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Markov Chain Monte Carlo Data Association
for Multi-Target Tracking

Songhwai Oh, Member, IEEE, Stuart Russell, and Shankar Sastry, Fellow, IEEE

Abstract—This paper presents Markov chain Monte Carlo
data association (MCMCDA) for solving data association prob-
lems arising in multi-target tracking in a cluttered environment.
When the number of targets is fixed, the single-scan version
of MCMCDA approximates joint probabilistic data association
(JPDA). Although the exact computation of association probabili-
ties in JPDA is NP-hard, we prove that the single-scan MCMCDA
algorithm provides a fully polynomial randomized approximation
scheme for JPDA. For general multi-target tracking problems,
in which unknown numbers of targets appear and disappear at
random times, we present a multi-scan MCMCDA algorithm that
approximates the optimal Bayesian filter. We also present exten-
sive simulation studies supporting theoretical results in this paper.
Our simulation results also show that MCMCDA outperforms
multiple hypothesis tracking (MHT) by a significant margin in
terms of accuracy and efficiency under extreme conditions, such
as a large number of targets in a dense environment, low detection
probabilities, and high false alarm rates.

Index Terms—Joint probabilistic data association (JPDA),
Markov chain Monte Carlo data association (MCMCDA), mul-
tiple hypothesis tracking (MHT).

I. INTRODUCTION

ULTI-TARGET tracking plays an important role in

many areas of engineering such as surveillance [1],
computer vision [2], [3], network and computer security [4],
and sensor networks [5]. In the standard setup, some indistin-
guishable targets move continuously in a given region, typically
independently according to a known, Markovian process.
Targets arise at random in space and time, persist for a random
length of time, and then cease to exist; the sequence of states
that a target follows during its lifetime is called a frack. The
positions, or more generally partial states, of moving targets
are measured, either at random intervals or, more typically,
in periodic scans that measure the positions of all targets si-
multaneously. The position measurements are noisy and occur
with detection probability less than one, and there is a noise
background of spurious position reports, i.e., false alarms or
clutter.
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The essence of the multi-target tracking problem is to find
tracks from the noisy measurements. Now, if the sequence of
measurements associated with each target is known, multi-target
tracking (at least under the assumption of independent motion)
reduces to a set of state estimation problems, which, for the
purposes of this paper, we assume to be straightforward. Un-
fortunately, the association between measurements and targets
is unknown. The data association problem is to work out which
measurements were generated by which targets; more precisely,
we require a partition of measurements such that each element
of a partition is a collection of measurements generated by a
single target or clutter [6]. In the general case, uncertainty as to
the correct association is unavoidable.

Multi-target tracking algorithms are often categorized ac-
cording to the objective function that they purport to optimize:

* Heuristic approaches typically involve no explicit objec-
tive function. For example, the greedy nearest-neighbor
filter (NNF) [1] processes the new measurements in some
order and associates each with the target whose predicted
position is closest, thereby selecting a single association
after each scan. Although effective under benign condi-
tions, the NNF gives order-dependent results and breaks
down under more difficult circumstances.

* Bayesian approaches: (1) Maximum a posteriori (MAP)
approaches find the most probable association, given the
measurements made so far, and estimate tracks given
this association. (2) Bayes estimator approaches estimate
tracks by minimizing the posterior expected value of some
risk function. When the mean squared error is used as a risk
function, the Bayes estimator is an minimum mean-square
error (MMSE) estimate. The MMSE estimates of tracks
are computed by summing over all possible associations,
weighted by their posteriors.

Tracking algorithms can also be categorized by the way in

which they process measurements:

* Single-scan algorithms estimate the current states of tar-
gets based on their previously estimated states and the cur-
rent scan of measurements. Single-scan algorithms typi-
cally use a highly simplified approximate representation of
the posterior state estimate. (An exception is the Kalman
filter for which the exact posteriors can be computed.)

* Multi-scan algorithms estimate the current states of targets
based on their previously estimated states, multiple past
scans and the current scan of measurements. They may re-
visit past scans when processing each new scan, and can
thereby revise previous estimates in the light of new evi-
dence.

MAP approaches include the well-known multiple hypothesis

tracking (MHT) algorithm [7]. MHT is a multi-scan tracking
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algorithm that maintains multiple hypotheses associating past
measurements with targets. When a new set of measurements
arrives, a new set of hypotheses is formed from each previous
hypothesis. The algorithm returns a hypothesis with the highest
posterior as a solution. MHT is categorized as a “deferred logic”
method [8] in which the decision about forming a new track or
removing an existing track is delayed until enough measure-
ments are collected. MHT is capable of initiating and termi-
nating a varying number of tracks and is suitable for autonomous
surveillance applications. The main disadvantage of MHT in
its pure form is its computational complexity since the number
of hypotheses grows exponentially over time. Various heuristic
methods have been developed to control this growth [7], [9],
[10]; but these methods sacrifice the MAP property. Other MAP
approaches have been tried besides MHT, including 0-1 integer
programming [11] and multidimensional assignment [8]. As the
latter reference shows, the underlying MAP data association
problem is NP-hard, so we do not expect to find efficient, exact
algorithms.

Bayes estimator approaches to solve data association prob-
lems are even less tractable than the MAP computation. Several
“pseudo-Bayesian” methods have been proposed, of which the
best-known is the joint probabilistic data association (JPDA)
filter [1]. JPDA is a suboptimal single-scan approximation to
the optimal Bayesian filter; it can also be viewed as an assumed-
density filter in which the joint posterior distribution is approx-
imated by a product of simpler distributions such as moment-
matching Gaussian distributions. At each time step, instead of
finding a single best association between measurements and
tracks, JPDA enumerates all possible associations and computes
association probabilities {3, }, where (3;y is the probability that
the j'" measurement extends the k" track. Given an associ-
ation, the state of a target is estimated by a filtering algorithm
and this conditional state estimate is weighted by the association
probability. Then the state of a target is estimated by summing
over the weighted conditional estimates. JPDA has proved very
effective in cluttered environments compared with NNF [1]. The
exact calculation of association probabilities {G;1} in JPDA,
which requires the summation over all association event prob-
abilities, is NP-hard [12] since the related problem of finding
the permanent of a matrix is #P-complete! [14]. Some heuristic
approaches to approximate JPDA include a “cheap” JPDA algo-
rithm [15], “suboptimal” JPDA [16] and “near-optimal” JPDA
[17]. In [18], a single-scan data association problem is consid-
ered and a leave-one-out heuristic is developed to avoid the enu-
meration of all possible associations. Other Bayes estimator ap-
proaches include the probability hypothesis density (PHD) filter
[19], [20], probabilistic multi-hypothesis tracking (PMHT) [21],
and mixture reduction [22], to name a few.

The main contribution of this paper is the development of
a real-time multi-target tracking method called Markov chain
Monte Carlo data association (MCMCDA). Unlike MHT and
JPDA, MCMCDA is a true approximation scheme for the op-
timal Bayesian filter; i.e., when run with unlimited resources,
it converges to the Bayesian solution. As the name suggests,

IA #P-complete problem is computationally equivalent to computing the
number of accepting computations of a polynomial-time nondeterministic
Turing machine and #P contains NP [13].
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MCMCDA uses Markov chain Monte Carlo (MCMC) sampling
instead of enumerating over all possible associations. MCMC
was first used to solve data association problems by Pasula et al.
[23], [24], who showed it to be effective for multi-camera traffic
surveillance problems involving hundreds of vehicles. More re-
cently, in [25], MCMC was used to approximate the association
probabilities in JPDA and was shown to outperform Fitzgerald’s
cheap JPDA.2 MCMCDA goes beyond these contributions by
incorporating missing measurements, false alarms and an ability
to initiate and terminate tracks, so that the algorithm can be ap-
plied to the full range of data association problems.

The paper has two main technical results. The first is a
theorem showing that, when the number of targets is fixed,
single-scan MCMCDA is a fully polynomial randomized
approximation scheme for JPDA. More specifically, for any
e > 0and any 0 < 7 < 0.5, the algorithm finds estimates
within ratio ¢ with probability at least 1 — n in time com-
plexity O(e 2logn 'N(Nlog N + log(e™1))), where N
is the number of measurements. The theorem is based on
the seminal work of Jerrum and Sinclair [13], who designed
an MCMC algorithm for approximating the permanent of a
matrix and developed new techniques for analyzing its rate of
convergence. As mentioned earlier, the relationship between
JPDA and computing the permanent was identified by Collins
and Uhlmann [12]; the connection to the polynomial-time
approximation theorems of Jerrum and Sinclair was first no-
ticed by Pasula et al. [23]. Although our proof has the same
structure as that of Jerrum and Sinclair, substantial technical
work was required to complete the mapping from computing
the permanent to solving JPDA, including the usage of gating
conditions that ensure appropriate lower bounds on individual
association probabilities. In addition, we present simulation
results supporting our theoretical results.

