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Abstract—While performing tasks such as estimating the
topology of camera network coverage or coordinate-free objdc
tracking and navigation, knowledge of camera position and other
geometric constraints about the environment are considered un-
necessary. Instead, topological information captured by the ao
struction of a simplicial representation called the CN-Complex
can be utilized to perform these tasks. This representation can
be thought of as a generalization of the so-called vision graph of
a camera network. The construction of this simplicial complex
consists of two steps: the decomposition of the camera coverage
through the detection of occlusion events, and the discovery of
overlapping areas between the multiple decomposed regions. In
this paper, we present an algorithm for performing both of these
tasks in the presence of multiple targets and noisy observations.
The algorithm exploits temporal correlations of the detections to
estimate probabilities of overlap in a distributed manner. No
correspondence, appearance models, or tracking are utilized.
Instead of applying a single threshold on the probabilities,
we analyze the persistence of the topological features in our
representation through a filtration process. We demonstrate te
validity of our approach through simulation and an experimental
setup.

I. INTRODUCTION

Though the identification of the exact location of target:
and objects in an environment is considered essential
many applications in the realm of sensor networks, thel
exist numerous tasks wherein simple topological inforomati
about the network is sufficient. For example, knowledge c¢
the topology of a camera network makes it possible to desi¢
efficient routing and broadcasting schemes as discussed by
Li et al. [1], or it makes it possible to build powerful coondite

free tracking and navigation algorithms as discussed by | r i Lo B
Lobaton et al. [2]. Given its utility, the construction ofigh
topological information becomes a critical task. Fig. 1. TheCN-Complex for a network of three cameras constructed using

Topological information is traditionally captured thrdug the methodology presented in this paper. The views from reiffecameras

what are called vision araphs where vertices re res(:mt)Enétop-leﬂ). Bisected views due to occluding objects (taght). Simplicial
grap ) p -tomplex built by finding the overlap in the coverage of the cam¢bottom).

and edges represent overlap between their fields of viewe simplicial complex, correctly, contains a single hole.(the loop with
Unfortunately the topology of a domain embedded R Verticesla, 1b, 3b, 3c and3d) that corresponds to the column which acts as
- . ?In occluding object in the physical coverage.
is intimately related to detecting holes, and these graphs
are unable to detect this information. In order to deal with
this shortcoming, E. Lobaton et al. introduced a combinato-
rial representation for a camera network called the Camdtaee sets with edges or triangular faces, respectivelg (se
Network Complex, orC N-Complex [2]. It is a simplicial section Ill for more details). This representation, whieim be
complex built after decomposing the fields of view of camerdlought of as a generalization of a vision graph, was prowen t

at occluding contours and identifying the overlap of two ocapture the appropriate topological information regaydime



coverage of a camera network in scenarios where occlusidirgsti et al. [9] also compute homographies by approxirgatin
are due to vertical structures (e.g. walls and entrancésugh tracks using piecewise linear segments and appearancdsnode
simulations and a simple experiment constructed with a&ingv. Meingast et al. [10] utilize tracks and radio interferdme
target and perfect foreground detection were presenteldein to fully localize cameras. Although these approaches /ol
original paper, no algorithm was given for handling mukipl accurate camera localization, no actual information alboeit
targets and noisy observations. This paper will present aaverage of the network is recovered (i.e. no charactévizat
approach to constructing th@/N-Complex robustly (a sample of the objects occluding the field of view or holes in the
construction is illustrated in figure 1). coverage is provided).

Our approach will only employ temporal correlation be- Marinakis et al. [11] work on constructing a vision graph
tween observations rather than a correspondence or appeardy finding the connectivity between the overlapping coverag
model, in order to determine the connectivity informationf cameras by using only reports of detection. They employ
between cameras. A distributed version of the algorithmh wi Markov model for modeling the transition probabilitiedan
be outlined in which data will be processed and stored oninimize a functional using a Markov Chain Monte Carlo
sensors with limited computing capability. The result wilBampling method. They also present a different formulation
be a collection of simplices with assigned probabilities ai¥f the same problem using “timestamp free” observation.[12]
occurrence, which can then be thresholded to select the mBsth of these presentations are computationally experside
likely simplices. therefore difficult to construct in a distributed manner on

