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ABSTRACT
Analysis of stability and stabilizability of switched linear
systems is a well-researched topic. This article pursues a po-
lar coordinate approach which offers a convenient framework
to analyze second-order continuous time switched linear sys-
tems. We elaborate on the analytic utility of polar coordi-
nates and present necessary and sufficient conditions under
which a stabilizing switched control law can be constructed.
Implications of polar coordinate analysis for switched linear
systems include sensitivity analysis of switching control laws
and the design of oscillators.

Categories and Subject Descriptors
B.1.2 [Control Structure Performance Analysis and
Design Aids]: Formal Models

General Terms
Theory
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Switched linear systems, stabilizability

1. INTRODUCTION
By a switched linear system, we refer to a system ẋ =

Aqx, x ∈ Rn, A ∈ {A1, . . . , Ak} ⊂ Rn×n, where a switching
signal, q = {1, 2, . . . , k}, alters the continuous dynamics to
effect control over the continuous system state.
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In practical applications, when presented with a collection
of possible linear dynamical systems, one is often faced with
the task of designing a switching controller that will stabi-
lize a trajectory of the system to equilibrium. This is the
problem of stabilizability, which has been explored widely in
the literature [2, 5, 8, 10, 11, 13, 14, 21, 22, 23, 24].

In this paper, we define a switched linear systems as a
hybrid system in which the continuous dynamics are lin-
ear and second-order, and the domains are finite unions of
conic subsets of R2. Transitions between discrete states are
forced when the continuous state reaches one of the linear
guards. We study the problems of stability and stabilizabil-
ity of the equilibria of such systems with a polar coordinate
transformation of the continuous state variables. The use of
polar coordinates allows us to present, for a restricted set
of switched linear systems, necessary and sufficient condi-
tions for global exponential stability of the equilibrium. We
further leverage polar coordinates to present necessary and
sufficient conditions for a collection of unstable linear sys-
tems to be stabilized by a particular form of switching. We
illustrate the application of our approach with an example
motivated by Branicky [1].

1.1 Related Works
The issues addressed in this paper have been explored

before; the contribution of this paper stems from the ap-
plication of the polar coordinate transformation to an un-
derstanding of the problems of stability and stabilizability
of switched linear systems. While uncommon in linear sys-
tem analysis, the use of the polar coordinate transforma-
tion is not without precedent. Huang et. al. [9] leveraged
the polar coordinate transformation to derive conditions for
stability of equilibria in switched linear systems under ar-
bitrary switching signals. In the process, they developed
foundational techniques for analyzing stability of equilibria
in switched linear systems. In this paper, we make explicit
the ability of the polar coordinate transformation of the con-
tinuous dynamics to determine the net change in the radial
component, r, with respect to a given change in angular
component, θ. We extend the results of Huang et. al. and
derive conditions under which a switched linear system with
both stable and unstable subsystem equilibria will have a
stable equilibrium. In addition, we address the problem of
stabilizability, which is unaddressed in [9].

There is an abundance of work on the problems of sta-
bility and stabilizability of switched linear systems in the
Hybrid Systems literature. In the late 1990’s, Liberzon and
Morse [12] presented a succinct description of three core



problems: 1) finding conditions to guarantee stability for
arbitrary switching, 2) identifying which switching signals
stabilize a given system, and 3) constructing a stabilizing
switching law for a given system. Other authors (e.g. [5,
14, 16]) separate the problem into, roughly, 1) analyzing
stability for arbitrary or particular switching signals, and
2) analyzing the existence of, and constructing, stabilizing
switching laws, which we refer to as the problems of 1) sta-
bility, and 2) stabilizability.

Stability under arbitrary switching, the problem consid-
ered by Huang et. al. [9], is useful in many contexts, when
switching signals are not known a priori, and are possibly
reactive to environmental stimuli [4]. In this context, a num-
ber of interesting algebraic conditions have been derived,
summarized in [16].

When stability under arbitrary switching cannot be guar-
anteed (e.g. all subsystems are unstable), it is still possible
that there exist switching control laws that will stabilize
the system. The problem of stabilizability of stable and
unstable linear subsystems has been known to be a chal-
lenging problem, and has yielded very slowly to results. It
wasn’t until recently that some necessary and sufficient con-
ditions for stabilizability were introduced [15]. The majority
of authors studying stabilizability of switched linear systems
apply Lyapunov theory, requiring common or multiple Lya-
punov functions [1, 3, 4, 5, 7, 11, 15, 17, 21, 23]. A review
of these approaches can be found in the review paper by
Shorten et. al. [19] or by Decarlo et. al. [5]. The most re-
cent results on the problems of stability and stabilizability of
switched linear systems can be found in review papers [16,
20]. Other work has been invested in efficient methods of
finding Lyapunov functions, which apply Linear Matrix In-
equalities [3, 19], which may be solved efficiently.

Part of the difficulty of studying switched systems is that,
even when all subsystems are stable, particular switching
signals can destabilize the system. Such pernicious effects
of switching are summarized well by Decarlo et. al. [5],
building off of earlier examples by Branicky [1]. Such ex-
amples illustrate that the stabilizing or destabilizing effects
of switching are not intuitive and that they have some de-
pendence on the construction of the switching surfaces, or
equivalently, the domains and guards of the hybrid system.

Here, we depart from the major vein of the literature and
seek conditions for stability and stabilizability of switched
linear systems without applying Lyapunov theory. Instead,
we focus on conditions derived directly from an analysis of
system trajectories in polar coordinates to deal more simply
with the effects of switching.