Our second technical result is the complete specification of
the transition structure for a multi-scan version of MCMCDA
that includes detection failure, false alarms, and track initia-
tion and termination. We prove that the resulting algorithm con-
verges to the full Bayesian solution and present simulation re-
sults supporting the convergence result. We also provide the
first extensive experimental investigation of MCMCDA’s per-
formance on classical data association problems. We demon-
strate remarkably effective real-time performance of MCMCDA
compared to MHT under extreme conditions, such as a large
number of targets in a dense environment, low detection proba-
bilities, and high false alarm rates. We also present an example
in which MCMCDA runs 20 times faster than MHT while out-
performing MHT.

The remainder of this paper is structured as follows. The
multi-target tracking problem and its probability model are
described in Section II. In Section III, the Markov chain
Monte Carlo (MCMC) method is summarized. The single-scan
MCMCDA algorithm is presented in Section IV along with
the proof that it approximates JPDA in polynomial time. The
multi-scan MCMCDA algorithm is described in Section V.

2MCMLC has also been used for problems that are roughly isomorphic to the
data association problem, including state estimation in the switching Kalman
filter [26] and stereo correspondence in computer vision [3].
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II. MULTI-TARGET TRACKING

A. Problem Formulation

LetT € Z7 be the duration of surveillance. Let K be the (un-
known) number of objects that appear in the surveillance region
‘R during the surveillance period. Each object £ moves in R for
some unknown duration [t¥, ¢¥] C [1,T]. Each object arises at
a random position in R at t¥, moves independently around R
until ¥ and disappears. At each time, an existing target persists
with probability 1 — p, and disappears with probability p,. The
number of objects arising at each time over R has a Poisson dis-
tribution with a parameter A,V where Ay, is the birth rate of new
objects per unit time, per unit volume, and V' is the volume of
‘R. The initial position of a new object is uniformly distributed
over R.

Let F¥ : R"» — R"* be the discrete-time dynamics of the
object k, where n,, is the dimension of the state variable, and let
oF € R"= be the state of the object k at time ¢.3 The object k
moves according to

zfy = FF(af) +wy, fort=1tF ... th—1 (1)
where wf € R™= are white noise processes.

The noisy observation (or measurement) of the state of the
object is measured with a detection probability pq. With proba-
bility 1 — p4, the object is not detected and we call this a missing
observation. There are also false alarms and the number of false
alarms has a Poisson distribution with a parameter AV where
At is the false alarm rate per unit time, per unit volume. Let n,
be the number of observations at time ¢, including both noisy
observations and false alarms. Let 31; € R™ be the 5" obser-
vation at time £ for j = 1,...,ns, where n, is the dimension of
each observation vector. Each object generates an observation
at each sampling time if it is detected. Let H” : R"» — R"» be
the observation model. Then the observations are generated as
follows:

yi=1H i(z¥) + v if the j* observation is from ?)
ot Ut otherwise

where v/ € R™v are white noise processes and u; ~ Unif(R)
is a random process for false alarms.

The multi-target tracking problem is to estimate K, {t¥, tF}
and {zf : th <t <tk} fork =1,..., K, from observations.

B. Probability Model

In order to perform Bayesian inference on a multi-target
tracking problem, we need first to specify the probability model
for multi-target tracking. This section describes the probability
model and derives a formula for computing the posterior (up to
a normalizing constant).

Suppose that w denotes a set of parameters of interest. w is not
directly observable. Instead, we make a set of measurements Y.
The objective of Bayesian inference is to make probability state-
ments about w given Y. For this objective, we first need a joint

3We assume that targets are indistinguishable in this paper, but if observations
include target type or attribute information, the state variable can be extended
to include target type information.
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probability distribution P(w,Y’). Then the posterior P(w]Y)
can be represented as below using Bayes rule:

_ PwY)  PY|lw)P(w)
PwlY) = [PwY)dw  P(Y)

3)

where P(w) is the prior distribution of w and P(Y |w) is the
likelihood of Y given w.

In the probability model for multi-target tracking, w is an as-
sociation event, i.e., a partition of measurements such that each
element of the partition is a collection of measurements gen-
erated by a single target or clutter [6]. Since, in general, there
is no closed-form formula for computing P(Y"), one can only
compute P(w|Y") up to a normalizing constant, which requires
computation of P(Y |w) and P(w). For a fixed association event
w, P(Y|w) can be computed by solving a set of single-target
tracking problems. Hence, we focus our attention to the deriva-
tion of P(w) in the remainder of this section.

We first define {w} for all possible measurement
sizes. Let u be a nonnegative T-dimensional vector, i.e.,
w = [p1,...,pu7]T, representing the possible numbers of
measurements from ¢ = 1 to ¢t = T, where u; € Z+ U {0}.
For each value of pu, define a set of measurement indices
T ={(1),(t,2),...,(t p)} for uy > 0, where (t,4) is an
index to the i** measurement at time ¢, and Y4 = () for ji; = 0.
Now let T# = UL_, T# be an index set to a set of measurements
whose size matches y and let the set {Y# : € ZT} contain
all possible index sets.

For each p, let Q* be a collection of partitions of Y# such that,
forw € Q*, w = {79, 71,...,7TK }, where 79 is a set of indices
to false alarms and 73, is a set of indices to measurements from
target k, for k = 1,..., K. More formally, w € Q" is defined
as follows:

1) w = {T(),Tl,. .. ,TK};

2) Ui‘:OTk =Ttand T, N1; =0 fori # j;

3) 79 is a set of indices to false alarms; and

4 NV <1fork=1,...,Kandt=1,...,T;
Here, K = K (w) is the number of tracks for the given partition
w € Q* and | S| denotes the cardinality of the set .S. We call 7,
a track when there is no confusion, although the actual track is
a sequence of state estimates computed from the observations
indexed by 7. (We assume there is a deterministic function that
returns a sequence of estimated states given a set of observa-
tions, so no distinction is required.) The fourth requirement says
that a track can have at most one observation at each time, but,
in the case of multiple sensors with overlapping sensing regions,
we can easily relax this requirement to allow multiple observa-
tions per track. For special cases in which pg = 1 or Ay = 0,
the definition of (2* can be adjusted accordingly.

Now let @ = {w € Q" : p € Z"}. Notice that 1 = p(w) is
a deterministic function of w € Q.NIn addition, we can compute
the following numbers from w € :

* ¢, the number of targets present at time ¢ with eg = 0;

* 2z, the number of targets terminated at time ¢ with z; = 0;

* a4, the number of new targets at time ¢;

* d;, the number of detected targets at time ¢; and

* [t the number of false alarms at time ¢, f; = py — dy.
Since these numbers are deterministic functions of w € €2,
we have P(w) = P(w,N) = P(w|N)P(N), where N =
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{1t, ety 2z¢,ae,dy = 1 < ¢ < T}. Based on the target termina-
tion, target detection, new target arrival, and false alarm models
described in Section II-A, we have

L €
t—1 _
Zt 1_ 2 €t—1—Z¢
I [( i)

t=1

N e—1 — 2t + ay
dy

o V)™

at!

PN) =

Yoty

exp(—=ApV) AV exp(—AfV)

i @

Since w € Q with the same A\ are indistinguishable, i.e., in-
variant under permutation of target indices, they are exchange-
able and we assign a uniform prior on them. Hence,

P(w|N)

11 [ [ [ et

Combining (4) and (5), the prior P(w) is

T
1 —z
P(w) oc [T —wi (1 —py)et—
O
X pzlit(l _ pd)et—l_zt“l‘ai_di
X (Ap V)™ (AgV )=k (6)

We simplify (6) by letting ¢; = e;—1 — z; be the number of
targets from time ¢ — 1 that have not terminated at time ¢, and
gs = e;—1 — 2+ + a¢ — d; be the number of undetected targets.
Then, the prior model (6) becomes

T

1 ; a
Plw) o [T o5 (1= p) w1 = p)” QuV)™ (V)
t=1"""
) (7
LetY; = {y] : j = 1,...,n;} be all measurements at time ¢

andY = {Y; : 1 <t < T} be all measurements from ¢ = 1 to
t = T'. Y, can be considered as a vector with random ordering
as indicated by the exchangeability of indices in (5). Applying
Bayes rule, the posterior of w € 2 becomes:

Pw|Y) x P(Y|w)P(w) (8)

with P(w) given in (7).

It is important to notice that P(Y|w) = 0 if u(w) # n(Y),
where n(Y) = [n1(Y),...,nr(Y)]" denotes the number of
measurements at each time in Y. Hence, we can restrict our at-
tention to those w € € with u(w) = n(Y). This crucial ob-
servation makes the numerous computations based on (8) prac-
tical. The set of all possible associations is now defined as (2 :=
Qn(y) ={w € Q: p(w) = n(Y)} and Q is used instead of
Q) throughout this paper. Thus, it is convenient to view €2 as a
collection of partitions of Y. An example of one such partition
is shown in Fig. 1.

The posterior (8) can be further simplified as

P(w|Y) x P(Y|w)
T
x T2 (1 =) p (1 = pa)* V)™ (AV) (9)

t=1
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Fig. 1. (a) Example of observations Y~ (each circle represents an observation
and numbers represent observation times). (b) An example of a partition w of
Y.

where the term Hle Vaeitfi will be canceled out by the
matching initial state and false alarm densities in P(Y |w). The
likelihood P(Y |w) can be computed based on the chosen dy-
namic and measurement models. For example, the computation
of P(Y |w) for linear dynamic and measurement models can be
found in [27].