The rest of the discussion proceeds as follows: a brisénsors.
review of similar work is presented in section II; the regdir  Other approaches to obtaining a vision graph have been
mathematical background is introduced in section Ill; isect pursued by utilizing target identification as explored byuZo
IV shows how to find bisecting lines in a robust way; sectioat al. [13]. Cheng et al. [14] build a vision graph in a dis-
V describes how to compute points in the intersection betwegibuted manner by exchanging feature descriptors fronh eac
different cameras and outlines a distributed implememtatif camera view. In their work, each camera encodes a spatially
the process; finally, the validity of this approach is vedfia well-distributed set of distinctive, approximately vieipt-
section VI through a real life experiment with multiple tatg.  invariant feature points into a fixed-length “feature difjes
that is broadcast throughout the network to establish eorre
spondence between cameras. Yeo et al. [15] utilize a random

The recovery of topological information about camera neprojection based framework to exchange compact feature de-
work coverage has generally been pursued by the computatganiptors in a rate-efficient manner to establish corredpnoe
of activity topology and vision graphs. Activity topologgfers between various camera views. Although both of these meth-
to the set of possible paths that moving targets can tafids work efficiently, they suffer from being overly restivet
through the field of views of cameras, and vision graphs alg using appearance models.
graphs where every node represents a camera view and edgés addition to their variety of shortcomings, all of the ap-
specify the overlap between pairs of cameras. Usually|@wer proaches mentioned to this point have the common shortcom-
is determined through the use of correlation between teatpoing of pursuing representations that are unable to chaiaete
detections, appearance models, or both. holes in the coverage. Unfortunately, as we discussedeearli

A. van den Hengel et al. [3] introduce an exclusion approathe topology of a domain embeddedRs is intimately related
to the solution of the activity topology recovery problemo detecting holes. To address the detection and recovery
by starting with all possible combinations of topologicabf holes by topological methods for sensor networks, most
connections and removing links that are inconsistent vilirt assume symmetric coverage (explicitly or implicitly) orighn
observations. An evaluation of the method and datasets density of sensors. In particular, Vin de Silva et al. [16{abb
made available in [4]. Though their method only relies on deke Rips complex based on the communication graph of the
tections of the target and avoids the use of appearance sjodettwork and compute homologies using this representation.
it has the unfortunate shortcoming of requiring the cordrst Though this method captures the correct coverage of the
streaming of detections from each camera. Other approacbeasor network, the assumptions made are generally invalid
include the study of camera networks with overlap througbr camera networks.
the use of the statistical consistency between observayon E. Lobaton et al. introduce a combinatorial representation
Makris et al.[5]. for a camera network called thi&N-Complex [2] to overcome

Rahimi et al. [6] describe a simultaneous calibration aralerly restrictive assumptions and prove that they canucapt
tracking algorithm (with a networks of non-overlapping serthe appropriate topological information about the coveraf
sors) by using velocity extrapolation for a single targemigk the camera network. This paper will present an approach to
et al. [7] introduce a distributed algorithm for simultanso constructing theC N-Complex robustly.
localization and tracking with a set of overlapping cameras
Stauffer et al. [8] determine the connectivity between tager
ping camera views by calculating correspondence models beThis section is meant to introduce the mathematical frame-
tween cameras in order to extract homography models. L. mrk to be used throughout the rest of this paper. For a more

Il. RELATED WORK
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Fig. 2. A collection of sets (left) and corresponding nereenplex (right).

The complex is formed by simplicedt], (2], [3], [4], [5], [1 2], [2 3], [24], Fig. 3. Snapshots for a family of sefs for ~ € [0, 1]. The collection starts

(2 5], [3 5], [45] and (2 4 5]. with two connected components which mergerat 0.4 as shown in thedy
diagram. A hole is present until = 0.15 as depicted in the3; diagram.

formal discussion of the topological concepts presented, he

we refer the interested reader to Hatcher [17] or Munkred [18&uch thatC, C C, wheneverp < ¢. An example of such a
collection is shown in figure 3.

