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Abstract— Switched dynamical systems have shown great
utility in modeling a variety of systems. Unfortunately, the
determination of a numerical solution for the optimal control
of such systems has proven difficult, since it demands optimal
mode scheduling. Recently, we constructed an optimization
algorithm to calculate a numerical solution to the problem
subject to a running and final cost. In this paper, we modify
our original approach in three ways to make our algorithm’s
application more tenable. First, we transform our algorithm
to allow it to begin at an infeasible point and still converge
to a lower cost feasible point. Second, we incorporate multiple
objectives into our cost function, which makes the development
of an optimal control in the presence of multiple goals viable.
Finally, we extend our approach to penalize the number of
hybrid jumps. We also detail the utility of these extensions to
our original approach by considering two examples.

I. INTRODUCTION

A natural extension of classical dynamical systems are
switched dynamical systems wherein the state of a system
is governed by a finite number of differential equations. The
control parameter for such systems has a discrete component,
the sequence of modes, and two continuous components, the
duration of each mode and the continuous input. Switched
systems arise in numerous modeling applications [3], [8].
Stemming from Branicky et al.’s seminal work that estab-
lished a necessary condition for the optimal trajectory of
switched systems in terms of quasi-variational inequalities
[2], there has been growing interest in the optimal control
of such systems. However, Branicky provided only limited
means for the computation of the required control.

Several address just the continuous component of the
optimal control of an unconstrained nonlinear switched sys-
tem while keeping the sequence of modes fixed. Given
a fixed mode schedule, Xu et al. develop a bi-level hi-
erarchical optimization algorithm: at the higher level, a
conventional optimal control algorithm finds the optimal
continuous input assuming fixed mode duration and at the
lower level, a conventional optimal control algorithm finds
the optimal mode duration while keeping the continuous
input fixed [12]. Axelsson et al. consider the special case of
unconstrained nonlinear autonomous switched systems (i.e.
systems wherein the control input is absent) and develop a
similar bi-level hierarchical algorithm: at the higher level,
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the algorithm updates the mode sequence by employing a
single mode insertion technique, and at the lower level, the
algorithm assumes a fixed mode sequence and minimizes the
cost functional over the switching times [1], [5].

Recently, we generalized Axelsson’s approach by con-
structing an optimal control algorithm for constrained non-
linear switched dynamical systems [6]. We developed a bi-
level hierarchical algorithm that divided the problem into two
nonlinear constrained optimization problems. At the lower
level, our algorithm assumed a fixed modal sequence and
determined the optimal mode duration and optimal contin-
uous input. At the higher level, our algorithm employed a
single mode insertion technique to construct a new lower
cost sequence. The result of our approach was an algorithm
that provided a sufficient condition to guarantee the local
optimality of the mode duration and continuous input while
decreasing the overall cost via mode insertion. Though this
was a powerful outcome given the generality of the problem
under consideration, it suffered from three shortcomings
which made its immediate application difficult. First, if
our algorithm was initialized at an infeasible point it was
unable to find a feasible lower cost trajectory. Unfortunately,
initializing an optimization algorithm with a feasible point
is nontrivial. Second, our algorithm did not incorporate
multiple objectives into its cost function, which is useful
for path planning type tasks. Finally, our algorithm did not
penalize the number of hybrid jumps. In this paper, we design
a new algorithm to address these three deficiencies and detail
the utility of this modified approach on two examples.

This paper is organized as follows: Section II provides
the mathematical formulation of the problem under consid-
eration, Section III describes the optimal control algorithm
which is the primary result of this paper, Section IV de-
tails the proof of convergence of our algorithm, Section V
considers a numerical implementation of the optimal control
scheme, Section VI presents numerical experiments, and
Section VII concludes the paper.

II. PROBLEM FORMULATION

In this section, we present the mathematical formalism
and define the problem considered in the remainder of the
paper. We are interested in the control of systems whose
continuous trajectory is governed by a set of vector fields
fq : R"xR™ — R™, where ¢ belongs to Q = {1,2,...,Q}.
Any trajectory of such a system is encoded by a sequence
of discrete modes, a corresponding sequence of times spent
in each mode, and the continuous input over time. We also
require a mapping between each of our objectives and an
element of our sequence of discrete modes. To formalize the



optimal control problem, we define four spaces: ¥ is the
discrete mode sequence space, S is the transition time
sequence space, [/ is the continuous input space, and
NW is the objective mapping space, where 7 € N. One
notational remark: given an element r of a sequence space,
we write 7 () to refer to the ith element of r where ¢ € N.