The posterior P(w|Y") can be applied to both MAP and Bayes
estimator approaches to solve the multi-target tracking problem.
In the MAP approach, we first seek @ such that

w= argglggP(MY). (10)
Then the states of the targets are estimated based on ©.

In the Bayes estimator approach, we look for Bayesian
estimates of parameters. For instance, if we are interested in
estimating the state ¥ of target with the label k, the MMSE
estimate of z¥ is:

ko
Ty =

¥ P(dz¥|w,Y)P(w]Y). (11)

X/

WITE

Notice that it considers the contribution of all w that contain a
target with the label k¥ when computing 2%, whereas the MAP
approach uses only w. The method proposed in this paper (Al-
gorithm 3) can be used to find both MAP and Bayes estimators
to the multi-target tracking problem.

III. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role
in many fields such as physics, statistics, economics, finance,
and engineering [28]-[30]. The MCMC method includes algo-
rithms such as Gibbs sampling [31] and the Metropolis-Hast-
ings algorithm [32], [33]. Beichl and Sullivan described the
Metropolis-Hastings algorithm as “the most successful and in-
fluential of all the members of ... the Monte Carlo Method” [29].
MCMC techniques have been applied to complex probability
distribution integration problems, counting problems, and com-
binatorial optimization problems [29]. In some cases, MCMC is
the only known general algorithm that finds a good approximate
solution to a complex problem in polynomial time [13].

MCMC is a general method to generate samples from a distri-
bution 7 on a space {2 by constructing a Markov chain M with
states w € () and stationary distribution 7 (w). We now describe
an MCMC algorithm known as the Metropolis-Hastings algo-
rithm. If M is at state w € Q, w’ € Q is proposed following

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 17,2010 at 19:01:49 UTC from IEEE Xplore. Restrictions apply.



OH et al.: MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

the proposal distribution ¢(w,w’). The move is accepted with
an acceptance probability A(w,w’) where

A(w, ) = min <1’ %)

otherwise the sampler stays at w. With this construction, the
detailed balance condition is satisfied, i.e., for all w, w’ € €,

12)

Q(w,w") = 1(w)P(w,w') = 7(W)P(w',w) (13)

where P(w,w’) = ¢(w,w’)A(w, w") is the transition probability
from w to w’. Hence, M is a reversible Markov chain.

If M is also irreducible and aperiodic, then M con-
verges to its stationary distribution by the ergodic theorem
[34]. Hence, for any bounded function f, the sample mean
f=(@1/N) Zf:[:l f(w™) converges to E f(w) as N — oo,
where w(™) is the state of M at the n'® MCMC step and
E.f(w) is the expected value of f(w) with respect to measure
«. Notice that (12) requires only the ability to compute the ratio
m(w’)/m(w), avoiding the need to normalize 7, and this is why
MCMC, especially the Metropolis-Hastings algorithm, can be
applied to a wide range of applications.

An ergodic chain M on state space ) converges to its sta-
tionary distribution asymptotically. But a practical question is
how fast M approaches stationarity. One way to measure the
rate of convergence of M to stationarity is the “mixing time”
of the Markov chain. Let P be the transition probabilities of M
and let P (-) be the distribution of the state at the n"* MCMC
step given that M is started from the initial state w € Q. If T
is the stationary distribution of M, then the roral variation dis-
tance at the n*® MCMC step with initial state w is defined as

Au(n) =P ~ 7l
= (n)(g) —
tmax |P{(S) = 7(S)|

= 5 S IR ) — ()l

Sy

(14)

The rate of convergence of M to stationarity can be measured
by the mixing time

To(€) = min{n : A,(s) < efor all s > n}. (15)
After the mixing time 7, (€), rs (1) forn > 7,(¢€) is very close
to the stationary distribution 7.

One approach to bound 7, (€) of a Markov chain with a
complex structure is the canonical path method [13]. In this
paper, the canonical path method is used to bound 7, (¢€) of the
Markov chain simulated by the MCMCDA algorithm given in
Section IV. For the remainder of this section, we describe the
canonical path method.

For a finite, reversible and ergodic Markov chain M with
state space €2, consider an undirected graph G = (V| E) where
V=Qand E = {(z,y) : Q(z,y) > 0} (recall the definition
of Q(+,-) from (13)). So an edge (z,y) € F indicates that the
Markov chain M can make a transition from x to y or from y
to = in a single step. For each ordered pair (z,y) € Q2, the
canonical path v, is defined as a simple path* from = to y in

4A simple path in a graph is a path with no repeated vertices.
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G. In terms of M, the canonical path ., is a sequence of legal
transitions from = to y in M. Let I" = {,, : z,y € Q} be the
set of all canonical paths. Now the mixing time of the chain is
related to the maximum edge loading:

> w(@)m(y) ayl

Yoy D€

p = p(') = max (16)

L
e Qle)

where |v,,| denotes the length of the path ,,,. If 5 is not so big,
i.e., no single edge is overloaded, then the Markov chain can
mix rapidly. The main result for the canonical path method is as
follows [13], [35]:

Theorem 1: Let M be a finite, reversible, ergodic Markov
chain with loop probabilities P(xz,x) > 1/2 for all states x. Let
I" be a set of canonical paths with maximum edge loading p.
Then the mixing time of M satisfies 7,,(¢) < p(logm(z)~! +
log 6_1), for any choice of initial state w.

IV. SINGLE-SCAN MCMCDA

In this section, we consider a special case of the multi-target
tracking problem described in Section II, in which the number of
targets K is known. We begin by specifying the optimal single-
scan Bayesian filter, noting that it is infeasible to implement the
optimal filter in practice due to its computational complexity.
We then define the assumed-density single-scan Bayesian filter,
which is frequently used in practice as an approximation to the
optimal filter. The well-known JPDA filter [1] is an example
of this approach. Although JPDA is less computationally de-
manding than the optimal single-scan Bayesian filter, the data
association aspect remains intractable. We show, nevertheless,
that the single-scan MCMCDA algorithm finds an e-good ap-
proximate solution to JPDA in polynomial time.

A. Optimal Single-Scan Bayesian Filter

The (optimal) single-scan Bayesian filter for multi-target
tracking is a recursive filtering algorithm in which each mea-
surement is processed in turn and the posterior distribution of
the current state is computed based on the current measurements
and the posterior distribution computed at the previous scan. It
resembles an ordinary recursive filter (e.g., a Kalman filter) for
single-target tracking, but there are two major differences: first,
the filter must compute the joint posterior of all target states,
whose complexity grows without bound over time; second, the
likelihood model for observations factors conditional on the
(unknown) association variable, and so the exact update step
must sum over exponentially many possible associations.

Let X; = (X},...,XK) be the joint state of all targets
at time ¢. We assume the availability of the prior distribution
P(Xy). Now suppose that we are at time ¢ and the optimal
single-scan Bayesian filter has computed the posterior distribu-
tion P(X¢_1|y1.+—1) from the previous scan time ¢ — 1, where
Y1:4—1 = {Y1,-..,ys—1} is a set of all past measurements. The
optimal single-scan Bayesian filter computes P(X;|y;.¢) from
the new measurements y; and the previous posterior distribution
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Fig. 2. Graphical illustration of the optimal single-scan Bayesian filter.

P(X¢_1|y1.t—1) using the prediction and measurement update
steps. For a graphical illustration, see Fig. 2.

1) Step I (Prediction): Using P(x¢—1|y1.t—1), compute the
distribution

P(Xi|y1:4-1) = /P(Xt|$t—17yl:t—l)P(xt—l|y1:t—1)d37t—1

_ / P(Xi|2-) P(2e—tlyrar)dze_r, (17)

where the Markovian assumption is used in the second equality
and P(X;|z;—1) is determined by the dynamics model (1).

2) Step 2 (Measurement Update): In general, Bayes rule can
be applied to compute the desired posterior

(yt|Xt Y1:t— 1)P(Xt|y1:t—1)
fP yt|$t,ylt 1) (xt|ylzt—1)dxt.

P(Xily1+) =

But, since we do not know which measurement is originated
from which target, we cannot compute P(y:|X¢,y1.4—1) di-
rectly. Instead, we introduce a latent variable w, to represent a
possible association between n; measurements and K targets
and we let Q; = {w;} be a set of all possible association events
at time ¢. The formal definition of €2; resembles the definition
in Section II-B and is given in Section IV-B.
Using the total probability theorem, we can compute

P(Xt|y1:t) = Z P(Xt|wt7y1:t)P((4)t|y1:t) (18)
wy €Q
where
P(Xi|we, y14) = P(ye Xt wi, yra—1) P(Xe|y1:1-1)

fP'Ut|Xt7wt7'Ult 1) (Xt|y1:t—1)d$t.