A. Simplicial Complex It is possible to track topological features as a function of

Definition 1: Given a collection of verticed” we define a the parameter. Most importantly, these features have a "life
k-simplex as a seflv; vs vs ... ve1] Wherev; € V and span” corresponding to the time at which the feature appears
v, # v; forall i # j. If A and B are simpli::es and the @nd the time at which it disappears. For example, figure 3

7 J .

vertices of B form a subset of the vertices of, then we say illustrates the collection of pixels start with two conrestt
that B is aface of A. ’ components which eventually mergeat= 0.4, and it also

illustrates the collection start with a hole that disappedr =

0.15. This information is depicted as a persistence diagram at
the bottom of figure 3. Carlsson and Zomorodian prove that
the computation of these life spans is equivalent to calitga
the roots of a polynomial.

Definition 2: A finite collection of simplices is called a
simplicial complexif whenever a simplex lies in the collection
then so does each of its faces.

Definition 3: The nerve complex of a collection of sets
S = {S;}N,, for N > 0, is the simplicial complex whose : ) _ _ .
vertexu; corresponds to the s&t and whosek-simplices cor- We will exploit the persistence of topological features in

respond to non-empty intersections/of- 1 distinct elements order to make computations robust to the choice of parameter
of S 7. Consider, for example, figure 4 for which we are trying

60 calculate the number of connected components. The left
image in the figure corresponds to the output of a segmentatio
algorithm. Using eight-neighbor connectivity we calcalat

4 connected components. By comparing this result to the

of the collection of sets$ is contractible, then we can recoverperSIStence diagram (the right image in figure 4), we recgni

the number of connected components and holes in the unm!‘? result with an oversensitivity to a particular choick o

of these sets from the nerve complex. This information %egmentation. By exploiting the persistence diagram, weear

recovered from what are calleBetti numbers where g "ft6two mor? r;:asonable atnS\évers to th? qusﬁtlon at handt eltk?e
corresponds to the number of connected componentsGand ™ connected components by computing the average number

corresponds to the number of holes. Importantly, once the%f components over the specified range or a single component

e
have been calculated one can perfectly recover the topabgi

since it is the most persistent number of components. We will
coverage of a sensor network. Software packages sucheéglo't the persistence of topological features in ordentke
PLEX [19] can be used to compute these quantities.

AU computations robust to the choice of parameter
example illustrating the construction of a nerve complex ca

It is possible to define algebraic structures using this dem
natorial representation calléebmologies which capture all of
the topological information about the union of the collenti
of sets. In particular, it is known that if every finite intecsion

be found in figure 2. In this casej, = 1 since there is a By D‘iagramr
single connected component afid= 1 since there is a hole.
B. Persistent Homology
In this section, we informally develop the notion of persis r—
tent homology and barcodes, as introduced by Carlsson ¢ . v v o o ]

Zomorodian [20], [21], to robustly calculate the topolagic
features of a simplicial complex. In order to illustrate ttea,

we will consider complexes built from binary images whiclffig. 4. TheSp set corresponds to the segmentation of an image (left)
are easier 10 visualize. Note that simplicial complexes man Gy, So"esPordnd dadram (i) he collectos’ s obtanec by,
built from a collection of pixels by defining simplices be®ve an average ofl.6 connected components or a single persistent connected
neighboring pixels. We consider a collection of simpliciggomponent.

complexesC, for r € [0, 1] obtained from setS.., constructed

T
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Fig. 5. CN-Complex for two camera networks. Three cameras where r
bisecting lines are found due to occlusion (left). In thisegathe complex
is the same as the vision graph. Two cameras wherein the firstraase
split into regionsla, 1b and 1c and the second camera is unsplit (right).
The resulting simplicial complex captures the fact that there hole in the
coverage. Note that a vision graph would only give two nodes @ single
edge between them.
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Fig. 6. Steps for finding bisecting lines: For the originakwi (top-

left), the boundaries of the foreground masks are accumulateehever
occlusion events are detected (top-right). Vertical hisgdines are estimated

C. TheCN-Complex by aggregating observations over all rows and obtainingitdéees of the
P column in which the highest detections were obtained (bot&fth-Bisecting