First, we describe the discrete mode sequence space. For
notational convenience we define an additional vector field,
fo(-,-) = 0, in which the trajectories stop evolving. The
discrete mode sequence space is most readily thought of as
an infinite dimensional space with elements that contain only
a finite number of non-zero vector fields:

o0
Y= UEN,
EN—{O'EQON’U

where Q¢ = QU{0}. We define #0 = max{j € N | o(j) #
0}, i.e. #o is the number of modes in the sequence.

Second, let an element of the transition time sequence
space be a sequence whose elements correspond to the
amount of time spent in each discrete mode:

S = GSN,

Sw = {s€ 1] ()

€EQJ<N,o(j)=0j>N},

)>0 Vj <N, s()—OVj>N},

where ! denotes the space of absolutely summable se-
quences. Third, we define the continuous input space, U/:

U={ue L*[0,00),R™) | u(t) €U, Vt€[0,00)}, (1)

where U C R™ is a compact, connected set containing the
origin.

Finally, let the objective mapping space, N", be the set of
W —tuples with elements in the natural numbers, where W is
equal to the number of objectives in our problem, which we
soon define. Elements in this space define a mapping between
each of our objectives and an element of our discrete mode
sequence space. The importance of defining the objectives
in this fashion becomes clear only after we consider the
implementation of our algorithm in Section V. We combine
these four spaces together to define our optimization space,
X, as follows:

X ={(o,5,u,w) €S xSxUxN"|
s(k) =0 Vk > #o,and w(i) < #0 Vi}, (2)

and we denote £ € X by a 4-tuple £ = (o,s,u,w).
Maintaining the notion of absolute times, which we call the
jump time sequence 1 : N x X — [0, 00) is also useful:

0 ifi=0
1;6) = : 3

ulE:) {z;_ls(k) i i # 0. ©)
Let up(&) = |slln = Ypey s(k). We also define, 7 :
[0,00) x X — Qq to return the mode corresponding to an

absolute time ¢:

o(min{i | (i) > t}) if t < pg(E)
m(t;€) = § o(#0) ift=ps(€) @
0 if t > py(€)

We suppress the dependence on & in u, 7, and p1y whenever
the choice of & is clear in context. For notational conve-
nience, we write () for u;. We also define a metric on our
space d: X x X — [0, 00):

d(gzcvfy) =1{o, # Uy} + [|sz — 3y||l1 + [Juz — uyH2+

where ||-||;1 is the standard {'-norm and || -||2 is the standard
L2-norm.

Given ¢ € X and zg € R", the corresponding trajectory,
:c(E), is the solution to:

E(t) = frey (x(t), u(t)),

where we have suppressed the dependence on zq in z(¢) for
convenience. To define the cost function for the optimization
problem, first consider the function J : X — R defined as:

J(g):/oﬂ (= (¢t dt+2¢

which we refer to as the standard cost. Note that each of the
¢;’s is associated with an index w(%), hence in practice each
element w(i) maps a discrete mode to a function ¢;, which
we refer to as an objective. Then, we define J : X — R,
the cost function, as J(§) = J(§) + C - #o. The reason
to differentiate between the standard cost and the terms
penalizing the number of jumps in the cost function becomes
clear in Section III.
Given ¢ € X and a family of IV, functions, h; : R® — R,
j e J = {l,...,N.}, we also constrain the state by
demanding the state to satisfy h;(z®)(t)) < 0 for each
t € [0,p4] and each j € J. We compactly describe all
the constraints by defining a new function :
©
$(€) = max max i (@) ®)
since hj (z(®)(t)) < 0 for each ¢ and j if and only if 1(£) <
0. With these definitions, we can state the multiple objective
switched hybrid optimal control problem.
Multiple Objective Hybrid Optimal Control Problem:
min J () ©)
st $P(€) <0

We make the following assumptions on the dynamics, cost,
and constraints:

Assumption 1: The functions L and f, are Lipschitz and
differentiable in x and u for all ¢ € Q. In addition, the
derivatives of these functions with respect to x and u are
also Lipschitz.

Assumption 2: The functions ¢; and h; are Lipschitz and
differentiable in x for all i € {1,..., W} and j € J. In

YVt >0, x(0)=uxzy, (6)

(5) (Hw@)) D



addition, the derivatives of these functions with respect to x
are also Lipschitz.