Because w; specifies the association between measurements
and targets, the term P(y;| Xy, ws,y1.4—1) in (18) can be com-
puted easily—according to the standard observation model, it
simplifies to a product of independent likelihood factors, one
per target/observation pair. Thus, we can compute P(X|y1.+)
in (18); unfortunately, the summation over w; has exponentially
many terms. Not only is this summation intractable, but as a
consequence the posterior representation becomes exponen-
tially more complex at each time step.
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B. Assumed-Density Single-Scan Bayesian Filter

Complexity in filtering problems is often addressed by a
generic approach often called assumed-density filtering [36],
in which the posterior state distribution is assumed to belong
to a fixed family of density functions. Each exact update step
typically takes the posterior outside this family, but a projection
step then finds the best approximation within the family. Thus,
an assumed-density single-scan Bayesian filter for multi-target
tracking uses a simplified approximate representation for the
posterior over the joint state of the targets. For example, one
can make an (incorrect) independence assumption about the
joint posterior, approximating it by a product of marginal
distributions:

K
P(Xilyre) = P(XEs o X |yra) = H (XFlyre). (19)

This assumption is made by the JPDA filter, which has
been traditionally used with the Kalman filter, assuming
linear-Gaussian models, i.e., linear dynamic and measurement
models and white Gaussian noise processes [1].5 In fact, the
assumed-density method with a factored posterior can be used
with the general dynamics and measurement models defined
in Section II. Furthermore, whereas JPDA sums over the as-
sociation hypotheses in (18), the single-scan MCMCDA filter
described in Section IV-C approximates this sum efficiently
using MCMC.

The independence assumption made in (19) makes it possible
to apply a standard recursive filtering update to each target sepa-
rately, but only if conditioned on the (unknown) association be-
tween targets and observations. Thus, the measurement update
step has to consider possible associations. This update step has
two phases: first, measurement validation (another approxima-
tion) identifies the mappings between observations and targets
that are considered plausible under some threshold; then state
update computes the new approximate posterior distribution.

We begin with an (approximate) posterior distribution
P(XE | |y1a-1) computed from the previous time ¢ — 1, for
each target k, where P(XF|y..¢) approximates P(XF|yy.;) ac-
cording to the independence assumption and the measurement
validation step described below. At time ¢, the following three
steps show how the assumed-density single-scan Bayesian filter
computes P(X¥|y1.,) from the new measurements 7; and the
previous posterior distribution P(X% | |y1.4—1).

1) Step 1 (Prediction): Similar to the prediction step (17) of
the optimal single-scan Bayesian filter, for each k, we compute

P(th|y1:t—1)1: /P(th|w1]tc—17ylzt—l)P(x§—1|y1:t—l)d$1]tc—1

- / POXCLE )Pk e )dat 4. (20)

SRecently, JPDA has also been applied to nonlinear problems using a particle
filter [37]. Notice that when the dynamics and measurement model are nonlinear
or the noise processes are non-Gaussian, the posterior distribution can be ap-
proximated using techniques such as linearization, unscented filtering [38], in-
teracting multiple models [39], particle filters [40], or other numerical methods.
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Fig. 3. (a) An example of measurement validation. For this 2D example,
P"'(y|y1:i_1) is a Gaussian density with mean §* for k = 1, 2, 3 (shown as
a solid triangle). Measurements {y7 : j = 1,2,..., 8} are shown as disks. A
measurement is validated for target k if it is inside the shaded region centered at
§*. (b) Measurement validation encoded as a bipartite graph G = (U, V, E).
An edge between y? € U and k € V indicates that measurement y’ is
validated for target k and (y?, k) € E. (The subscript ¢ is omitted.).

2) Step 2 (Measurement Validation): Since there can be a
large number of measurements and some measurements are very
unlikely to have originated from a particular target, the state of
each target is estimated from a subset of measurements. The
process of selecting a subset of measurements for state estima-
tion is called measurement validation. Let ]3" (Y{|y1.4—1) be the
probability density of having observation Y, given y.¢—1, when
Y/ is a measurement originated from target k. For each & and
7, compute the distribution

PRV [yt = / POk, yract) P (e g1 ) da

[ PO Pt st e
where the second equality uses the fact the current observation
is independent of previous observations given the current state
and P(Y/|z}) is determined by the measurement model (2). For
linear-Gaussian models, ]5’“(Yt] |y1.4—1) is a Gaussian distribu-
tion and completely determined by its mean and variance. The
measurement y; is validated for target k if and only if

PHyllyrie—) > 8 (22)
where 6% are appropriate thresholds. An example of measure-
ment validation is shown in Fig. 3(a).

3) Step 3 (State Estimation): As in the measurement update
step in the optimal single-scan Bayesian filter, we introduce a
latent variable w to represent a feasible association between 7,
measurements and K targets and we let 2; = {w} be a set of
all feasible (joint) association events at time ¢. For each w € €y,
w = {(4,k)}, where (4, k) denotes the event that observation
Jj is associated with target k. An association event w is feasible
when (i) for each (j, k) € w, y! is validated for target k; (ii)
an observation is associated with at most one target; and (iii) a
target is associated with at most one observation.

Let N < n; be the number of validated observations. We en-
code the feasible association events in a bipartite graph G' =
(U,V,E), where U = {y] : 1 < j < N} is a vertex set
of validated observations, V. = {k : 1 < k < K}isa
vertex set of target indices, and £ = {(u,v) : v € U,v €
V, P*(uly1.4—1) > 6°}. An edge (u,v) € E indicates that ob-
servation u is validated for target v according to (22). An ex-
ample of measurement validation encoded as a bipartite graph

u ‘ v u ‘ V| v V|
v e A 1) y' e A 1 (5" GO A
Y e Y e vy e

Vv e A206) Ve ‘ A20) v e A20)
. . .

y e Yt e Y e

. A 3 . \A 3 - \Aw‘l
y e ‘ y e y e

() (b) ©

Fig. 4. Examples of matchings (feasible association events) based on the mea-
surement validation example given in Fig. 3.

is shown in Fig. 3(b). A feasible association event is a matching
in G, i.e., asubset M C F such that no two edges in M share a
vertex. The set of all feasible association events {2; can be rep-
resented as ; = My(G)U - --U Mk (G), where My (G) is the
set of k-matchings in GG. Some examples of matchings or fea-
sible association events are shown in Fig. 4.

Now using the total probability theorem, we can compute the
approximate distribution as:

Z P(th|w7ylt)ﬁ)(w|ylt)
weN;
N

= Zﬂ]kﬁ(ka|w]kaylf)

i=0

P(XFlyrs) :=
(23)

where wj;, denotes the event {w € Q, : (j,k) € w}, wo
denotes the event that no observation is associated with target
k, and B;y, is an association probability, such that

Bk = ﬁ(wjk|y1:t) = Z IA’(w|y1;t).
w:i(j,k)Ew

(24)

P(Xf|w]-k7 y1.¢+) in (23) can be easily computed by consid-
ering it as a single-target estimation problem with a single ob-
servation. On the other hand, the computation of 3; requires a
summation over exponentially many association events.

Notice that even when linear-Gaussian models are assumed,
the posterior (23) is no longer a Gaussian distribution. As
explained earlier, the posterior (23) becomes a mixture of
posteriors from the previous time step. Hence, the complexity
of the posterior distribution grows exponentially in multi-target
tracking due to uncertainty in measurement-to-target associa-
tions. To combat this growth, an assumed-density filter projects
back to a fixed family at each step. In particular, JPDA approx-
imates the posterior for each target using a moment-matching
Gaussian distribution, and assumes that the targets are all
independent.

The exact calculation of {3, } in JPDA is NP-hard [12] and
this is the major drawback of JPDA. In the following sections,
we describe the single-scan MCMCDA filter, which approxi-
mates the association probabilities {3;1}, and prove that the
running time of the algorithm is polynomial in the size of the
problem.

C. Single-Scan MCMCDA Filter

The single-scan MCMCDA filter follows the same fil-
tering steps as the assumed-density single-scan Bayesian filter
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described in Section IV-B, except that the association proba-
bilities {/3;x} in (24) are approximated using MCMC. Since
the filtering steps are already described in Section IV-B, this
section describes only the method of approximation.

Based on the parametric false alarm model described in Sec-
tion II-A and a derivation similar to that of (7), for each w € €2,
the prior P(w) can be written as

Pw) oc (AV)N=Ilplel (1 — pgyE=lel, 25)
Then, the posterior of w € {2; can be written as
1
P(w|yl:t): Z_Op(w)P(yt|w7y1:t—l)
1 —lw] @ —|w v
~ 7)\5 “Ipk (= pa) T T Prulyran)
(u,v)Ew
=: P(w|y1.t) (26)

where Z and Z are normalizing constants.