The construction defined here is applicable when targets Lipes are_further refine(_i through a linear fit procedure usirggaccumulated
. . . . observations (bottom-right).
moving in a planar domain and walls are erected vertically m
the domain. The cameras are at fixed, but unknown locations

in this environment. Our gpal will be to chgrac'terlze the> .occluding boundary with vertical lines and then refining the
tectable setof the camera, i.e. the set of points in the doma'ﬁhe fit

in which a target is detected by any of the cameras. E. Lobator]n figure 6 (top-left), we observe a camera view with
et al. [2] proved that the topology of this set is captured b%’everal occluding bour’1daries due to walls and a column.

a simplicial representation called th@N-Cpmplex as Iong. The accumulated boundaries of the foreground detectians ar
as the detectable set for each camera is connected. Flgsunre

5 compares the construction of the simplicial complex @ o O" the top-right. Initial estimates for the boundades
P . " P omp Shosen at the peaks of the distributions of detections along
the construction of the vision graph for two basic came

'ch column (bottom-left). Finally, the estimates are eafin
configurations. Notice that the vision graph is unable t@ctet . j " .
. by performing a least-squares fit on the data with respect to
the hole in the camera coverage.

: . . all the points on the boundary that are close to the vertical |
As figure 1 illustrates, the construction of theV-Complex P y

) . . ) estimates. The final result is shown in the bottom-right.plot
proceeds in two steps: (1) image domain decomposition using

vertical bisecting lines corresponding to the occludinge=d V. FINDING INTERSECTPOINTS
of walls, and (2) finding the overlap between the fields of

view of the cameras. The goal of this paper is the presentatio ! this section, we assume that the bisections within each
of algorithms for the construction of th& N-Complex in the camera view have been calculated. We focus only on determin-

presence of multiple targets and noise in the observatitmes. N9 the connectivity between camera pairs. More specificall
hae look forintersect points (i.e. points in the intersection of

analysis of the topology will be performed by employing t Qe lc i i i )
persistence of the topological features. the field of views qf thg c;ameras). In the foIIowm.g discussio
we assume for simplicity that each sensor will be able to
uniquely identify any point in its coverage. In other words,
we assume a homeomorphism between the image domain from
In this section, we address the problem of detecting tle@ch camera and its coverage. No target identification will b
bisecting lines that decompose the image domain of a cameracessary, but localization and recurrence over time vell b
To this end, we assume that we have a simple backgrouexploited.
subtraction algorithm (e.g. thresholding with respect to a We illustrate our approach by first considering the example
background image). We then utilize an algorithm presentéu figure 7. We assume that we have two cameras in a room
by B. Jackson et al. [22], which consists of accumulating the areal with region R; in the coverage of camera and
boundary of foreground objects wherever partial occlusiorR: in the coverage of camera We assume that we havé
are detected. In our case, we only store the detections astirtargets, where the probability of a target’s location iSomnly
when occlusion events occur. We are uninterested in thet exdistributed over the room. We defirg/ as the event that there
boundary of the objects, but only the bisecting lines. Henads a detection inR; at time¢, and D} is its complement. For
we will take the simpler approach of first approximating angimplicity, we assume that we detect a targetAp if and

IV. FINDING BISECTINGLINES



Algorithm 1: Obs = TransmitPts(Obs,imSeq,t,camID)
> " 5 Obs =UpdateObservatior{®bs,imSeq,t)
if OcclusionDetectg@®bs,t)
Pts =ComputeP#Obs)
T~ ® 1 22 1 R, end

TransmitPt§Pts,t,camiD)
R, Rq Ry

between two and three cameras respectively. Locally, each
camera will make observations and store detections afteyev
Fig. 7. Geometric depiction illustrating different oventaipg configurations occlusion event. These detections will be transmitted to al
%”lda‘;%r;g;g(r’g‘zi'ig?oi‘fﬁtvfl‘;t'g;nggal%'\',v”'\‘f; itg?g?l'D'?t)“gg’%'}"lf"lvgi’;zer other cameras, and every time a camera receives a detection
|R2| & 0.005 then P(D{|D%) ~ 0.01 by using equation 3. For a partial message from another camera, the appropriate pairwisg¢scoun
overlap, we expfct a larger probat:ilitytvalNue (middle).Afi | ~ |R2| ~ 0.01  will be updated. Detections only occur at bisecting linelsicl
g‘gge‘sle Ltjhfﬂﬁ(gt(l]g}fih‘fhpwﬂl)l) ~ 0.5. For a perfect overlap, we gra 3 subset of the image domain. In our simulations, we will
2 show that this subset will be sufficient to determine whether