1.2 Paper Organization
We apply a polar coordinate transformation to the con-

tinuous dynamics of a switched linear system with state-
dependent switching to approach stability analysis and the
problem of stabilizability. In Section 2, we introduce model
of switched linear systems as a special, restricted class of
hybrid systems. We proceed with a polar coordinate trans-
formation and leverage this transformation to explore a few
types of trajectories of switched linear systems which may
converge to the origin. We culminate this section with a
derivation of a number related to system trajectories, called
the stability exponent, which we use to generate conditions
for stability of the equilibrium in switched linear systems.
We further utilize the stability exponent in Section 3 to

design the domains, guards, and edges of a particular, re-
stricted hybrid systems model of a switched linear system to
stabilize the equilibrium. Finally, in Section 4, we present
an application of the stability exponent to a study of the
sensitivity of switched linear systems to perturbations in
switching surfaces. An example motivated by Branicky [1]
illustrates the application of the material presented.

2. PRELIMINARIES
In this section, we define switched linear systems with

state-dependent switching in the context of hybrid systems.
Then, we explore some important properties of the polar
coordinate transformation for the analysis of switched linear
systems.

2.1 Hybrid System Definition
This paper focuses on hybrid systems with second-order

linear dynamics, and with state-dependent switching laws.
These systems are described as follows, and will be referred
to throughout the paper as H:

H = (X ,Q, f, Init,R) (1)

where

X = R+ × [0, 2π)

Q = {1, 2, . . . , k} ⊂ N

f : X ×Q → R2

Init ⊂ {(x, q) ∈ X ×Q}
R : X ×Q → 2X×Q

The continuous state is x ∈ X ⊂ R2. In Section 2.2, we will
apply a polar coordinate transformation, so the continuous
state may equivalently be represented as (r, θ) ∈ R+×[0, 2π),
with the understanding that θ = 0 is equivalent to θ = 2π.
The discrete state is represented by q ∈ Q. There are k ∈ N
discrete states of the system. The continuous dynamics of
the system are represented by the map f which is of the
form ẋ = Aqx (which we refer to as a linear subsystem of
H), where the discrete state q indexes the particular 2x2
matrix which governs the continuous linear dynamics. It is
assumed that Aq ∈ A = {A1, A2, . . . , Ak} ⊂ R2×2.

The switching laws are determined by the map R, the
reset relation. For this model, the reset relation takes on
a restricted form, and is described in terms of domains,
edges, and guards. The reset relation preserves continuity
of the continuous state but allows switching of the discrete
state. The domains are constructed with finite unions of
non-empty convex conic sets. Consider the partitioning of
the plane into N sets as follows:

dj =
˘

(r, θ) | θ ∈
ˆ

θj−1, θj

˜

∪
ˆ

π + θj−1, π + θj

˜¯

for j = 1, 2, . . . , N , and θj ∈ [0, π), θN = θ0 + π, and θ0 <
θ1 < . . . < θN . These sets look like those in Figure 1; they
are each the union of two convex conic sets. We refer to
these sets as fundamental domain sets of the hybrid system
H.

The domain, Dq , associated with discrete state q ∈ Q, is
defined as some finite union of sets dj as follows:

Dq =
[

i∈iq

di



d1

d2

d1

d2

θ = θ0

θ
=
θ 2

Figure 1: Illustration of sets dj that comprise dis-
crete domains

where iq ⊂ {1, 2, . . . , N} ⊂ N lists the indices of the fun-
damental domain sets which comprise the domain of dis-
crete state q. We require that

S

j∈{1,2,...,k} Dj = R2, so
a trajectory of the hybrid system will exist for any initial
condition on the continuous state. The initialization set is
Init := {(x, q) | x ∈ Dq}.

The edges between discrete states are directional and de-
fine possible discrete state transitions. The reset maps main-
tain continuity of the continuous state trajectory of the sys-
tem and are deterministic, so the edges are configured to
allow transitions only between discrete states with adjacent
domains. For these systems, an edge may exist between dis-
crete states qi and qj if Di

TDj 6= {0}, the set containing
only the origin. In the case that k > 1, each discrete state
must have at least one inbound edge and one outbound edge
so there always exists a trajectory of the system H for any
initial condition (x0, q0) ∈ Init.

Linear switching surfaces are described as guards of the
form {(r, θ) | θ = θ} ∈ Di

TDj , for i 6= j, and force discrete
state transitions when reached. Thus, discrete state transi-
tions occur only on the boundaries of the convex conic sets
di, i = 1, . . . , N , which are lines through the origin. We re-
quire that the system be deterministic, so no two outbound
edges from a given discrete state may share a guard.

Note that a controller generating the discrete state switch-
ing signals would be a state-feedback controller. Similar
state-dependent switching has been thoroughly investigated
in the literature [1, 6, 8, 11, 15, 17, 18, 21, 22, 24]. In this
definition, there are a fixed, finite set of switching surfaces.
This limitation is motivated by real-world switched systems,
in which there are limits on the switching capabilities of the
system. Since physical systems cannot switch infinitely fast
and infinitely often, there is an upper limit on the number
of switches that are possible. Also, note that there are no
continuous control inputs to the system. Control of these
systems is achieved only by the design of switching laws.

Finally, the possibility of sliding modes complicates mat-
ters. Following other works, such as [1, 15], and to simplify
the development, we avoid sliding modes, and require that
only a finite number of discrete state switches may occur in
finite time. Fortunately, one additional restriction on the
form of the reset maps eliminates all possible sliding modes.
Since this condition is more easily discussed after the polar
coordinate transformation, it will be introduced in Section
2.3.

2.2 The Polar Coordinate Transformation
While used infrequently in linear systems theory, there is

a precedent to the use of polar coordinates. The core devel-
opment of this section mirrors that of Huang et. al. [9]. We
repeat the derivation of the polar coordinate representation

of the dynamics of H for clarity, due to differences in no-
tation and to differences in the eventual application of the
material.