Algorithm 1 Single-scan-MCMCDA

—

:INPUT G = (U, V, E), nme, nvi, 6.
: OUTPUT {f;1}
:Bjk = 0 forall j and k&
: choose w(® randomly from €,
:forn = 1to nye do
w(™ = Single-scan-MCMCDA .single-step
(G, w1 ) (see Algorithm 2)
if n > ny,; then
for each (37, k) € w(™ do
10: lec = B]’k + 1/(Nme — 1bi)
11:  end for
12: end if
13: end for

The MCMC data association (MCMCDA) algorithm is
an MCMC algorithm whose state space is the set of all
feasible association events {2; and whose stationary dis-
tribution is the posterior P(w|yi.;) (26). The single-scan
MCMCDA algorithm is shown in Algorithm 1, where
0 = {{P"(uly14-1)}, M, pa, K, N} along with its MCMC
step described in Algorithm 2. The inputs to Algorithm 1
are the graph G, the number of samples 7., the number of
burn-in samples ny,;, and . The input 6 contains likelihoods
{P“’(u|y1:t,1)} and model parameters \¢, pq, K, and N. Al-
gorithm 1 computes the approximate association probabilities
{ﬁjk}, which can be used in (23) to compute the approxi-
mate posterior distribution P(Xﬂyl;t). Algorithm 2 uses the
MCMC transition rules from [13] and it describes how the
MCMCDA algorithm updates its states. For the example given
in Fig. 3, the move from Fig. 4(a) to Fig. 4(b) is a switch
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move. The move from Fig. 4(c) to Fig. 4(b) is an addition move
while its reverse is a deletion move. However, the move from
Fig. 4(a) to Fig. 4(c) is not a legal single-step move according
to Algorithm 2. Since we have a uniform proposal distribution,
A(w,’) = min (1,7(w')/7(w)), where m(w) = P(wl|y1)
from (26).

Notice that, in line 2 of Algorithm 2, a self-loop transition
probability of 1/2 is introduced to make the analysis easier (see
[41, p.18] for more detail). In practice, however, the self-loop
transition probability in line 2 can be set close to O for faster
convergence.

Algorithm 2 Single-scan-MCMCDA .single-step

1: INPUT G = (U,V, E),w, 8
: OUTPUT w
: sample Z from Unif[0, 1]
1if Z < 1/2 then

2

3

4

5 W=w
6: else

7:  choose e = (u,v) € F uniformly at random
8: ife € w then

9

Ww=w-—e (deletion move)
10:  else if both « and v are unmatched in w then
11: Ww=w+e (addition move)

12:  else if exactly one of v and v is matched in w and €’ is
the matching edge then

13: w =w+e—¢€ (switch move)
14:  else

15: W =w

16:  end if

17: end if

18: w = w' with probability A(w,w’)

D. Analysis

Let M be the Markov chain simulated by Algorithm 2. Since
the self-loop probability is nonzero, M is aperiodic. It can be
easily seen that M is irreducible, i.e., all states communicate,
for example via the empty matching. In addition, since Algo-
rithm 2 uses the Metropolis-Hastings kernel, the detailed bal-
ance condition (13) is satisfied and M is reversible. Hence, by
the ergodic theorem, the chain converges to its stationary distri-
bution [34].

We assume that each likelihood term in (26) can be bounded
as L < P"(ulyrs_1) < L, for all (u,v) € E. The lower
bound L = miné* is guaranteed by measurement valida-
tion. In JPDA, measurement validation is used to reduce the
number of feasible association events. However, we will see
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that it is also required in the proof of polynomial-time approx-
imation. The upper bound L can be precomputed based on
P“(u|y1 .t—1). Here, we are making the reasonable assumption
that P?(uly14 1) < L < oo for all (u,v) € E. (An example
of L for linear-Gaussian models can be found in [42].)

The following theorems show that the single-scan MCMCDA
algorithm provides a fully polynomial randomized approxima-
tion scheme for JPDA. The proof can be found in the longer
version [43] of this paper.

Theorem 2: Suppose that Ay > 0 and 0 < pq < 1. Then the
mixing time of the Markov chain M is bounded by

To(€) <4R*K2N(mo(K,N) +loge™!)

for all w € Q;, where

R — max {17 paL Ae(1 = pa) }

A(1—pa)’  Lpa
mg(K, N)

K+1

+ Z logk—}—Zlogn

mi = max{l,L}
me = min{1, L}

_ ki1 _ o \K—k
) = i O ")
my(K,N) = 0Hnn ANk (1 = pa)*FY

Remark 1: If 0.5 < pg < 1 and Ay < 1 — pg, then
m3(K,N) = AN "5pk and my(K,N) = )\N(l —pa)X. So
m3(K, N)/m4(K7 N) = (pa/Ae(1 = pa))™ and K is the only
remaining exponent.

Remark 2: Let 7(¢) be the upper bound found in Theorem
2. 7(e) is polynomial in K and N. If m3(K, N)/my(K,N)
does not grow fast, e.g., Remark 1, 7(¢) = O(K?N (K log K +
Nlog N + loge™1)). If K is fixed, 7(¢) = O(N(N log N +
loge™1)).

Let p(w) be the distribution of the states of M after simu-
lating Algorithm 2 for at least 7(¢) steps. Then the total varia-
tion distance satisfies ||[p — 7||tv < €. So we can sample from
p to estimate {3, }. However, there is a small bias in our esti-
mates since we are not sampling directly from 7. The following
theorem gives an upper bound on the number of samples needed
for finding good estimates. The proof can be found in [43].

Theorem 3: Let 0 < €1,e2 < 1and 0 < n < 0.5. Sup-
pose that ||p — [ty < €fore < €1e2/8. Then, with a total of
504€; 25 t[log ™17 samples from p, we can find estimates (3,
for (35, with probability at least 1 — 7, such that, for 3,5, > e,
ﬂjk estimates (3; within ratio 1 + €1, ie., (1—e€1)Bjk < ﬂjk <
(1 + €1)Bk, and, for Bjx < €2, |Gk — ﬂ1k| < (1 +er)er.

Remark 3: Following Remark 2, for fixed K, 7(¢) =
O(N(Nlog N + loge~1)). Combining this fact with Theorem
3, the time complexity of the overall procedure is

fime = O(e7 %65 log ™ "N (N log N + log(e; ' e 1))).
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Hence, with a total of 7, samples, Algorithm 2 finds estimates
B] % for 85, with probability at least 1 — ), such that, for 3;, >
€, ﬂjk estimates (3, within ratio 1 + €, and, for 8 < €2,
|[j'Jk Bik| < (1+e€1)ea. We can simplify further by letting ¢g =
¢1¢€2. Then the time complexity is O(ey 2 logn™ N (N log N +
log(eg1)))-

E. Simulation Results

To demonstrate Theorem 3, we use a scenario in which there
are five predicted observations and 16 actual observations over
a 4 x 4 two-dimensional region [see Fig. 5(a)]. The predicted
observations are {[8], °1, 1%, [(1)], [Bl]} and the actual obser-
vations are

[0.33} [—1.50} [—0.02} [—0.01]
0.071° 0.58 1’ —0.771° —0.66
[—0.44} [ 1.45 } [—0.87} [ .49 ]
—1.190° —1.300° —0.111° —-1.05
[—0.69} [—1.16} [—0.43} [—0.97]
0.89 0.81 I’ 0.63 1’ —0.30
[ 0.13 } [—1.43} [ 0.45 } [1.37}
0.261° 0.95 1’ —0.401" 0.74

f’k(Ytj |y1.4—1) has a Gaussian distribution with zero mean and

covariance B* = diag(1,1) for all k. The other parameters
used in this simulation are: A\ = 0.5, pg = 0.8, and sk =
P((yr — ") (B*) " (yf — ") = 4) forall k.

The true values of {3, } are computed using JPDA. In order
to study the convergence of the single-scan MCMCDA algo-
rithm, we ran 100 independent runs with initial states randomly
chosen from €2;. For each run, two types of estimates are made
at each MCMC step: (type r = 1) B}k, which are computed
after 7(e) burn-in samples; and (type r = 2) sz-k, which are
computed after 10,000 burn-in samples. Let [?;"k(m n) be the
estimate made at the n*" MCMC step for the m ' run, for type
r € {1,2}. Using e, = 0.1, &, = 0.05, n = 0.05, and
€ = €1€2/8, we have 7(e) = 8.4 x 106,

Based on Theorem 3, 71, = 11.5x 106 samples suffice to en-
sure that the estimate using 7(¢) burn-in samples approximates
the true value with ratio less than €; with probability at least
1 — 7. In order to show the progressive improvement of estima-
tion ratios, we show the worst estimation ratios over all test cases
as a function of the number of samples in Fig. 5(b). Hence, if
the worst estimation error ratios are within ratio less than ¢; after
Nme Samples, i.e., the desired estimation ratio is satisfied for all
test cases, it is certain that the statement of Theorem 3 is sat-
isfied. Since there are upper and lower estimation ratio bounds
in Theorem 3, we compute R"(n), the largest estimation ratio,
and R"(n), the smallest estimation ratio over all test cases as a
function of the number of samples and they are defined below.

Fig. 5(b) shows a pair of envelopes, one for each type of esti-
mate. The top curve of an envelope plots the largest estimation
ratio over all (4, k) pairs and all 100 runs

. 3T (m,n
R"(n) = max max M
m=1,...,100 jk Bik
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Fig. 5. (a) Predicted observations (crosses) and actual observations (dots). (b) The largest and smallest estimation ratios (R”, R*) for two types of estimates
(r € {1, 2}) each computed from 100 independent single-scan MCMCDA runs. The estimation ratios for r = 1 start from 7(e) = 8.4 x 10° and the estimation
ratios for r = 2 start from 10,000. The dotted €, -tube centered at | represents the goal estimation ratio e;. If (R", R") is completely contained in (1 — €1, 1 4¢;),
we have achieved our goal estimation ratio. Theoretically, 71, = 11.5 X 10° samples suffice to ensure that the estimate using 7(€) burn-in samples approximates

the true value with ratio less than €; with probability at least 1 — 7. But both estimates achieve the estimation ratio of €; much faster than 72 ..

and the bottom curve plots the smallest estimation ratio over all
(4, k) pairs and all 100 runs

A’,: mn = - i @ /',:
R'(n)= min min i (m: ) - s ;
m=1,...,100 jk 5jk @ o ‘:' @
w2,

for r € {1, 2}, where n is the number of MCMC samples. The
envelope for type r = 1 starts from n = 7(e) and type r = 2
starts from n = 10, 000.