there is an overlap in coverage between cameras.
only if it is actually present (i.e. there are no errors in our Algorithm 1, which is executed every time a new frame is

detections). Hence, we have captured, describes how intersection points can be comipute
- and transmitted to all other cameras. The input is a locdébuf
P(D{) =1- P(D}) =1—|R{|", (1) of observations,0bs, containing detections from previous
and frames, a sequence of imagespSeq, around the current
frame at timet, the current timet, and the identification
P(D{ADj) = 1-P(DiADj) number,camID, of the camera transmitting the points. The
= 1- P(Dtv Di) function returns updated observatiori3bs, and transmits a
= 1—(P(D!)+ P(DY) — P(Dt A DY) collection of points whenever an occlusion is detected.
= 1—|RS|N — RSN + |(Ry U Ry)e|N Several functions are used within the previous algorithm.

UpdateObservationsipdates a local buffer storing target de-

where A¢ is the set complement for a séf and| 4| is its area. t€ctions over time using the current images and the corre-
Therefore, the probability of detecting a targetfa given a SPonding timesOcclusionDetectedetermines if an occlusion

detection inR; is given by event has occurred based on the observati@mnputePts
P(Dy|D}) = DEALED
B TREIN —|(RyURa)"|N (3) Algorithm 2: IPts = UpdatinglPts(IPts,Obs,Pts,t,camID)
= 1- ( =[RSV ) . PPts =getPPt$Pts,Obs,t,camID)
foundPt = zeros(length(PPts),1)

Intuitively, wheneverR; and R, are disjoint we expect for j = length(IPts)to 1
P(Di|DY) << 1. For a partial overlap, we expect a larger if PointisNotIP{IPts(j))
probability. For a perfect overlap, we expeetD}|Dt) = 1. IPts =RemovelRIPts,])
This observations are illustrated in figure 7. In our aldorit endcont'nue
P(Di|DY) is utilized as a direct measure of the confidence of idx = FindCamIDMatcliIPts(i),camID,PPts)
the overlap between cameragnd2. A similar argument can if isempty(idx)
be made for detection probabilities between three cameeas, continue
P(D% A DL|DY). Note thatP(D| DY) can be approximated l?onudndIPt o
by counting the number of times that a target is detected in fori=1 t_o length(idx)
R; and R, whenever there are detections . if PointMatch(IPts(j),PPts(idx(i)))

It is possible to bound these conditional probabilitieshsuc foundPt(idx(i)) = 1
that values above a given threshold are guaranteed to corre- foundIPt = 1
spond to a sufficient overlap between two regions. However, dend
such a bound would require knowledge about the distribution ﬁnfoundIPt
of a target’s location, the number of targets and the gegmetr IPts(j) = MatchFoundIPts(j),t)
of the environment, but this information maybe unavailable else
and calculating an arbitrary cut-off may be impossible.r€he le’tS(j) = MisMatchFoundlPts(j),t)

en

fore, we employ the filtration process to robustly analyze th end
observed data in order to avoid making undue assumptions. for i = 1 to length(PPts)
. if foundPt(i)==0
A. The Algorithm IPts = AddIP(IPts,PPts(i))
In this section, we describe an algorithm to estimate dis- end
tributely the probabilitiesP(D4|D}) and P(Di A Di| DY) end
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compiles a list of coordinates for the points where a degecti |’
occurred before (if it was a disappearance event) or aftf
(if it was an appearance event) an occlusidimnansmitPts |
periodically sends a list of detection points, a tireand “r
camID to all other camera nodes. h