Assumption 1, together with the controls being measurable
and uniformly bounded functions, is sufficient to ensure the
existence, uniqueness, and boundedness of the solution to
our differential equation (6). Assumption 2 is a standard
assumption on the objectives and constraints and is used to
prove the convergence properties of the algorithm defined in
the next section. Next, we develop an algorithm to solve our
problem.

III. OPTIMIZATION ALGORITHM

In this section, we present an optimization algorithm to
determine a numerical solution to the Multiple Objective Hy-
brid Optimal Control Problem. Given ¢ € X, the algorithm
works by employing a variation that inserts a mode & and
control ¢ at time £ into & for a length of time determined by
the argument to the variation. The algorithm stops when this
variation does not produce either a reduction in the cost or
infeasibility. Our goal is the construction of an optimization
algorithm, called a Phase I/Phase II algorithm, which can
find an optimal point from any initial condition.

We begin by providing a high level description of a bi-
level hierarchical algorithm that divides the problem into two
nonlinear constrained optimization problems:

Bi-Level Optimization Scheme

Stage 1: Given a fixed discrete mode sequence, employ a
Phase 1/Phase II algorithm to find either a locally
optimal transition time sequence and continuous
control or a locally optimal infeasible transition
time sequence and continuous control.

Stage 2: Given a transition time sequence and continuous
control, employ the variation, p, to modify the
discrete mode sequence to find either a lower cost
discrete mode sequence if the initialization point
is feasible, or find a less infeasible discrete mode
sequence if the initialization point is infeasible.
Repeat Stage 1 using the modified discrete mode
sequence.

In order to formalize this high level description, we first
observe that Stage 1 can be transformed into a classical
optimal control problem over the switching instances and
continuous control (Section V describes this transformation).
Leta: S xU — & x U be a function that solves Stage 1,
while satisfying the following assumption:

Assumption 3: Given ¢ = (o0,s,u,w) and letting
Jow(s,u) = J(0,s,u,w) and Yy, (s,u) = P(0, s, u,w),
is a descent Phase I/Phase Il algorithm, i.e. Js ., (d(s, u))
Jow(s,u) whenever (&) < 0, and o (a(s, u))
Vo w (S, u) whenever (€) > 0.

Section V describes algorithms that satisfy this assump-
tion.

To formalize Stage 2, we begin by defining the variation,
p. Given ¢ € X, consider an insertion of a mode, & and
control, 4, at time ¢. This insertion is characterized by

n=(&,t0) e He=QxTe xU

ININ o

(10)

where 7z = [0,pf]. Given £ € X and n € H¢, we let
p i [0,00) — X denoted p(X;&,n) describe this type of
insertion (p is defined explicitly in Definition 2 and its
argument denotes the duration of the insertion). We employ
the variation, p, to characterize when an optimal point has
been reached. Notice that after Stage 1 the only way to
locally reduce the cost or infeasibility is by modifying
the discrete mode sequence. Given this procedure, a point
¢ = (0,8,u,w) € X satisfies our optimality condition if
(s,u) is a locally optimal solution to Stage 1 and if the best
modification of the discrete mode sequence via the variation,
p, does not produce a decrease in the cost, J, whenever the
point ¢ is feasible, or does not produce a decrease in the
constraint, v, whenever the point £ is infeasible.

Given any function F' : X — R* for some k € N, let us
define the directional derivative of F' composed with p for
A >0 by:

1

DEMNF = lim + [Fpi&m) - F©]  an
In order to check if we have arrived at a point that satisfies
the optimality condition, we first study the effect of the
variation, p, on the standard cost, J, using the first order
approximation of its change due to the insertion, D¢ J. If
this derivative is negative, then intuitively one can argue that
it is possible to decrease the standard cost via the variation.
Note that D& .J is not well defined because the limit does
not exist, hence we only consider the variation with respect
to the standard cost, and we account for the variation of
the part of the cost that penalizes the number of discrete
modes as an additional condition in our algorithm. Second,
consider the first order approximation of our constraint, 1,
with respect to p, denoted by D&, to determine if the
infeasibility decreases due to the insertion. Again intuitively,
if this derivative is negative then it is possible to decrease
the infeasibility via the variation.

