein the first camera is
split into regions1a, 1b and 1c and the second camera is unsplit (right).
The resulting simplicial complex captures the fact that thereis a hole in the
coverage. Note that a vision graph would only give two nodes and a single
edge between them.

C. TheCN -Complex

The construction defined here is applicable when targets are
moving in a planar domain and walls are erected vertically in
the domain. The cameras are at fixed, but unknown locations
in this environment. Our goal will be to characterize thede-
tectable setof the camera, i.e. the set of points in the domain
in which a target is detected by any of the cameras. E. Lobaton
et al. [2] proved that the topology of this set is captured by
a simplicial representation called theCN -Complex as long
as the detectable set for each camera is connected. Figure
5 compares the construction of the simplicial complex to
the construction of the vision graph for two basic camera
configurations. Notice that the vision graph is unable to detect
the hole in the camera coverage.

As figure 1 illustrates, the construction of theCN -Complex
proceeds in two steps: (1) image domain decomposition using
vertical bisecting lines corresponding to the occluding edges
of walls, and (2) finding the overlap between the fields of
view of the cameras. The goal of this paper is the presentation
of algorithms for the construction of theCN -Complex in the
presence of multiple targets and noise in the observations.The
analysis of the topology will be performed by employing the
persistence of the topological features.

IV. F INDING BISECTING L INES

In this section, we address the problem of detecting the
bisecting lines that decompose the image domain of a camera.
To this end, we assume that we have a simple background
subtraction algorithm (e.g. thresholding with respect to a
background image). We then utilize an algorithm presented
by B. Jackson et al. [22], which consists of accumulating the
boundary of foreground objects wherever partial occlusions
are detected. In our case, we only store the detections at times
when occlusion events occur. We are uninterested in the exact
boundary of the objects, but only the bisecting lines. Hence,
we will take the simpler approach of first approximating any

0 50 100 150
0

0.5

1

1.5

2

Column Number

L
o

g
 o

f
A

cc
u

m
u

la
te

d
 D

et
ec

ti
o

n
s

Fig. 6. Steps for finding bisecting lines: For the original view (top-
left), the boundaries of the foreground masks are accumulatedwhenever
occlusion events are detected (top-right). Vertical bisecting lines are estimated
by aggregating observations over all rows and obtaining theindices of the
column in which the highest detections were obtained (bottom-left). Bisecting
lines are further refined through a linear fit procedure usingthe accumulated
observations (bottom-right).

occluding boundary with vertical lines and then refining the
line fit.

In figure 6 (top-left), we observe a camera view with
several occluding boundaries due to walls and a column.
The accumulated boundaries of the foreground detections are
shown on the top-right. Initial estimates for the boundaries are
chosen at the peaks of the distributions of detections along
each column (bottom-left). Finally, the estimates are refined
by performing a least-squares fit on the data with respect to
all the points on the boundary that are close to the vertical line
estimates. The final result is shown in the bottom-right plot.

V. FINDING INTERSECTPOINTS

In this section, we assume that the bisections within each
camera view have been calculated. We focus only on determin-
ing the connectivity between camera pairs. More specifically,
we look for intersect points (i.e. points in the intersection of
the field of views of the cameras). In the following discussion,
we assume for simplicity that each sensor will be able to
uniquely identify any point in its coverage. In other words,
we assume a homeomorphism between the image domain from
each camera and its coverage. No target identification will be
necessary, but localization and recurrence over time will be
exploited.

We illustrate our approach by first considering the example
in figure 7. We assume that we have two cameras in a room
of area1 with region R1 in the coverage of camera1 and
R2 in the coverage of camera2. We assume that we haveN
targets, where the probability of a target’s location is uniformly
distributed over the room. We defineDt

i as the event that there
is a detection inRi at time t, andDt

i is its complement. For
simplicity, we assume that we detect a target inRi if and

Fig. 7. Geometric depiction illustrating different overlapping configurations
and corresponding detection probabilities for3 targets. Intuitively, whenever
R1 andR2 are disjoint we expect a low value ofP (Dt

2
|Dt

1
) (left). If |R1| ≈

|R2| ≈ 0.005 then P (Dt

2
|Dt

1
) ≈ 0.01 by using equation 3. For a partial

overlap, we expect a larger probability value (middle). If|R1| ≈ |R2| ≈ 0.01
and |R1 ∪ R2| ≈ 0.015 then P (Dt