Algorithm 2 describes what happens at each camera onc .
packet is received from another camera. The inputs areeaflist ° .
current intersect pointd,Pts, between the current camera an(s1 4 o -4
all other cameras, a list of local observatiof®$s, and a list of
possible intersect pOinIPts, at timet from cameracamID. Fig- 8. Layo_ut of a circular corridor setup with two targets ving
The output is an updated list of intersect points. Each enwour?hktjhe Ienvwgnment'(left). Intersect points found teit as squares, for a

eshold value- = 0.5 with corresponding bisecting lines, plotted as dashed
in I Pts corresponds to a potential match between the currainés (right).
camera and another camera, and will contain diwe /D of
the other camera, the coordinates of the intersect poinbtin b
camera frames, and detection times. In order to compute the list of interior points to a central node. Of course, thidy
frequency of detections, each entry BPts will maintain a happens at the end of the observation period and the amount
count of the number of times there were detectionssim/D  of data to be transmitted will be small.
and the current camera (we refer to this asnatch), and
how many times there were detectionscirmI D but not the
current camera (we refer to this asrasmatch). In this section, we use the previous algorithms to build the

In the algorithm getPPtsreturns a list of potential intersectC /N-Complex in a simulated environment. The 2D environ-
points PPts between cameras by calculating all pairwisgent is made up of objects with piecewise linear boundaries
combinations between the received detections and the @lpd point targets moving around the environment. Each aamer
servations at timeg. Each entry of PPts will contain both has a conic field of view, is able to detect the targets, and
coordinates for the intersection point (the one for the camegecords positions in its local reference frame. All camevals
in question and the other for the transmitting camera), dsw abe assumed to be perfectly synchronized.
the camID from which the detection points were received. As a first example, consider a setup similar to a corridor
PointlsNotIPt estimates the desired conditional probabilitiestructure with four cameras located at each corner as shown
using the formula in figure 8. In this simulation, we consider two targets mov-

ing around independently. A short path from each target is
#Match . . .
~ : , displayed in the plot on the left. The cameras bisect every

#Match + #Mismatch time an occlusion is detected. The resulting bisectingsline
and returnsl if the frequency is too low, in which case weare shown in figure 8 (right). After intersect points with
eliminate the intersect point using the functi®@movelPt corresponding frequencies have been calculated, we thicksh
This is done to ensure the list does not grow too lafged- on the frequencies of detections. Any frequency value great
CamIDMatchis a function that returns the matches betweehan a threshold — 7 is considered a valid intersect point. We
the non-local coordinates in the provided intersect poird ausel —7 since we want the number of valid intersect points to
the list of PPts, if camID matches the ID in the providedincrease withr (which guarantees inclusion of complexes as
intersect point, otherwise, it returns an empty list. Cawate required for the persistence analysis). The right plot inrkg
matching is done by allowing for small variations in thé show some intersect points found by selecting a threshold
coordinate valuesPointMatchdetermines if the points matchof = = 0.5.
in local and non-local coordinatdglismatchFoundipdates the
count of matches in the provided intersect point and stdres t
detection timesMatchFoundupdates the count of matches in
the provided intersect point and detection timéddIPtadds
a new intersect point to the list. New points are added whe 3b
no matches have been found in the original li$tts.

We conclude that there is an overlap between two camer
(i.e. a1-simplex) if there is an entry in théPts between t=0.9
these cameras with a high detection probability. Similaxlg B, Diagram B, Diagram
can find intersections between three cameras2isémplices).
Note, we only require up t@-simplices for the construction ° % % ¢ 06 08 10 02 04 ¢ 06 08 1

of the C N-Complex since we only expect to recover planar o CN-Compl . vl {top) and . i

; ; Fig. 9. C' N-Complexes for several valuesoftop) and persistence diagrams

information about the Covera_ge' L (bottom) are shown for the circular corridor setup in figur&\@ observe that
Data storage and processing occurs distributely. Howevgk diagram shows a persistent single connected componerd gersistent

in order to analyze th€’N-Complex, it is necessary to sendoop.

B. Simulations for Multiple Targets

P(Ditocal |D£noteID)

2a
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Fig. 10. Layout of an environment with two objects and thregdts (left). \ I N /
Corresponding persistence diagrams showing a single tmrsisonnected
component and two holes (right). “ : ” //
LI | /
As described in section IlI-B, it is possible to analyze ‘\ : I’ //
the topological structure of the data over all values rof Vil s
by employing the persistence of topological features. fgu V1! 7
9 illustrates the persistence diagrams and several siagplic Wi s
recovered at different thresholds. The diagrams clearbwsh s
the persistence of a single connected component and a hole g/:s

the layout. Choosing a value efe [0,0.65] gives the correct
simplices. T
Figure 10 (left) illustrates another example in which twc |
objects are placed in an environment with six cameras al
three targets. The persistence diagram in the right plovsho™
the persistence of a single connected component and twe hc
in the environment, as desired. :