A couple of observations can be made from Fig. 5(b). The en-
velope (R*(n), R*(n)) is completely contained in (1 — €1, 1 +
€1) for all n > iy, hence, MCMCDA approximates the true
value with ratio less than ¢; with i, = 11.5 x 10° samples.
Since the estimation ratios are satisfied for all test cases, they
are certainly satisfied with probability at least 1 — 1 and The-
orem 3 is verified. Both types of estimates (r = 1 and r = 2)
achieve the estimation ratio of €; much faster than 7i,c. As fre-
quently observed in many practical applications of MCMC, we
see that the algorithm requires a significantly smaller number of
burn-in samples than the theorem requires. This is not especially
surprising since the theorem is based on a worst-case analysis.
For this example, 10,000 burn-in samples were enough, i.e., 800
times less than 7(e).

In this example, JPDA took 134.1 seconds. With 10,000
burn-in samples, 95% of MCMCDA runs are within the goal
approximation ratio of €; in 33.9 seconds. Both algorithms
are implemented in MATLAB on a PC with a 2.6-GHz Intel
processor.

V. MULTI-SCAN MCMCDA

The single-scan MCMCDA algorithm described in Sec-
tion IV assumes a fixed, known number of targets. This
assumption leads to a simple filtering scheme, but in most
situations of interest the number of targets is unknown and

Fig. 6. Anexample toillustrate (A1) and (A2). Circles represent measurements

(positions of targets in 2D). y; is the j** measurement made at time t. The

maximum directional speed © is shown in the bottom left corner. The sampling
period is 1. Suppose that the measurement y; is generated from a target. A
measurement of this target at time ¢ = 2 must be in the range denoted by d = 1
centered at y7 . A measurement of this target at time ¢ = 3 must be in the range
denoted by d = 2 centered at y;. A measurement of this target at time t = 4
must be in the range denoted by d = 3 centered at y1. If d = 3, there cannot
be a track whose measurements are only y; and y; (or y; and y2) since such
track contains 4 consecutive missing measurements.

changes over time. Furthermore, a single-scan algorithm that
makes approximations (such as measurement validation and
independence) to avoid complexity may end up being unable
to maintain tracks over long periods because it cannot revisit
previous, possibly incorrect, association decisions in the light
of new evidence. For these reasons, methods for solving the
general multi-target tracking problem described in Section II
often adopt a multi-scan design, maintaining state in the form
of both the posterior approximation and the observation history.
This section describes a multi-scan MCMCDA algorithm that
can handle unknown numbers of targets. The solution space {2
for this algorithm contains association histories over multiple
time steps, as well as considering all possible numbers of tar-
gets at each step, and is therefore much larger than the solution
space considered by a single-scan algorithm. The multi-scan
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MCMCDA algorithm features efficient mechanisms to search
over this large solution space in addition to birth and death
moves to add or remove tracks. The multi-scan MCMCDA
algorithm is presented in Section V-A and its recursive on-
line version is described in Section V-B. In Section V-C, we
compare the performance of MCMCDA against MHT and
multi-scan NNF.

A. Multi-Scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Algo-
rithm 3. It is an MCMC algorithm whose state space is ) as
defined in Section II-B and whose stationary distribution is the
posterior (9). The proposal distribution for MCMCDA consists
of eight moves grouped into five types as follows: (1) birth/death
move pair; (2) split/merge move pair; (3) extension/reduction
move pair; (4) track update move; and (5) track switch move.
(See Fig. 7.) We index each move by an integer such that m = 1
for a birth move, m = 2 for a death move and so on. The
move m is chosen randomly from the distribution & (m) where
K is the number of tracks of the current partition w. When
there is no track, we can only propose a birth move, so we set
&(m = 1) = 1 and 0 for all other moves. When there is only a
single target, we cannot propose a merge or track switch move,
so &1 (m = 4) = & (m = 8) = 0. For other values of K and
m, we assume £ (m) > 0. The inputs for MCMCDA are the
set of all observations Y, the number of samples 7., the ini-
tial state wjyit, and the model parameters p,, p4, and A,. When
we want to estimate E; f of a bounded function f : 2 — R",
MCMCDA can also take the function f as an input. At each
step of the algorithm, w is the current state of the Markov chain.
The acceptance probability A(w,w’) is defined in (12) where
m(w) = P(wl]Y) from (9). Notice that MCMCDA can pro-
vide both Bayes estimator and MAP solutions to the multi-target
tracking problem: the output f approximates the Bayesian pos-
terior expectation E f and @ approximates the MAP estimate
arg maxg,eo P(w]Y’). The computation of & can be viewed as
simulated annealing [44] at a constant temperature.

Algorithm 3 Multi-scan-MCMCDA

1: INPUT Y, Nmne, Winit, Pz, Pd; Ab, f 1 Q@ — R”
2: OUTPUT &, f

3: W = Winit) @ = Winit; f =0

4:for n = 1 to Ny, do

5:  propose w’ based on w (see Sections V-A.I to V-A.V)
sample u from Unif]0, 1]

7. w=uvifu < Aw,w)

8 w=wif Pw|Y)/P@|Y)>1
9 f=((n=1)/n)f+(1/n)f(w)
10: end for
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Fig. 7. Graphical illustration of MCMCDA moves (associations are indicated
by dotted lines and hollow circles are false alarms). Each move proposes a new
joint association event w’ that is a modification of the current joint association
event w. The birth move proposes w’ by forming a new track from the set of
false alarms ((a) — (b)). The death move proposes w’ by combining one of the
existing tracks into the set of false alarms ((b) — (a)). The split move splits a
track from w into two tracks ((c) — (d)) while the merge move combines two
tracks in w into a single track ((d) — (c)). The extension move extends an ex-
isting track in w ((e) — (f)) and the reduction move reduces an existing track
in w ((f) — (e)). The track update move chooses a track in w and assigns dif-
ferent measurements from the set of false alarms ((g) <= (h)). The track switch
move chooses two track from w and switches some measurement-to-track asso-
ciations ((i) < (j))-

An MCMC algorithm can be specialized and made more effi-
cient by incorporating domain-specific knowledge into the pro-
posal distribution ¢(w, w’). For example, the MCMC algorithm
by Pasula et al. [45] for citation matching incorporates a clus-
tering method by McCallum et al. [46] to improve the perfor-
mance of the algorithm. This method precomputes overlapping
sets of “possibly matching” records and restricts the MCMC
proposal distribution to consider associating record pairs only
from these sets. This method prevents proposals that are certain
to be rejected as impossible.

In multi-target tracking, we can make two assumptions: (A1)
the maximum directional speed of any target in R is less than
some ¥; and (A2) the number of consecutive missing observa-
tions of any track is less than some d. The first assumption (A1)
is reasonable in a target-tracking scenario since, in many cases,
the maximum speed of a vehicle is generally known based on the
vehicle type and terrain conditions. We assume that the value of
¥ is chosen large enough such that it accommodates measure-
ment noise (e.g., adding a multiple of the standard deviation of
the measurement noise). The second assumption (A2) is a user-
defined parameter. Let pas(s) = 1—(1—pa)?® be the probability
that an object is observed at least once out of s measurement

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 17,2010 at 19:01:49 UTC from IEEE Xplore. Restrictions apply.



492

times. Then, for given pa;, we set d > log(1—pa )/ log(1—pa)
to detect a track with probability at least p4¢. For example, given
pa = 0.7 and pgr = 0.99, a track is detected with probability
larger than 0.99 for d > 4. We will now assume that these two
new conditions (A1-2) are added to the definition of 2 so each
elementw € () satisfies these two additional assumptions. In the
following description of the multi-scan MCMCDA algorithm,
we also assume that a track contains at least two measurements
for computational efficiency.

According to (A1-2), we can determine whether two mea-
surements at different times can be generated from the same
target or not. For example, see Fig. 6. Let’s consider y3 in Fig. 6,
a measurement made at t = 1. If 31 is a measurement from a
target, then a measurement of this target at time ¢ = 2 must be
in the range denoted by d = 1 centered at %1. Hence, %4 can
be a measurement from this target while y5 cannot be a mea-
surement from this target. We formalize this concept into the
following data structure. Let L(y, ¢, d) be a set of all measure-
ments at time ¢ + d that can be associated with a measurement
y € R, ie.,

L(y,t,d) = {Yf1a € yrra : 9(y,ypa) <d -0} Q27
whered € {1,...,d},and ¢ : R"» xR™ — R is an appropriate
metric, e.g., for a Cartesian coordinate system, ¢ is induced by
the Euclidean norm.