2
|Dt

1
) ≈ 0.5. For a perfect overlap, we

observe thatP (Dt

2
|Dt

1
) = 1.

only if it is actually present (i.e. there are no errors in our
detections). Hence, we have

P (Dt
1) = 1 − P (Dt

1) = 1 − |Rc
1|

N , (1)

and

P (Dt
1 ∧ Dt

2) = 1 − P (Dt
1 ∧ Dt

2)

= 1 − P (Dt
1 ∨ Dt

2)

= 1 −
(

P (Dt
1) + P (Dt

2) − P (Dt
1 ∧ Dt

2)
)

= 1 − |Rc
1|

N − |Rc
2|

N + |(R1 ∪ R2)
c|N

(2)
whereAc is the set complement for a setA, and|A| is its area.
Therefore, the probability of detecting a target inR2 given a
detection inR1 is given by

P (Dt
2|D

t
1) =

P (Dt

1
∧Dt

2
)

P (Dt

1
)

= 1 −
(

|Rc

2
|N−|(R1∪R2)

c|N

1−|Rc

1
|N

)

.
(3)

Intuitively, wheneverR1 and R2 are disjoint we expect
P (Dt

2|D
t
1) << 1. For a partial overlap, we expect a larger

probability. For a perfect overlap, we expectP (Dt
2|D

t
1) = 1.

This observations are illustrated in figure 7. In our algorithm
P (Dt

2|D
t
1) is utilized as a direct measure of the confidence of

the overlap between cameras1 and2. A similar argument can
be made for detection probabilities between three cameras,i.e.
P (Dt

2 ∧ Dt
3|D

t
1). Note thatP (Dt

2|D
t
1) can be approximated

by counting the number of times that a target is detected in
R1 andR2 whenever there are detections inR1.

It is possible to bound these conditional probabilities such
that values above a given threshold are guaranteed to corre-
spond to a sufficient overlap between two regions. However,
such a bound would require knowledge about the distribution
of a target’s location, the number of targets and the geometry
of the environment, but this information maybe unavailable
and calculating an arbitrary cut-off may be impossible. There-
fore, we employ the filtration process to robustly analyze the
observed data in order to avoid making undue assumptions.

A. The Algorithm

In this section, we describe an algorithm to estimate dis-
tributely the probabilitiesP (Dt

2|D
t
1) and P (Dt

2 ∧ Dt
3|D

t
1)

Algorithm 1: Obs = TransmitPts(Obs,imSeq,t,camID)
Obs =UpdateObservations(Obs,imSeq,t)
if OcclusionDetected(Obs,t)

Pts =ComputePts(Obs)
TransmitPts(Pts,t,camID)

end

between two and three cameras respectively. Locally, each
camera will make observations and store detections after every
occlusion event. These detections will be transmitted to all
other cameras, and every time a camera receives a detection
message from another camera, the appropriate pairwise counts
will be updated. Detections only occur at bisecting lines, which
are a subset of the image domain. In our simulations, we will
show that this subset will be sufficient to determine whether
there is an overlap in coverage between cameras.

Algorithm 1, which is executed every time a new frame is
captured, describes how intersection points can be computed
and transmitted to all other cameras. The input is a local buffer
of observations,Obs, containing detections from previous
frames, a sequence of images,imSeq, around the current
frame at timet, the current time,t, and the identification
number,camID, of the camera transmitting the points. The
function returns updated observations,Obs, and transmits a
collection of points whenever an occlusion is detected.

Several functions are used within the previous algorithm.
UpdateObservationsupdates a local buffer storing target de-
tections over time using the current images and the corre-
sponding times.OcclusionDetecteddetermines if an occlusion
event has occurred based on the observations.ComputePts

Algorithm 2: IPts = UpdatingIPts(IPts,Obs,Pts,t,camID)
PPts =getPPts(Pts,Obs,t,camID)
foundPt = zeros(length(PPts),1)
for j = length(IPts)to 1

if PointIsNotIPt(IPts(j))
IPts = RemoveIPt(IPts,j)
continue

end
idx = FindCamIDMatch(IPts(i),camID,PPts)
if isempty(idx)

continue
end
foundIPt = 0
for i = 1 to length(idx)

if PointMatch(IPts(j),PPts(idx(i)))
foundPt(idx(i)) = 1
foundIPt = 1

end
end
if foundIPt

IPts(j) = MatchFound(IPts(j),t)
else

IPts(j) = MisMatchFound(IPts(j),t)
end

end
for i = 1 to length(PPts)

if foundPt(i)==0
IPts = AddIPt(IPts,PPts(i))

end
end

compiles a list of coordinates for the points where a detection
occurred before (if it was a disappearance event) or after
(if it was an appearance event) an occlusion.TransmitPts
periodically sends a list of detection points, a timet, and
camID to all other camera nodes.