For hybrid systems with linear continuous dynamics, the
polar transformation is convenient, due to radial symmetry
of the linear subsystems: for x ∈ Rn, A ∈ Rn×n, and α ∈ R,
ẋ = A(αx) = αAx. That is, the vector field of the contin-
uous dynamics at any point on a line through the origin is
a scaled copy of the vector field at any other point on the
line.

Consider x(t) =
ˆ

x1(t) x2(t)
˜T

, for xi(t) ∈ R, i = 1, 2.
For ease of notation, let x denote x(t). Define the polar
transformation map T (r, θ) : (R+ × [0, 2π)) → R2 as

x1 = r cos θ

x2 = r sin θ

where R+ is the set of nonnegative real numbers, and
[0, 2π) ⊂ R. Thus, applying the transformation to the dy-
namics of x, ẋ = Aqx yields the dynamics for r and θ as
follows:

»

ṙ cos θ − r sin θθ̇

ṙ sin θ + r cos θθ̇

–

= rAq

»

cos θ
sin θ

–

(2)

Let ω(θ) =
ˆ

cos θ sin θ
˜T

and γ(θ) =
ˆ

− sin θ cos θ
˜T

.
Note that ω(θ) is orthogonal to γ(θ) for all θ, and that each
vector is unit length. Multiplying Equation (2) on the left
by ω(θ)T yields:

1

r
ṙ = ω(θ)T Aqω(θ) (3)

Equation (3) yields the proportional dynamics of the state
variable r, where the proportional dynamics of a continuous

state x ∈ Rn are given by ẋ(t)
||x(t)||2

.

Multiplying Equation (2) on the left by γ(θ)T yields:

θ̇ = γ(θ)T Aqω(θ) (4)

Note that θ̇ is a function only of θ. Also, note that the
proportional dynamics of r depend only on θ, or equivalently,
the proportional dynamics of r are constant along any given
line through the origin. This is a direct consequence of the
fact that A(αx) = αAx: along a given line through the
origin, the vector field points in the same direction, but the
magnitude of the vector field scales with the distance from
the origin.

For a given discrete state q, let αq(θ) := 1
r

ṙ

θ̇
≡ ω(θ)T Aqω(θ)

γ(θ)T Aqω(θ)
,

which is well-defined only when γ(θ)T Aqω(θ) 6= 0. Note that
γ(θ)T Aqω(θ) = 0 if and only if ω(θ) is an eigenvector of Aq.

Now, note that the proportional dynamics of r(t) are im-
plicitly related to time, through θ(t), which has dynamics in-
dependent from r(t). We seek an expression for r(θ), which
will enable stability analysis for trajectories of the system
without explicitly considering time. Consider a trajectory
of H with initial condition (r0, θ0, q0) ∈ Init, assuming that

θ̇(θ0) 6= 0, so αq0(θ0) is well-defined. The discrete state
transitions are labeled so the transitions occur in sequential
order. That is, the system is initialized in q0, and proceeds
to q1, q2, and eventually to qR. The discrete state transition
between qi and qi+1, i = 0, . . . , R−1, is driven by the guard
θ = θi+1. After some time, the continuous state reaches
θ = θR+1, in the domain of discrete state qR.



Proceeding informally, we assume that θ̇ 6= 0 for all time

and that dr/dt
dθ/dt

= dr
dθ

. Thus, we have 1
r

dr
dθ

= αq(θ), for given

θ and q. We then multiply both sides by dθ and integrate,

yielding
R r(θR+1)

r(θ0)

dr(θ)
r(θ)

=
PR

j=0

R θj+1

θj
αqj

(θ)dθ. Evaluating

the integral on the left-hand side and solving for r(θR+1)
yields

r(θR+1) = r(θ0) exp
`

Γ(θ0, θR+1, q)
´

(5)

where Γ(θ0, θR+1,q) =
PR

j=0

R θj+1

θj
αqj

(θ)dθ is called the

stability exponent of a given trajectory of H with corre-
sponding ordered sequence of discrete states q = (q0, . . . , qR).
This equation is central to the study of stability of equilib-
ria of switched linear systems, and is very similar in form to
Equation (8) presented by Huang et. al. [9].

Note that for the stability exponent to be well-defined, we
require that θ = θR+1 is reachable from the initial condition
(r0, θ0, q0) through the sequence of discrete states q. Figure
2 illustrates a situation in which a given Γ(θ0, θR+1,q) is
not well-defined, when the continuous state approaches an
eigenvector of one of the linear subsystems.

θ = θ0

θ
=
θ 2

q0

q1
θ̇(
θc
) =

0

Figure 2: Initial condition: (r0, θ0, q0). As t → ∞,
θ → θc, as γ(θc)A1ω(θc) = 0. Γ(θ0, θ2, (q0, q1)) is not
well-defined, as θ > θc is not reachable.

Proposition 1. Given a initial angle θi, final angle θf ,
and a corresponding sequence of discrete states q, r(θf ) <
r(θi) ⇔ Γ(θi, θf , q) < 0. Thus, the sign of the stability
exponent is enough information to determine convergence
or divergence of trajectories with respect to the origin over
a given interval in θ and corresponding sequence of discrete
states q.

Proof. Assume there is some trajectory of H initialized
at θi, which reaches θf in finite time, and has corresponding
sequence of discrete states q. By Equation (5), r(θR+1) =
r(θ0) exp (Γ(θi, θf ,q)). Thus, r(θR+1) < r(θ0) if and only if
exp (Γ(θi, θf ,q)) < 1, or equivalently, Γ(θi, θf ,q) < 0.