For our example shown in Fig. 6, L(yi,t = 1,d = 1) =
{va}, L(yi,t = 1,d = 2) = {y3}, and L(y{,t = 1,d =
3) = {y},y2}. The use of L(y,t,d) makes the algorithm more
scalable since distant observations will be considered separately
and makes the computation of the proposal distribution easier.
It is similar to the gating technique used in MHT but L(y, ¢, d)
in MCMCDA is fixed for a given set of observations. We fix
L(y, t,d) so that the proposal distribution ¢(w,w’) can be com-
puted consistently.

We now describe each move of the sampler in detail. First,
let {(d) be a distribution of a random variable d taking values
from {1,2,...,d}. We assume the current state of the chain is
w=wlUw! € Q, where v’ = {ry} and w* = {my,..., 7}
The proposed partition is denoted by v’ = w'® U w't € Q.
The proposal distribution ¢(w, w’) can be computed by keeping
track of how w is modified to form w’. Note the abuse of no-
tation below with indexing of time, i.e., when we say 7(¢;), t;
means the time at which a target corresponding to the track 7 is
observed ¢ times.

1) Birth and Death Moves (Fig. 7, a < b): For a birth move,
we increase the number of tracks from K to K/ = K + 1 and
select ¢1 uniformly at random (u.a.r.) from {1,...,7 — 1} as
the appearance time of a new track. Let 7 be the track of this
new object. Then we choose d; from the distribution (. Let

LP(ty,d1)
= {yijtl € Yt, :L(y‘glvtlvdl) 7& V)vygl g Tk(tl)vk =

LB(t1,dy) is aset of observations at t1 such thaty € LB(¢,d;)
does not belong to other tracks and L(y, t1, d1 ) is not empty. We
choose Tx(t1) wa.r. from LB(t,dy). If LB(t1,dy) is empty,
the move is rejected since the move is not reversible. Once the
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initial observation is chosen, we then choose the subsequent ob-
servations for the track 7x/. For i = 2,3,..., we choose d;
from ¢ and choose 7k (t;) v.ar. from L(7g: (ti—1),tiz1,d;) \
{me(tiz1 +d;) : k = 1,..., K} unless this set is empty. But,
for+ = 3,4, ..., the process of adding observations to 7x ter-
minates with probability y, where 0 < v < 1. If |7k | < 1, the
move is rejected. We then propose this modified partition where
W'l = w! U {rx/} and w® = {7y \ 7k }. For a death move,
we simply choose k uw.a.r. from {1,..., K} and delete the k'"
track and propose a new partition where w' = w' \ {7} and
W' = {mo Ui}

2) Split and Merge Moves (Fig. 7, ¢ < d): For a split move,
we select 74(t,.) v.a.r. from {74 (¢;) : |7%| > 4,4 =2,..., || —
2,k = 1,...,K}. Then we split the track 7 into 75, and 7,
suchthat 75, = {7s(¢;) :i=1,...,r}and 75, = {7:(¢;) : i =
7+ 1,...,|7s|}. The modified track partition becomes w'! =
(W' \ {7s}) U {75, } U {7y, } and w"® = w°. For a merge move,
we consider the following set of possible merge move pairs:

M= {(Tkl (tf)ka2 (tl)) F Tk (tl) € L(Tkl (tf)vtfvtl - tf)v
f = |Tk1| for ]Cl ;é k271 S k17]€2 S K}

We select a pair (75, (tt), Ts, (1)) u.a.r. from M. The tracks are
combined into a single track 7, = 75, U 75,. Then we propose
a new partition where w'! = (w! \ ({7¢, } U {7s,})) U {75} and
w0 = WO,

3) Extension and Reduction Moves (Fig. 7, ¢ < f): In a
track extension move, we select a track 7 u.a.r. from K available
tracks in w. We reassign observations for 7 after the disappear-
ance time t|| as done in the track birth move. For a track reduc-
tion move, we select a track 7 u.a.r. from K available tracks in
w and r w.a.r. from {2,...,|r| — 1}. We shorten the track 7 to
{r(t1),...,7(t-)} by removing the observations assigned to 7
after the time ¢,.41.

4) Track Update Move (Fig. 7, g < h): In a track update
move, we select a track 7 u.a.r. from K available tracks in w.
Then we pick 7 u.a.r. from {1,2, ..., ||} and reassign observa-
tions for 7 after the time ¢, as done in the track birth move.

5) Track Switch Move (Fig. 7, i < j): For a track switch
move, we select a pair of observations (7%, (¢,), T, (¢,)) from
two different tracks such that, 74, (t,41) € L(7x,(t4),t4, d) and
Thy (tq+1) € L(7k, (tp),tp,d"), where d = t,11 — t,, d' =
ty41 —tpand 0 < d,d' < d. Then we let

Try = {7k (81), -+, Ty (), Toea (Bg1) - -+ Thy (F7, 1) }

The main result of this section is that MCMCDA is an optimal
Bayesian filter in the limit. Let M be the Markov chain specified
by Algorithm 3. Then we have:

Theorem 4: Suppose that 0 < p,,pa < 1 and A\p, Ay > 0. If
¢(d) > 0foralld € {1,...,d}, then the Markov chain M is
ergodic and f — E.f as nye — 0.

For the proof and a numerical demonstration of the theorem,

see [43].

B. Online MCMCDA

The MCMCDA algorithm described in previous section is
a batch algorithm and its computational complexity grows as
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more measurements are collected. In filtering, since recent mea-
surements are more relevant to the current states, good estimates
of the current states can still be found from recent measurements
[47]. Based on this idea, we propose an online MCMCDA al-
gorithm whose estimates are based on measurements from a
window of time [tcur — twin + 1, .-+, teur|, Where tey, is the
current time and t,;, is the size of a window. Hence, at all
times, only finitely many measurements are kept by the algo-
rithm. This online implementation of MCMCDA, shown in Al-
gorithm 4, is suboptimal because it considers only a subset of
past measurements.

Algorithm 4 Online-MCMCDA (at time ¢.,,)

1:INPUT:‘-I)(tcur_l)v Yw(tcur_l), Ynew(tcur)’nmc’pz’pd’Ab,
f:Q—-R"

2: OUTPUT: &(tewr), Yau(teur)s f (teur)

3: Vg (tewr) = {0 € Yaoltenr = 1) : tewr — twin + 1 <t < tew}
4: add new measurements Yyew (feur) into Yy (teur)

5: winit = {7(t) € O(teur — 1) : teur

6: [@(teur), f(teur)] = Multi-scan-MCMCDA (Ya (feur)s Mnes
Winit> Pz» Pds Abs f) (see Algorithm 3)

- twin + 1 S t S tcur}

At each time step, we use the previous MAP estimate to ini-
tialize MCMCDA and run MCMCDA on the measurements
Yw(tcur) = {yg 1 < J < nt7tcur — twin + 1 <t< tcur} be-
longing to the current window. At time ., the measurements
at time f.,; — twin are removed from Y, and a set of newly ar-
rived measurements Yy (tcur) 18 appended to Yy (feur). Any
delayed measurements are inserted into the appropriate slots.
Then, we initialize the Markov chain with the previously es-
timated tracks and execute Algorithm 3 on Yy (tcu). The al-
gorithm is summarized in Algorithm 4. The inputs for online
MCMCDA at time t..,,, are the previous MAP estimate w (£ c,r —
1), the existing set of measurements Yy (tcur — 1), and the set
of new measurements Y, ew (tcur ). The other inputs are the same
as Algorithm 3. Other estimates such as state estimates can be
computed using the function f or & (tcy,). Simulation results
from online MCMCDA can be found in Section V-C.IV.

C. Simulation Results

In this section, the performance of multi-scan MCMCDA is
evaluated and compared against MHT [48] and multi-scan NNF
[49]. We consider surveillance over a rectangular region on a
plane, R = [0,1000] x [0,1000]. The state vector is x =
[7,y,4,9]T where (x,%) is a position on R along the usual =
and y axes and (&, §) is a velocity vector. Linear dynamics and
a linear measurement model are used:

J:f_H = Axf + wa yg = fo + vg (28)

493

where
10T, 0 L
T2
A_ |01 0 1, S
00 1 0 T, 3§
00 0 1 0 T

{1 0 0 0 i ) . .
¢ = [0 10 0} , T’s is the sampling period, wy’ is a zero-

mean Gaussian process with covariance ) = diag(100, 100),
and v} is a zero-mean Gaussian process with covariance R =
diag(100, 100).

The complexity of multi-target tracking problems can be
measured by several metrics: (1) the intensity of the false alarm
rate Af; (2) the detection probability pq; and (3) the density of
tracks. The problem gets more challenging with increasing s,
decreasing pq, and increasing density of tracks. The number of
tracks per se may not make the problem more difficult if they
are scattered apart; the difficulty arises when there are many
tracks crossing and moving close to each other; this is when the
ambiguity of data association is greatest. Hence, we consider
only situations in which tracks move very closely so we can
control the density of tracks by the number of tracks.