Algorithm 2 describes what happens at each camera once a
packet is received from another camera. The inputs are a listof
current intersect points,IP ts, between the current camera and
all other cameras, a list of local observations,Obs, and a list of
possible intersect point,Pts, at timet from cameracamID.
The output is an updated list of intersect points. Each entry
in IP ts corresponds to a potential match between the current
camera and another camera, and will contain thecamID of
the other camera, the coordinates of the intersect point in both
camera frames, and detection times. In order to compute the
frequency of detections, each entry ofIP ts will maintain a
count of the number of times there were detections incamID

and the current camera (we refer to this as amatch), and
how many times there were detections incamID but not the
current camera (we refer to this as amismatch).

In the algorithm,getPPtsreturns a list of potential intersect
points PPts between cameras by calculating all pairwise
combinations between the received detections and the ob-
servations at timet. Each entry ofPPts will contain both
coordinates for the intersection point (the one for the camera
in question and the other for the transmitting camera), and also
the camID from which the detection points were received.
PointIsNotIPt estimates the desired conditional probabilities
using the formula

P (Dt
local|D

t
moteID) ≈

#Match

#Match + #Mismatch
,

and returns1 if the frequency is too low, in which case we
eliminate the intersect point using the functionRemoveIPt.
This is done to ensure the list does not grow too large.Find-
CamIDMatchis a function that returns the matches between
the non-local coordinates in the provided intersect point and
the list of PPts, if camID matches the ID in the provided
intersect point, otherwise, it returns an empty list. Coordinate
matching is done by allowing for small variations in the
coordinate values.PointMatchdetermines if the points match
in local and non-local coordinates.MismatchFoundupdates the
count of matches in the provided intersect point and stores the
detection times.MatchFoundupdates the count of matches in
the provided intersect point and detection times.AddIPt adds
a new intersect point to the list. New points are added when
no matches have been found in the original listIP ts.

We conclude that there is an overlap between two cameras
(i.e. a 1-simplex) if there is an entry in theIP ts between
these cameras with a high detection probability. Similarly, we
can find intersections between three cameras (i.e.2-simplices).
Note, we only require up to2-simplices for the construction
of the CN -Complex since we only expect to recover planar
information about the coverage.

Data storage and processing occurs distributely. However,
in order to analyze theCN -Complex, it is necessary to send

Fig. 8. Layout of a circular corridor setup with two targets moving
through the environment (left). Intersect points found, plotted as squares, for a
threshold valueτ = 0.5 with corresponding bisecting lines, plotted as dashed
lines (right).

the list of interior points to a central node. Of course, thisonly
happens at the end of the observation period and the amount
of data to be transmitted will be small.

B. Simulations for Multiple Targets

In this section, we use the previous algorithms to build the
CN -Complex in a simulated environment. The 2D environ-
ment is made up of objects with piecewise linear boundaries
and point targets moving around the environment. Each camera
has a conic field of view, is able to detect the targets, and
records positions in its local reference frame. All cameraswill
be assumed to be perfectly synchronized.

As a first example, consider a setup similar to a corridor
structure with four cameras located at each corner as shown
in figure 8. In this simulation, we consider two targets mov-
ing around independently. A short path from each target is
displayed in the plot on the left. The cameras bisect every
time an occlusion is detected. The resulting bisecting lines
are shown in figure 8 (right). After intersect points with
corresponding frequencies have been calculated, we threshold
on the frequencies of detections. Any frequency value greater
than a threshold1−τ is considered a valid intersect point. We
use1−τ since we want the number of valid intersect points to
increase withτ (which guarantees inclusion of complexes as
required for the persistence analysis). The right plot in figure
8 show some intersect points found by selecting a threshold
of τ = 0.5.