2.3 Describing the behavior ofH
With the polar coordinate transform introduced, we now

present four additional conditions on H to avoid sliding
modes and to limit the behavior of trajectories of the system
to three simple cases. To avoid sliding modes, we require
that, after a discrete state switch, the continuous state pro-
ceeds to the interior of a fundamental domain set. For this,
we require two conditions. The first requires the dynam-
ics of θ to be non-zero on switching surfaces. The second
requires that the sign of the dynamics of θ cannot change
sign between two adjacent fundamental domains sets. For

some fundamental domain set dj , with boundaries θ = θj

and θ = θj+1,

dj

\

Du = dj ⇒ γ(θi)
T Auω(θi) 6= 0 for i = (j, j + 1) (6)

dj

\

Du

\

Dv = {(r, θ) | θ = θ} ⇒

sgn(γ(θ)T Auω(θ)) 6= sgn(γ(θ)Avω(θ)) (7)

where sgn(·) is the signum function, which returns −1 for
a negative argument, 0 for an argument of 0, and 1 for a
positive argument.

Next, we require that the interiors of the domains of any
three discrete states intersect only at the origin, or equiv-
alently, that at most two discrete states may incorporate a
given fundamental domain set, dj , in their domains.

u, v, w ∈ Q, u 6= v 6= w ⇒ D0
u

\

D0
v

\

D0
w = {0} (8)

In addition, we require that discrete states with domains
that overlap in the interior of a fundamental domain set have
continuous dynamics that circulate in opposing directions
(θ̇ > 0 is counter-clockwise, and θ̇ < 0 is clockwise):

dj

\

Du

\

Dv = dj ⇒

sgn(γ(θi)
T Auω(θi)) 6= sgn(γ(θi)

T Avω(θi)) (9)

for i = (j, j + 1).

Theorem 2. For H with additional assumptions 6,7,8,9,
∃T > 0 such that, after t = T , the trajectory may be

• approaching an eigenvector. Assume that, at t = T ,
the discrete state q = u and (r, θ) ∈ dj ⊂ Du, then
q = u ∀t > T . Further, ∃θc such that {(r, θ) | θ =
θc} ∈ d0

j (the interior of dj) and θ → θc as t → ∞.
Any eigenvector of a subsystem that a trajectory of H
may approach is called an eigenvector of H.

• cyclic. Assume that, at t = T , ∃τ > 0 such that ∀t >
T , ∀m ∈ N, θ(t) = θ(t + mτ ), and for all ϑ ∈ [0, 2π),
∃τ ′ < τ such that θ(t + τ ′) = ϑ.

• conic. Assume that at t = T , θ(T ) = θj, on the bound-
ary of dj. ∃i 6= j such that θi is on the boundary of di

and for all t > T , θ(t) ∈ [θi, θj ]. In addition, ∃τ, τ ′ > 0
such that for all t > T , for all m ∈ N, θ(T + mτ ) = θj

and θ(T + mτ + τ ′) = θi.

Figure 3 illustrates an example conic trajectory. A cyclic
trajectory is analogous to trajectories of planar linear time-
invariant systems with complex eigenvalues.

θ =
θi

θ
=
θ j

t =
T

t =
T + τ

C

Figure 3: A sample“conic”trajectory: The direction
of circulation of the continuous state switches only
at the boundaries, θ = θi and θ = θj.



Proof. First, for j ∈ {1, . . . , N}, consider an initial con-
dition at t = T , (r0, θ0) ∈ d0

j , and q0 where dj = {(r, θ) | θ ∈
ϑj = [θj , θj+1]} ⊂ Dq0 , where θj < θj+1. Suppose ∃θc ∈ ϑ0

j

such that γ(θc)
T Aq0ω(θc) = 0, implying that ω(θc) is an

eigenvector of Aq0 . If θ0 = θc, then θ(t) → θc as t → ∞,
since θ(t) = θc for all time. So, the trajectory approaches an
eigenvector, and no discrete-state switches occur. Suppose
instead, w.l.o.g. that θ0 < θc and that γ(θ0)

T Aq0ω(θ0) > 0.
Since γ(θ)T Aq0ω(θ) is a continuous function of θ, and trajec-
tories of linear systems are unique, ∄t > T such that θ = θc.
Because ∀t > T, θ̇(t) > 0, as t → ∞, θ(t) → θc, and there-
fore the trajectory approaches an eigenvector of Aq0 . Since
the line θ = θc is in the interior of dj , and switches of H only
occur on the boundaries, no discrete state switches occur for
all time. Next, note that there may be two eigenvectors of
Aq0 , so there may be θc1 , θc2 ∈ ϑ0

j such that for i = 1, 2,

γ(θci
)T Aq0ω(θci

) = 0. The remaining case for trajecto-
ries starting in the interior of dj is if we assume, w.l.o.g.,
that θc2 > θc1 > θ0 and that γ(θ0)

T Aq0ω(θ0) < 0. Now,
∀θ ∈ [θ0, θj ], γ(θ)T Aq0ω(θ) < 0, so in finite time, θ = θj ,
and a discrete-state switch is triggered by a guard.

Assume that the discrete state switch occurs at time t = τ .
Now, we may apply Conditions (6) and (7) to ensure that

∃ǫ > 0 such that ∀0 < δ < ǫ, θ(τ + δ) ∈ ϑ0
j (if θ̇ changed

sign) or θ(τ + δ) ∈ ϑ0
j−1 (otherwise). Once in the interior

of a fundamental domain set, by the argument above, the
continuous trajectory either approaches an eigenvector, or
reaches a boundary of either dj or dj−1 in finite time.