We study the performance of the MCMCDA algorithm
against multi-scan NNF and MHT by varying the parameters
listed above. To make the comparison easier, we take the MAP
approach, in which the states of targets are estimated from w
computed from Algorithm 3. The multi-scan NNF algorithm
is a batch-mode, nearest-neighbor, multi-target tracking al-
gorithm. Initially, all observations are unmarked. Unmarked
observations are considered false alarms. The algorithm first
picks two unmarked observations at different times to estimate
an initial state. Then it forms a candidate track by picking the
unmarked observations for the subsequent time step that are
closest to the predicted states. The candidate track is validated
as a track and observations associated to the candidate track
are marked if the marginal of the candidate track exceeds a
threshold. The process is repeated until no more tracks can be
found. For a more detailed description of the multi-scan NNF
algorithm, see [49].

Based on our model described above and in Section II, we
have generated a variety of scenarios. In particular, in all cases,
except for the online tracking case, half of the new objects ap-
pear from the bottom left quadrant of R and the other half appear
from the the bottom right quadrant. (The actual initial positions
are chosen randomly from a 200 x 200 region in each quadrant.)
They all move diagonally so that each group of tracks crosses
the other group in the middle of R. The targets also move very
close to each other and there are crossovers within each group.
All targets are present from ¢ = 1 to ¢t = T'. For the test case
(K = 100) used in Section V-C.I, at ¢ = 5, the mean number
of neighboring targets with distance less than 50 is 13 and some
targets have 25 neighboring targets. For distance less than 100,
the mean number of neighboring targets is 42 and some targets
have 73 neighboring targets. Based on the dynamics and mea-
surement noise models (28), the effective overall standard devi-
ation in two dimension is 28.3. Hence, the distance of 100 is 3.5
times the effective standard deviation.
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Fig. 8. Simulation results. Multi-scan MCMCDA is compared against the multi-scan NNF [49] and MHT [48].

Since the number of targets is not fixed, it is difficult to com-
pare algorithms using a standard criterion such as the mean
squared error. Instead, we use a performance measure, called
F, which is frequently used in the information retrieval litera-
ture [50] and has been used in particular for evaluating data-as-
sociation-like methods in record matching [51]. The F; measure
is defined in terms of recall and precision. Recall is the ratio of
correct associations made by an algorithm divided by the total
number of correct associations. Precision is the ratio of correct
associations made by an algorithm divided by the total number
of associations made by the algorithm. The F} measure is a har-
monic mean between recall () and precision (p) with an equal
weight and defined as Fy(r,p) = 2rp/(r + p). Recall and pre-
cision measure the effectiveness of an algorithm [50]; the higher
the value of the F; measure, the more effective the algorithm is.

Both MCMCDA and multi-scan NNF algorithms are written
in C++ with MATLAB interfaces. We have used the C++ im-
plementation of MHT [48], which implements pruning, gating,
clustering, IV-scan-back logic and k-best hypotheses. The pa-
rameters for MHT are fine-tuned so that it gives similar perfor-

mance to that of MCMCDA when there are 10 targets: the max-
imum number of hypotheses in a group is 1,000, the maximum
track tree depth is 5, and the maximum Mahalanobis distance
is 11.8. All simulations are run on a PC with a 2.6-GHz Intel
processor.

1) Number of Tracks: In this experiment, we vary K from
10 to 100. The other parameters are held fixed: R = [0, 1000] x
[0,1000], T = 10, pa = 0.9, AV = 1, A,V = K/T,
p, = .0001,d = 5, ¥ = 100 unit lengths per unit time. A
uniform mass function is used for each &(+) and ((d) is com-
puted based on p4. For each value of K, we randomly generated
10 test cases. The initial state of MCMCDA is computed using
the multi-scan NNF algorithm and 50,000 samples are used in
MCMCDA. For each K, the average F; measure and running
time are computed from the 10 test cases (for MCMCDA, we
also average over 10 runs per test case). The average F measure
computed at each value of K is shown in Fig. 8(a). The average
running times of the three algorithms are shown in Fig. 8(b) (the
running time of MCMCDA includes the initialization step). Al-
though the maximum number of hypotheses of 1,000 per group
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is a large number, with increasing numbers of tracks, the perfor-
mance of MHT deteriorates due to pruning. The F} measure for
multi-scan NNF is just above 0.5 even when there are only ten
targets. MCMCDA shows superior performance against both
MHT and multi-scan NNF. In this example, the multi-scan NNF
performs better than MHT at higher numbers of targets. This is
due to the fact that all targets are present from¢ = 1tot =T
Another striking difference is that the running times of both
multi-scan NNF and MCMCDA are significantly less than that
of MHT.

2) False Alarms: Now the settings are the same as Sec-
tion V-C.I but we vary the false alarm rate while the number
of tracks is fixed at K = 10. The false alarm rate is varied from
AV = 1to AV = 100 with an increment of 10. For each value
of AV, we randomly generated 10 test cases and MCMCDA is
run 10 times per test case. Again, 50,000 samples are used for
MCMCDA. The average F; measures for the three algorithms
at different false alarm rates are given in Fig. 8(c). The results
show that MCMCDA performs well at high false alarm rates.
The multi-scan NNF algorithm suffers because it finds too many
spurious tracks (poor precision) and MHT becomes hopelessly
confused, finding no correct associations at A¢V" > 80.

3) Detection Probability: The detection probability pg is
varied from 0.3 to 0.99 with an increment of 0.1, except the
last increment which is 0.09, while keeping the other param-
eters as in the previous experiments except K = 10 and A\{V =
1. For each value of p4, we randomly generated 10 test cases
and MCMCDA is run 10 times per test case. Again, 50,000
samples are used for MCMCDA. The average F; measures for
three different algorithms at different detection probabilities are
shown in Fig. 8(d). The overall performance of MCMCDA is
better than that of MHT. MHT only performs slightly better than
MCMCDA at pg = 0.99. The running times of both MCMCDA
and MHT are comparable in this case (MCMCDA was about 1
second faster than MHT for all cases except when pg = 0.99).
The multi-scan NNF algorithm performed very poorly.

Although, in theory, MHT gives an optimal solution in the
sense of MAP, it performs poorly in practice when the detection
probability is low or the false alarm rate is high. This is due to
the heuristics, such as pruning and NV -scan-back techniques, that
are required to limit complexity. They work well when a few hy-
potheses carry most of the weight. (This is why MHT performed
slightly better than MCMCDA when pg = 0.99.) When the de-
tection probability is low or the false alarm rate is high, however,
there are many hypotheses with appreciable weights and there
is no small set of dominating hypotheses, so MHT cannot per-
form well. A major advantage of the MCMCDA algorithm is
that its running time can be regulated by the number of samples
and the number of observations but the running time of MHT
depends on the complexity of the problem instance, which is
not predictable in advance. In addition, the memory required
by MCMCDA is significantly less than the memory required by
MHT, since MCMCDA is only required to store one association
event at a time.

4) Online MCMCDA: An example of tracking multiple tar-
gets in a densely cluttered environment is used to demonstrate
online MCMCDA from Section V-B. For this example, the
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surveillance duration is 7' = 100 and the scenario is generated
according to the model for multi-target tracking described in
Section II-A. The surveillance region is R = [0, 100] x [0, 100]
and the model parameters are: \,V = 5, p, = 1/20, pq = 0.7,
and A¢V = 30. There are a total of 380 targets. The linear
model (28) is used, but with different covariance matrices:
Q@ = diag(0.031,0.031) and R = diag(0.031,0.031). The size
of the sliding window is ty;, = 14 for the online MCMCDA
algorithm while d = 5 and ¥ = 3 unit lengths per unit time.

For this example, MHT took 6,995 seconds while online
MCMCDA took only 343 seconds, i.e., a 20-fold reduction in
computation time. On the F; measure, MHT scored 0.85 and
MCMCDA scored 0.91. In addition, MHT found 494 targets
but MCMCDA detected 335 targets which is close to the actual
number of 380 targets. The tracks estimated by MHT and
MCMCDA are available in [43], along with the actual trajecto-
ries of targets. In summary, this example shows that MCMCDA
is very effective in a dense environment and achieves superior
performance with a fraction of the computation time required
by MHT.

VI. CONCLUSION

In this paper, we have presented Markov chain Monte Carlo
data association (MCMCDA) for solving data association
problems arising in multi-target tracking in a cluttered environ-
ment. Instead of enumerating the entire space of associations,
MCMCDA randomly samples the region where the posterior is
concentrated.

For the case of a fixed number of targets, we have shown that
a single-scan MCMCDA algorithm provides a fully polynomial
randomized approximation scheme for the JPDA calculation,
which is known to be NP-hard and is infeasible in practice for
large problems. One can also consider a combined approach,
where JPDA is used for small subgraphs created after some of
the edges in the bipartite measurement validation graph have
been broken by MCMC sampling. The precise division of labor
will depend on the specific application and available computing
resources.

For the general multi-target tracking problem, in which
unknown numbers of targets appear and disappear at random
times, we have presented a multi-scan MCMCDA algorithm
that is capable of initiating and terminating tracks. Our simula-
tion results show the remarkable performance of the MCMCDA
algorithm under extreme conditions such as a large number of
targets in a dense environment, low detection probabilities, and
high false alarm rates. The MCMCDA algorithm is flexible and
can easily incorporate domain specific knowledge to make it
more efficient. The efficiency of MCMCDA has been demon-
strated as part of of the real-time control system developed for
solving multi-agent pursuit-evasion game using a large-scale
outdoor wireless sensor network [5].
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