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ 0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

τ

Fig. 9. CN -Complexes for several values ofτ (top) and persistence diagrams
(bottom) are shown for the circular corridor setup in figure 8.We observe that
the diagram shows a persistent single connected component and a persistent
loop.

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ

0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

Fig. 10. Layout of an environment with two objects and three targets (left).
Corresponding persistence diagrams showing a single persistent connected
component and two holes (right).

As described in section III-B, it is possible to analyze
the topological structure of the data over all values ofτ

by employing the persistence of topological features. Figure
9 illustrates the persistence diagrams and several simplices
recovered at different thresholds. The diagrams clearly show
the persistence of a single connected component and a hole in
the layout. Choosing a value ofτ ∈ [0, 0.65] gives the correct
simplices.

Figure 10 (left) illustrates another example in which two
objects are placed in an environment with six cameras and
three targets. The persistence diagram in the right plot shows
the persistence of a single connected component and two holes
in the environment, as desired.

VI. EXPERIMENTATION

In this section, we consider an experimental setup with three
cameras placed in indoors. We utilize three computers that are
synchronized using the Network Tiem Protocol (NTP) for data
acquisition and employ no prior knowledge about the camera
locations, no appearance or tracking models, or no knowledge
about the number of targets. Though the processing is done
offline, the amount of computation and data transmission
required are small enough to occur distributedly on a sensor
network platform such as CITRIC [23]. The sequence utilized
for our analysis corresponds to about8.5 minutes of recording
with the first3.2 minutes corresponding to a single target, the
next 3.3 minutes corresponding to a different single target,
and the last2 minutes corresponding to two targets moving
in the environment. Images were captured at about10 frames
per second at a resolution of320 × 240.

The physical setup of our experiment is shown in figure
11. Views from the three cameras are shown in the middle
row. Importantly, note that though there is overlap betweenthe
three cameras, it is nearly impossible to find common features
between these views due to the large change in perspective.
The decomposed camera views (after finding bisecting lines)
are shown at the bottom of the figure. Note that there are three
regions in camera1, one in camera2, and five in camera3.

We compute intersect points and corresponding frequencies
as described in the previous section. However, instead of
considering every possible pixel as an intersect point, we split
the image domain into blocks of size10 × 10 and treat these
regions as our points. In our experiment, we only consider
points that have been observed more than10 times. Figure
12 (left) shows the corresponding simplex when thresholding

Fig. 11. Experimental setup: Physical layout for cameras in the experiment
(top). Views for cameras1 (middle-left) through 3 (middle-right), and
corresponding detected bisecting lines (bottom).

with a value of τ = 0.5. From the right plot, we observe
that a single connected component and a single hole in the
domain are the persistent topological features in the coverage,
as desired.

Since detections are only transmitted after an occlusion
event, the transmission rate is low. Figure 13 shows a summary
of the number of blocks in which a detection was made for
each camera over time.

Table I shows the total number of blocks detected, number

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ

0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

Fig. 12. CN -Complex found for our experiment using a threshold value
of τ = 0.5 (left). Persistence diagram for the filtration obtained from the
experiment (right). Note, a single connected component and hole are the
correct persistent features. The hole is due to the column in the middle of the
room.

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

N
um

be
r

of
 D

et
ec

tio
ns Camera (1)

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

Camera (2)

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

Camera (3)

Fig. 13. Plots of the number of block detections per occlusionevent over
time. We note that the events are relatively sparse (over an 8.5 minutes period),
and the number of blocks detected at each time step is under15 in most cases.

TABLE I
SUMMARY OF DETECTIONS FOR THEWHOLE SEQUENCE

Camera Total Blocks Total Frames Data to be Transmitted
1 609 172 1.9 kBytes / 8.5 min
2 261 37 0.7 kBytes / 8.5 min
3 880 260 2.7 kBytes / 8.5 min

of frames where there was a detection, and the estimated data
size for transmission from each camera to the other cameras.
The latter quantity is estimated by assigning two bytes to
encode each block coordinate and four bytes to encode the
time stamp. Note, no additional compression is performed.

VII. C ONCLUSION

In this paper, we present a method to construct the sim-
plicial representation of a camera network, which captures
information about the connectivity and the number of holes
in the coverage. The approach presented in this paper takes
advantage of the temporal correlation between detections from
different synchronized camera views. The method is designed
to work with multiple targets and noisy observations by
exploiting the persistence of topological features. Simulations
and experiment are used to validate our approach and demon-
strate its efficiency in terms of low communications costs.