VI. EXPERIMENTATION

In this section, we consider an experimental setup withethre
cameras placed in indoors. We utilize three computers tieat ¢
synchronized using the Network Tiem Protocol (NTP) for dat
acquisition and employ no prior knowledge about the camera
locations, no appearance or tracking models, or no knowledgg. 11. Experimental setup: Physical layout for cameras énetkperiment
about the number of targets. Though the processing is d Cfggzsglc')igﬁ] gf%retgigﬁr%?;ec(?r:gdl'iigzﬂ()bgggﬁ)g_h3 (middle-right), and
offline, the amount of computation and data transmission
required are small enough to occur distributedly on a sensor
network platfqrm such as CITRIC [23]. The sequence “,t“iz‘a\ﬁith a value ofr — 0.5. From the right plot, we observe
for our analysis corresponds to abaui minutes of recording 45+ 4 single connected component and a single hole in the

with the first3.2 minutes corresponding to a single target, thﬁomain are the persistent topological features in the eeer
next 3.3 minutes corresponding to a different single targel qesired

and the las minutes corresponding to two targets moving Since detections are only transmitted after an occlusion

in the environment. Images were captured at atiourames event, the transmission rate is low. Figure 13 shows a sugnmar

per second ata resolution 820 x 240. . ... of the number of blocks in which a detection was made for
The physical setup of our experiment is shown in figur :
ach camera over time.

11. Views from the three cameras are shown in the mid eTable | shows the total number of blocks detected, number
row. Importantly, note that though there is overlap betwiben '

three cameras, it is nearly impossible to find common feature

between these views due to the large change in perspect Tha
The decomposed camera views (after finding bisecting line '
are shown at the bottom of the figure. Note that there are thr b
regions in camerd, one in camer&, and five in camera.

We compute intersect points and corresponding frequenc ;
as described in the previous section. However, instead ©=0.5 Be LT o . Blof‘ag“aml
considering every possible pixel as an intersect point, pli¢ s
the image domain into blocks of si2é® x 10 and treat these Fig. 12. CN-Complex found for our experiment using a threshold value
regions as our points. In our experiment, we only considekr 7 = 0.5 (Igft). Persistence' diagram for the filtration obtainednfréhe

. . . experiment (right). Note, a single connected component ard a the
points that have been observed more théntimes. Figure

- ) _correct persistent features. The hole is due to the columineimrtiddle of the
12 (left) shows the corresponding simplex when threshgldimoom.

ﬁo Diagram
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Fig. 13. Plots of the number of block detections per occlugweent over (7]
time. We note that the events are relatively sparse (oversamBwtes period),
and the number of blocks detected at each time step is ufidarmost cases. (8]
TABLE |
SUMMARY OF DETECTIONS FOR THEWHOLE SEQUENCE [9]
Camera || Total Blocks | Total Frames|| Data to be Transmitted
1 609 172 1.9 kBytes / 8.5 min
2 261 37 0.7 kBytes / 8.5 min [10]
3 880 260 2.7 kBytes / 8.5 min

of frames where there was a detection, and the estimated dat

size for transmission from each camera to the other cameras.

The latter quantity is estimated by assigning two bytes f{t?]

encode each block coordinate and four bytes to encode the

time stamp. Note, no additional compression is performed.[;3

VII. CONCLUSION

In this paper, we present a method to construct the sifh?!
plicial representation of a camera network, which captures
information about the connectivity and the number of hold5]

in the coverage. The approach presented in this paper takes

advantage of the temporal correlation between detectioms f 16
different synchronized camera views. The method is dedigne

to work with multiple targets and noisy observations b}’u]
exploiting the persistence of topological features. Satiahs [1g]

and experiment are used to validate our approach and demiéa}

strate its efficiency in terms of low communications costs.
Though we suggested an algorithm in which the da[a]
processing and storing could easily be done distributebdy,
actual experimentation was done in a centralized fashion. [h]
the near future, we expect to implement our algorithm ona
platform like CITRIC [23] and test it on even larger camera
networks.
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