Now, consider an initial condition at time t = T such
that θ0 = θj . For the remainder of the proof, assume that,
∀t > T , ∄θc such that θ → θc as t → ∞. Then, in some
finite time τ , assume w.l.o.g. that θ(T + τ ) = θj+1. Note
that the time τ (called the traversal time) is constant for all
initial r0 on the line θ = θj .

Then, assume that after time t = T , every discrete state
transition preserves the sign of θ̇, and that θ(T ) = θj , on
the boundary of dj , and the discrete state is q0. Thus, for

c > 0 and c′ < 0 ∀t > T , either θ̇(t) > c or θ̇(t) < c′.
Then, in some finite time τ > 0, θ(T + τ ) = θ(T ). In this
finite time, the discrete state follows some sequence q =
(q0, q1, . . . , qN ). By Conditions (8) and (9), we guarantee
that at time T + τ , the discrete state is once again q0, after
the continuous state has traversed ϑ ∈ [0, 2π). Further,
since the traversal time is independent of r, in time τ the
discrete state follows sequence q and the continuous state
returns once again to the line θ = θj . Thus, ∃τ > 0 such
that ∀t > T, ∀m ∈ N θ(t) = θ(t + mτ ), so the trajectory is
cyclic.

Finally, assume ∄t > 0 such that every discrete state tran-
sition preserves the sign of θ̇(t). Assume that at some t =
T > 0, θ(T ) = θj , at the boundary of dj . Assume ∃ǫ, ǫ′ > 0
such that ∀0 < δ < ǫ and ∀0 < δ′ < ǫ′, θ(T − δ) ∈ ϑ0

j and

θ(T + δ′) ∈ ϑ0
j . Thus, the dynamics of θ change sign at ǫ.

Since the dynamics of θ must change sign again, ∃θi at the
boundary of di such that ∃τ ′ > 0 such that θ(T + τ ′) = θi

and ∃ǫ, ǫ′ > 0 such that ∀δ, δ′ such that 0 < δ < ǫ and
0 < δ′ < ǫ′, θ(T + τ ′ − δ) ∈ ϑ0

i and θ(T + τ ′ + δ′) ∈ ϑ0
i . As-

sume that ∃ν > 0 such that θ(T+τ ′+ν) = θj . Let τ ′+ν = τ .
Then, by Conditions (8) and (9), ∀m ∈ N, θ(T + mτ ) = θj .
Further, ∀t > T , θ(t) ∈ [θi, θj ], and θ(T + mτ + τ ′) = θi.
Thus, any trajectory that does not approach an eigenvector
and is not cyclic is conic.

2.4 Stability Criteria
While the majority of stability and stabilizability analysis

focuses on Lyapunov methods, we take an alternative ap-
proach, and utilize the stability exponent. For what follows,
we refer to systems H with cyclic trajectories as having a
cyclic switching law, while systems with conic trajectories
are said to have a conic switching law.

Given a system with a conic switching law, we know that
for some initial conditions, and for some T > 0, ∀t > T ,
θ(t) ∈ C = [θi, θj ] ⊂ [0, 2π]. Given Conditions (8) and (9),
a trajectory initialized at θi will proceed counter-clockwise
from θi to θj following discrete state sequence q, then pro-
ceed clockwise from θj to θi following discrete state sequence

q′, and repeat for all time. Since ∀t > 0, θ̇(t) 6= 0, we may
consider the fundamental stability exponent of this class of
conic trajectories:

ΓC = Γ(θi, θj ,q) + Γ(θj , θi, q
′)

In the case that H has a cyclic switching law, we may
guarantee that for some T > 0, the continuous state returns
to the line θ(T ) = θ with period τ for all t > T , and will
follow a fixed sequence of discrete states, q, within each pe-
riod. The fundamental stability exponent of a cyclic system
is

sgn(θ̇)Γ(θi, θi + 2π, q)

for any θi ∈ [0, 2π), and for the corresponding sequence of

discrete states, q, where sgn(θ̇) indicates the direction of
circulation of the cyclic trajectory.

Utilizing the definitions of fundamental stability expo-
nents, it is now possible to introduce stability theorems.
Consider first the case where the system has at least one
conic switching law region C or trajectory which approaches
an eigenvector.

Theorem 3. Given a system H with Conditions (6), (7),
(8), and (9), with p ∈ N distinct conic switching law regions
Ci. The origin of H is globally exponentially stable if and
only if ∀i = 1, . . . , p, ΓCi

< 0 and every eigenvector of H
has a corresponding real valued negative eigenvalue.

Proof. We show this first in the forward direction. By
Theorem 2, for systems H that do not have a cyclic switching
law, for any initial condition (r0, θ0, q0) ∈ Init, trajectories
will either approach an eigenvector or enter one of the p pos-
itively invariant conic switching law regions Ci in finite time.
Assume the trajectory approaches an eigenvector of discrete
state q, in some set dj = {(r, θ) | θ ∈ ϑj = [θj , θj+1]}.
By our assumption, ∃θc ∈ ϑ0

j such that Aqω(θc) = λω(θc),

where λ < 0. Consider 1
r
ṙ(θ) = ω(θ)T Aqω(θ). Note that

ω(θc) is orthogonal to γ(θc), and make a basis for R2. Thus,
∃β1, β2 ∈ R such that β2

1 + β2
2 = 1 and ω(θ) = β1ω(θc) +

β2γ(θc). Therefore, ω(θ)T Aqω(θ) = β2
1λ + β2

2 . As θ → θc,
β1 → 1 and β2 → 0, so ∃T > 0, c < 0 such that ∀t > T ,
ṙ
r
≤ c, implying that r(t) ≤ r(T )ect for all t > T , so the

trajectory is exponentially stable.
Next, assume that the trajectory enters one of the posi-

tively invariant conic switching law regions Ci = [θu, θv ] at
some time T > 0. Thus, θ(T ) = θu. Then, assume that
ΓCi

= c < 0. By Equation (5), and the definition of a conic
trajectory, r(T + τ ) = r(T )ec. Note that r(T + kτ ) = r(T +
(k − 1)τ )ec for all integers m > 1, so r(T + mτ ) = r(T )emc.