Using these results, we define an optimality function,
0: X — (—00,0], as follows:

0(€) = min ¢(&,7) (12)
where
(e = Jmax {DEDLDEDY ()} if v(€) <0,
T \max {DENT —20(6), DEDY} o,
(13)

and 1,72 > 0 are design parameters. Note that §(£) < 0 for
each £ € &, since given a value £ we can always perform
an insertion that leaves the trajectory unmodified, e.g. given
¢ € X and t € T¢ choose i = (7(t),%,u(t)), hence in that
case D&M J = DEMqy =0,

To appreciate the utility of our optimality function con-
sider three cases. First, if at a feasible point, ¢(£) < 0,
and if 6(£) < 0, then a mode insertion which reduces the
standard cost while remaining feasible is possible. Second,
if at an infeasible point, ¥(§) > 0, and if 6(§) < 0, then
a mode insertion which reduces the infeasibility without
resulting in too large an increase in the standard cost is



possible. Third, if we are at a feasible point and the standard
cost cannot be decreased using the variation p, or if we
are at an infeasible point and the infeasibility cannot be
decreased using the variation p, then 6(¢) = 0. Therefore,
the optimality function can serve as a stopping criterion for
the Bi-Level Optimization Scheme since its zeros encode
points that satisfy our optimality condition. Note that the
Y1, Y2 terms in the optimality function capture the possibility
that the reduction in cost or constraint may result in too
large an increase in the infeasibility or cost, and therefore
maybe undesirable. These additional terms have been shown
in practice to result in better quality optima (Section 2.5 of
[11] describes these observations).

Given «, 8 € (0, 1), we also define the maximum insertion
length A7) as follows:

A = max {8 | 4(p(B%€,m)) <0,
J(p(B%:€,m) = J(€) < aﬂ’“C(S,ré)li

whenever ¢(§) < 0, and

)

N6 = ma {8 | 6 (p(8% €, m) — 9(€) < af*(6m)}
(15)
otherwise.

Algorithm 1 describes our numerical method to solve the
Multiple Objective Hybrid Optimal Control Problem.

Algorithm 1 Optimization Algorithm for the Multiple Ob-
jective Hybrid Optimal Control Problem

Data: 50 = (0—07 50, Uo, wO) S «, 5 € (07 1)’ V1,72 > 0.

Step 0. Let (s1,u1) = a(so, ug) and & = (o9, s1, U1, wp).

Step 1. Set j = 1.

Step 2. If 6(&;) = 0 then stop and return &;.

Step 3. 41 = a(§;), where a is defined as follows:

a. Let ) = (&,t,4) € He,; be any point s.t. ((&;,7) <0,

and let (G, 35,5, ;) = p(A&D;€,7).

b. Given &j, let (8j+1,’uj+1) = &(gj,ﬂj)

c. Let {1 = a(§;) = (05, 8541, ujp1,0j).

Step 4. If J(&41) > J(&;) and ¥(&;) < 0 then stop

and return &;.
Step 5. Replace j by j + 1 and go to Step 2.

Comparing steps of Algorithm 1 with our Bi-Level Op-
timization Scheme notice that Step (3b) encodes Stage 1
and Step (3a) encodes Stage 2. Therefore, the function,
a : X — X, encodes the Bi-Level Optimization Scheme.
In order to understand the stopping rule in Step 4, note
that #0741 is always greater than #0;, since the variation,
p, always inserts a new mode into the sequence. Hence,
assigning a cost per mode, C' > 0, we only accept a new
point, &;41, if the decrease in cost J with respect to ¢; is
larger than the increase in cost due to the addition of a new
mode. The main result of this paper is that Algorithm 1
converges to a point that satisfies the optimality condition.

IV. ALGORITHM ANALYSIS

In this section, we describe in detail the pieces that are

required to prove that Algorithm 1 converges to a point
that satisfies the optimality condition. Before we can analyze
the convergence properties of the algorithm, we define the
sufficient descent property.
Definition 1 (Sufficient Descent): A function a : X — X is
said to have the sufficient descent property with respect to
an optimality function, 6 : X — (—o0, 0] for a cost function
J and feasible set F, if for all £ € X with 6(§) < 0, there
exists a 0¢ > 0 and a neighborhood of §, Us C X, such that
the following inequality is satisfied:

J(a(€)) — J(€) < ~5,

Theorem 1 in [6] proves that if the standard cost and
constraint functions are continuous and if a function, a, has
the sufficient descent property with respect to an optimality
function, then either the sequence constructed by the func-
tion, a, is finite and its last element belongs to the set of
zeros of the optimality function or it is infinite and every
accumulation point of the constructed sequence belongs to
the set of zeros of the optimality function. Therefore, if
we prove that the standard cost, J, and constraint, 1, are
continuous and that the function a, as defined in Step 3 of
Algorithm 1, has the sufficient descent property with respect
to the optimality function, 6, then Algorithm 1 converges to
a point that satisfies the optimality condition.