Though we suggested an algorithm in which the data
processing and storing could easily be done distributedly,the
actual experimentation was done in a centralized fashion. In
the near future, we expect to implement our algorithm on a
platform like CITRIC [23] and test it on even larger camera
networks.

ACKNOWLEDGMENT

This research work was partially funded by the ARO MURI
grant W911NF-06-1-0076, and AFOSR grant FA9550-06-1-
0267.

REFERENCES

[1] M. Li and B. Yang, “A survey on topology issues in wirelesssensor
network,” in Proceedings of the International Conference on Wireless
Networks, 2006.

[2] E. Lobaton, A. Parvez, and S. Sastry, “Algebraic approach to recovering
topological information in distributed camera networks,” inProceedings
of the 8th international Conference on Information Processing in Sensor
Networks, 2009.

[3] A. van den Hengel, A. Dick, and R. Hill, “Activity topology estimation
for large networks of cameras,” inProceedings of the IEEE International
Conference on Video and Signal Based Surveillance, 2006.

[4] R. Hill, A. van den Hengel, A. Dick, A. Cichowski, and H. Detmold,
“Empirical evaluation of the exclusion approach to estimating camera
overlap,” inProceedings of the 2nd ACM/IEEE International Conference
on Distributed Smart Cameras, 2008.

[5] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between cameras,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004.

[6] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibration and
tracking with a network of non-overlapping sensors,” inProceedings of
the IEEE Computer Society Conference on Computer Vision andPattern
Recognition, vol. 1, 2004, pp. I–187–I–194.

[7] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed local-
ization of networked cameras,” inProceedings of the fifth international
conference on Information processing in sensor networks, 2006.

[8] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking cor-
respondence modeling,” inProceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003.

[9] L. L. Presti and M. L. Cascia, “Real-time estimation of geometrical
transformation between views in distributed smart-cameras systems,”
in Proceedings of the 2nd ACM/IEEE International Conference on
Distributed Smart Cameras, 2008.

[10] M. Meingast, M. Kushwaha, S. Oh, X. Koutsoukos, A. Ledeczi, and
S. Sastry, “Fusion-based localization for a heterogeneouscamera net-
work,” in Proceedings of the 2nd ACM/IEEE International Conference
on Distributed Smart Cameras, 2008.

[11] D. Marinakis and G. Dudek, “Topology inference for a vision-based
sensor network,” inProceedings of the Second Canadian Conference on
Computer and Robot Vision, 2005.

[12] D. Marinakis, P. Giguere, and G. Dudek, “Learning network topology
from simple sensor data,” inProceedings of the twentieth Canadian
Conference on Artificial Intelligence, 2007.

[13] X. Zou, B. Bhanu, B. Song, and A. Roy-Chowdhury, “Determining
topology in a distributed camera network,” inIEEE International Con-
ference on Image Processing, 2007.

[14] Z. Cheng, D. Devarajan, and R. Radke, “Determining vision graphs for
distributed camera networks using feature digests,”EURASIP Journal
on Applied Signal Processing, vol. 2007(1), 2007.

[15] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual
correspondences using random projections,” inProceedings of IEEE
International Conference on Image Processing, October 2008.

[16] V. de Silva and R. Ghrist, “Coordinate-free coverage insensor networks
with controlled boundaries via homology,”The International Journal of
Robotics Research, vol. 25, pp. 1205 – 1221, 2006.

[17] A. Hatcher,Algebraic Topology. Cambridge University Press, 2002.
[18] J. Munkres,Topology, 2nd ed. Prentice Hall, 2000.
[19] “PLEX: A sytem for computational homology,” Mar 2009,

http://comptop.stanford.edu/.
[20] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, “Persistence

barcodes for shapes,” inProceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. ACM New York,
NY, USA, 2004, pp. 124–135.

[21] A. Zomorodian and G. Carlsson, “Computing persistent homology,”
Discrete and Computational Geometry, vol. 33, no. 2, pp. 249–274,
2005.

[22] B. Jackson, R. Bodor, and N. Papanikolopoulos, “Learning static oc-
clusions from interactions with moving figures,” inProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004.

[23] P. C. et al., “CITRIC: A low-bandwidth wireless camera network
platform,” in Third ACM/IEEE International Conference on Distributed
Smart Cameras, 2008.