As t → ∞, m → ∞, and r(T + mτ ) → 0, so the trajectory
is exponentially stable.

Now, we prove the necessity of the stated conditions. As-
sume that the origin is globally exponentially stable. As-
sume that a given trajectory approaches an eigenvector of
Aq, ω(θc). We note that, if Aqω(θc) = λω(θc) where λ > 0,
any trajectory initialized at θ = θc in discrete state q will
diverge exponentially, a contradiction. Next, assume that
at time t = T , a given trajectory hits the boundary of a
conic switching region, Ci. Assume that Γ(Ci) = c ≥ 0.
Then, by Equation (5), r(T + τ ) = r(T )ec. Again, note that
r(T + mτ ) = r(T )emc for all m ∈ N. Note that, as t → ∞,
and therefore m → ∞, r(T + mτ ) 9 0, contradicting the
assumption that the origin of the system is exponentially
stable.

Next, we propose conditions for stability of the origin for
cyclic systems H.

Theorem 4. Given a cyclic system H with Conditions
(6), (7), (8), and (9). Then, the origin of H is globally
exponentially stable if and only if for any θ = θi, and corre-
sponding sequence of discrete states q,

sgn(θ̇)Γ(θi, θi + 2π,q) < 0

Proof. By our assumption that any trajectory of the
system is cyclic, we know ∃T > 0, τ > 0 such that for all
t > T , θ(t) = θ(t + τ ).

Next, assume that, for any θi such that θ(T ) = θi and
θ(T + τ ) = θi, Γ(θi, θi + 2π,q) = c < 0. By Equation
(5), we note that r(T + τ ) = r(T )ec, and for all m ∈ N,
r(T + mτ ) = r(T )emc. As t → ∞, m → ∞, and r(T +
mτ ) → 0. Further, since the continuous state trajectory is
continuous, ∃β > 0 such that ∀t ∈ [T, T + τ ], r(t) < βr(T ).
Also, ∀t ∈ [mT, mT + τ ], r(t) < βr(mT ). Therefore, the
trajectory converges to the origin exponentially. Then, we
assume that the origin of H is globally exponentially stable.
Since the system has a cyclic switching law, after some time
T > 0, we can guarantee that ∀t > T , θ(t + τ ) = θ(t). For
a given θi, we can guarantee that the discrete state follows
sequence q. To show necessity, we derive a contradiction.
Assume that, for some θi, Γ(θi, θi + 2π, q) = c ≥ 0. This
implies that r(T +mτ ) = r(T )emc. As t → ∞, m → ∞, and
r(T + mτ ) 9 0, so the origin is not globally exponentially
stable, which is a contradiction.

3. STABILIZING SWITCHING LAWS
In this section, we apply the stability results of the pre-

vious section to the problem of stabilizability. For hybrid
systems H with the addition of Conditions (6), (7), (8), and
(9), the problem of stabilizability is equivalent to deciding,
for a given collection of discrete states Q with corresponding
linear dynamics ẋ = Aix with Ai ∈ A = {A1, A2, . . . , Ak},
if the domains and reset map can be designed, in such a way
that the origin of H is globally exponentially stable. Triv-
ially, if any of the linear subsystems, say Aj , has an exponen-
tially stable equilibrium, then we may let Dj = R2, making
trajectories of H equivalent to trajectories of ẋ = Ajx, and
the system is globally exponentially stable. So, we assume
that all linear subsystems have an unstable equilibrium.

We approach the stabilizability problem for cyclic switch-
ing laws constructively, and offer a principled approach to
constructing the domains and reset map of H. We show that,

if the designed system is not well-defined or is unstable, then
the given collection of linear subsystems is not stabilizable
by the by a system H with Conditions (6), (7), (8), (9), and
a cyclic switching law.

3.1 Constructive Cyclic Stabilizability
Solution

We assume, in this section, that there are no eigenvectors
that are common to all subsystems Ai. If this is the case,
no switching law can be created that would not include an
unstable eigenvector line, implying that there does not exist
a set of domains and a reset map such that the system H is
stable.

With the end-goal of generating a cyclic switching law,
we require that, for all θ, the trajectory circulates either
clockwise (θ̇ < 0) or counter-clockwise (θ̇ > 0). Thus, at
every θ ∈ [0, π), we partition Q into

Qc(θ) = {q | γ(θ)T Aqω(θ) < 0}
Qcc(θ) = {q | γ(θ)T Aqω(θ) > 0}
Q0(θ) = {q | γ(θ)T Aqω(θ) = 0}

The former two sets represent the set of discrete states
with continuous dynamics which circulate clockwise and coun-
terclockwise, respectively. The latter set represents the set
of discrete states, q, such that ω(θ) is an eigenvector of Aq.
Note that, ∀θ Qc(θ)

S

Qcc(θ)
S

Q0(θ) = Q. With this par-
titioning, we introduce the following two piecewise-constant
functions:

q∗c (θ) = arg maxq∈Qc(θ) {αq(θ)}
q∗cc(θ) = arg minq∈Qcc(θ) {αq(θ)} (10)

Note that αq(θ) = αq(θ + π), as A(α)x = αAx for A ∈
R2×2 and x ∈ R2. This selection law enables direct con-
struction of the fundamental domain sets, dj , j = 1, . . . , N
that have the form described in Equation (1), for two sys-
tems Hc and Hcc. When a single discrete state, qi is chosen
for an interval θ ∈ [θ0, θf ), what results is a fundamental
domain set dj = {(r, θ) | θ ∈ [θ0, θf )

S

[θ0 + π, θf + π)} for
some j, which contributes to the set Di. However, to design
a well-defined system H, we must verify is that this selection
rule will create non-empty fundamental domain sets.

Lemma 5. Given a set of fundamental domain sets dj,
j = 1, . . . , N , designed by point-wise selection of discrete
states at each θ according to decision rule (10). Then, for
j = 1, . . . , N , dj is non-empty.

Proof. We seek to analyze properties of a collection of

functions αq(θ) =
ω(θ)T Aqω(θ)

γ(θ)T Aqω(θ)
for q = 1, . . . , k, which are

well-defined when γ(θ)T Aqω(θ) 6= 0. Rather than consider
the trigonometric functions ω(θ) and γ(θ) over the inter-

val [0, π/2), we consider instead ω̂(ξ) =
ˆ

1 − ξ ξ
˜T

and

γ̂(ξ) =
ˆ

−ξ 1 − ξ
˜

for ξ ∈ [0, 1]. Note that, if we scale

ω̂(ξ) and γ̂(ξ) by a ξ-dependent factor β(ξ) = 1√
ξ2+(1−ξ)2

,

each vector becomes unit length for all ξ. Thus, ω(θ) =
β(ξ)ω̂(ξ), and γ(θ) = β(ξ)γ̂(ξ), for sin θ = ξ√

ξ2+(1−ξ)2
. This

is illustrated in Figure 4. Thus, αq(ξ) =
ω̂(ξ)T Aqω̂(ξ)

γ̂(ξ)T Aqω̂(ξ)
.

Note that αq(ξ) is a (not necessarily proper) rational func-
tion, where the numerator and the denominator are both



quadratic in ξ:

a11 + ξ(−2a11 + a12 + a21) + ξ2(a11 + a22 − a12 − a21)

a21 + ξ(−a11 − a21 + a22) + ξ2(a11 − a12 + a21 − a22)
=

=
Nq(ξ)

Dq(ξ)

where Aq =

»

a11 a12

a21 a22

–

.

We seek to find a q ∈ Qc or Qcc to maximize αq(ξ) for
given ξ, which may be determined by pairwise comparisons
between αi(θ) and αj(θ) for i 6= j. Pairwise comparison
may be achieved by checking the sign of αi(θ)−αj(θ). The
difference between two rational functions is also a rational
function: N1(ξ)

D1(ξ)
−N2(ξ)

D2(ξ)
= N1(ξ)D2(ξ)−N2(ξ)D1(ξ)

D1(ξ)D2(ξ)
. In this case,

the numerator and denominator of this rational function are
at most fourth-order polynomials in ξ. This rational func-
tion may change sign only around poles and zeros. Since
there are a finite number of poles and zeros of a rational
function, and there are a finite number of discrete states,
there are a finite number of points of discontinuity in the
decision rule of Equation (10). Since a continuous interval
exists between any finite set of distinct points on a line, the
fundamental domain sets designed by Equation (10) will be
non-empty conic sets.

ω(θ
)

ω̂
(ξ
)

β
(ξ
) ω̂
(ξ
)

Figure 4: Simplifying re-parameterization for proof
of Lemma 5

Thus, the decision rule described in Equation (10) will de-
sign the domains for two hybrid systems, Hc and Hcc, which
automatically satisfy Conditions (7), (8), and (9). However,

it is not guaranteed that
Sk

i=1 Di = R2 for either Hc or Hcc.

Theorem 6. Either Hc or Hcc is well-defined and expo-
nentially stable if and only if the collection of linear subsys-
tems described by the set A = {A1, . . . , An} are stabilizable
with a cyclic switching law.

Proof. Suppose that q∗c (θ) is not defined for some θ ∈
[0, π). This happens if and only if

Sk
i=1 Di 6= R2, meaning

that the hybrid system Hc is not well-defined. q∗c (θ) is not
defined at a given θ if and only if ∃θ∀q ∈ {1, . . . , k} such
that γ(θ)T Aqω(θ) ≥ 0. By the definition of cyclic switching
laws, this implies that the system is not stabilizable by a
clockwise circulating cyclic switching law.

Suppose instead that q∗c (θ) is defined for all θ ∈ [0, π).
Thus, Condition (6) is automatically satisfied, and Hc is
cyclic. Assume that the equilibrium of Hc is globally expo-
nentially stable. The obvious implication is that the col-
lection of linear subsystems A is stabilizable by a clock-
wise cyclic switching law. If, instead, the equilibrium of
Hc is not globally exponentially stable, then by Theorem
4, Γ(2π, 0,q) ≥ 0 for the appropriate sequence of discrete
states q, which is determined by q∗c (θ). Consider an alter-
native sequence of discrete states q′ = {q′0, q′1, . . . , q′N} 6= q.

By the pointwise maximization rule of Equation (10), we
have

Γ(2π, 0,q) =
N

X

i=1

Z θi

θi−1

αqi
(θ)dθ

≤
N

X

i=1

Z θi

θi−1

αq′
i
(θ)dθ

≤ Γ(2π, 0, q′)

Thus, the stability exponent is minimized over all possible
cyclic systems generated from A. By Theorem 4, a cyclic
trajectory is exponentially stable if and only if the corre-
sponding stability exponent is negative, so there does not
exist a clockwise cyclic switching law to stabilize the sys-
tem if Hc is not exponentially stable. The same argument
applies for counter-clockwise cyclic switching laws.

4. SENSITIVITY TO PERTURBATIONS IN
SWITCHING LAW

Previously, we determined that the sign of the stability
exponent indicates whether or not a given trajectory con-
verges to an equilibrium. The magnitude of the stability
exponent provides useful information, too. While yielding
some insight about the rate of convergence of the trajectory,
the stability exponent permits analysis of the sensitivity of
the stability of the equilibrium with respect to perturbations
in the switching law. While sensitivity analysis can be per-
formed using standard methods [8, 18, 23], this approach
offers an interesting alternative.

Consider a given hybrid system H of the form of Equa-
tion (1), with Conditions (6), (7), (8), and (9), which has
guards at lines θ = θi for i = 1, . . . , N . By Theorem 4, if
H has a cyclic switching law and the equilibrium is globally
exponentially stable, the fundamental stability exponent for
a cyclic trajectory will be negative. If the system H has a
conic switching law, by Theorem 3, the fundamental stabil-
ity exponent of any positively invariant set Ci will be neg-
ative. However, we would like to know how sensitive this
stability is to perturbations in the switching law. Switches,
in general, don’t toggle instantaneously. If some configura-
tion relies on very fast and/or precise switching to stabilize
a system, then that configuration is rather tenuous. We
seek to understand conditions when any small change in the
domains and reset maps may effect a large change in the
observed behavior of the system.

Consider rotating the guards and domains of H by some
constant angle φ0 about the origin. For cyclic systems, the
fundamental stability exponent is

Γ(θ0 + φ0, θ0 + φ0 + 2π, q) =
N

X

i=1

Z θi+φ0

θi−1+φ0

αi(θ)dθ (11)

We refer to the perturbation of all guards and domains by
the same angle as a zero-order delay perturbation. We as-
sume that φ0 is limited so that the modified system, H′,
has no eigenvector, so the resulting system still has a cyclic
switching law. If this is the case, Equation (11) describes
a continuous function of φ0 over the domain [0, π) (or some
subset of the domain). The extent of φ0 on the interval
[0, π) such that Equation (11) is negative indicates the sen-
sitivity of the stability of the equilibrium to zero-order delay
perturbations.



We introduce an example to illustrate the application of
the stability exponent. Consider a slight perturbation to a
canonical example which was explored by Branicky [1].

A1 =

»

0.1 1
−10 0.1

–

A2 =

»

0.1 10
−1 0.1

–

Discrete state q1 induces continuous dynamics ẋ = A1x,
and discrete state q2 induces continuous dynamics ẋ = A2x.
While both ẋ = A1x and ẋ = A2x are unstable, it is well
known that there is one configuration of switching surfaces
that is clearly exponentially stable, where the domain of q1

is the union of quadrants 1 and 3 and the domain of q2 is
the union of quadrants 2 and 4. Guards θ = π

2
and θ = 3π

2
force a transition between discrete states q1 and q2. Guards
θ = π and θ = 0 force a transition between discrete states
q2 and q1. However, if the domains of the discrete states are
interchanged, the equilibrium of the hybrid system becomes
unstable. This exchange of domains is equivalent to rotating
the switching surfaces by φ0 = π

2
. Note that, for a rotation

of φ0 = π
4
, the system is unstable, though it diverges slowly.

This is illustrated in Figure 5.
We can plot the stability exponent of a cyclic system for

various φ0 to determine the sensitivity of the nominal stable
system to zero-order delay perturbations. This is illustrated
in Figure 6. Note that a stability exponent of 0 implies that
the trajectory is periodic. This condition offers insight into
the problem of designing non-linear oscillators from given
linear systems. Given a nominal system H, the trajectories
may be designed to be periodic simply by rotating domains
and guards to zero the stability exponent.

The stability exponent may also be leveraged to consider
first-order delay perturbations, where the angles between
guards change, along with the boundaries of the fundamen-
tal domain sets. A first-order perturbation of the guard θ0

and associated boundary of fundamental domain set d1 gen-
erates the fundamental stability exponent:

Γ(θ0 + φ1, θ0 + φ1 + 2π,q) =

=

Z θ1

θ0+φ1

α1(θ)dθ +
N−1
X

i=2

Z θi

θi−1

αi(θ)dθ+

+

Z θN +φ1

θN−1

αN−1(θ)dθ

The sequence of discrete states corresponding to the cyclic
trajectory, q, is assumed to be preserved. Thus, the limits
on φ1 are φ1 ∈ [0, θ1−θ0). Figure 7 illustrates the analysis of
a first-order perturbation of our example. Note that similar
analysis may be pursued for conic switching laws, using the
fundamental stability exponent for a given conic switching
law region.

5. CONCLUSIONS
In this paper, we illustrated the use of polar coordinate

transformations for analyzing hybrid systems with second-
order linear continuous dynamics, and linear discrete-state
switching surfaces. Necessary and sufficient conditions for
stability and stabilizability are introduced for this particu-
lar class of hybrid systems. The approach is illustrated on a
simple example and is further applied to sensitivity analy-
sis of the stability of an equilibrium to perturbations in the
switching law.

stability 

threshold

φ0

(a) (b)

Figure 6: (a): Stability exponent for Branicky’s ex-
ample for various zero-order perturbations. Note
that stability is maintained with respect to zero-
order perturbations almost up to [−π

4
, π

4
]. (b): Ex-

ample trajectory when stability exponent is almost
0, a marginally stable solution.

φ1 = π/4

stability 

threshold

(a) (b)

Figure 7: (a): First-order perturbation example.
Stability preserved under relatively large perturba-
tion. (b): Stability exponent for first-order per-
turbation. Note the stability exponent graph lies
mostly beneath the stability threshold line. This
stability of the equilibrium of this system is not very
sensitive to first-order perturbations.
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