This section is divided into a part where we prove the
continuity of the standard cost and constraint and a part
which proves the convergence of Algorithm 1. Several of
the proofs are extensions of the results found in a technical
report [7].

V€ eUsNF.  (16)

A. Continuity of the Cost and Constraints

First, we check that the standard cost, Equation (7), and the
constraint, Equation (8), are continuous under Assumptions
1 and 2.

Proposition 1: The standard cost, J, as defined in Equation
(7) is continuous.

Proof. The result follows immediately by extending Propo-
sition 3 in [7] to the case with multiple objectives ¢;. O

Proposition 2: The constraint, 1), as defined in Equation (8)
is continuous.

Proof. Using Lemma 5.6.7 together with Theorem 4.1.5
from [11] the result follows immediately. O]

B. Optimality Function

In this section, we prove the convergence of Algorithm
1. Our algorithm works by inserting a new mode, &, for a
duration of time \ > 0 centered at a time, £, with input .
We begin by defining this type of insertion.

Definition 2: Given ¢ = (o,s,u,w) € X and n =
(&,1,70) € He, we define the map X € [0,00) — p(\; €, 1) €
X as the perturbation of & after the insertion of mode &, at



time t using U as the control, for a time interval of length
A Let

A :min{; (i) —t| | i €N, |pu(i) — ] > 0}, (7

then, abusing notation, we write p(\;&,n) =

(pa()\)vps()‘>7pu()\)apw(/\))’ where pa()\)» Ps()\),
and py(\) are defined as in Equations (A.15)-(A.17),
respectively, in [7] and

(w(1) + 1{t < pry }s-- -
w(W) + 1{t < pww)})

(w(l) +2- ]l{t < Mw(l)}a e
W)+ 210 ) £ 00)

(18)

whenever \ € [0, ], and p(X;&,m) = p(\;€&,n) whenever

A> A

Proposition 3: The function p is continuous in all its

arguments.

puw(A) = ¥e=uli)

Proof. The result follows easily from the definition of p
and observing that p is sequentially continuous in all its
arguments. O

We need this property in order to understand the variation
of the standard cost with respect to this insertion. We begin
by studying the variation of the trajectory, z(P(N&m)  ag X
changes. Abusing notation, we let z(») = z(P(\&m)  and
note that (&) = 29, Also note that given t > 0, the
map & — x(®)(t) is well defined, hence we can compute
D&M x(t) using the definition in Equation (11), which is a
first order approximation of the trajectory with respect to p
at A= 0.

To reduce the number of cases we need to consider in
future propositions, given £ € X and n € H¢, we define:

fa (x(f), 11) Friien) (:z:(tA)7 u(f)) t=0
fa(x(@), ) = frio (@), ul®) = ps
Af(faﬁ) = fd(m(f)aﬁ)—’_
5 Finn) (@), u(@))+
f%fﬂ(t_;\) (m(f), u(f)) 0.W.

] (19)
where A is as in Equation (17). We now consider the change
of the state trajectory with respect to our insertion.
Proposition 4: The directional derivative of =™ for A
positive, evaluated at zero, is:
DEM(r) = {@@@Aﬂx@%w it € bl
0

. (20)
otherwise,

where ® : [0,00) x [0,00) — R™ ™ is the solution of the
matrix differential equation:
dX(t,f) Ofrt) © R . n
o 5 (29 (1),u(t) X (t,1), X(t1)

Proof. This result is identical to Proposition 6 in [7]. O

Given this variation of the state trajectory, we consider
variations of the standard cost and constraint functions, in
order to define our optimality function.

Proposition 5: Let J be the standard cost function as
defined in Equation (7). The directional derivative of
J(p(A; €, m)) evaluated at A = 0 is

Dy _ Z{ (9 (10 ) DEN 2 (ptir) | +
w=1
OL (9 0), u(h) [~ u()]
22)

+ (P O@) ALE ) +

where p'&) is the solution of

oL”Y

=) = 250 (00, w00 + 2L (w19 0), ),

p(py) =0.
(23)

Proof. For the derivative of the final and running cost with
respect to the variation, the result follows from Proposition
7 from [7]. The other terms are the result of applying the

chain rule: D& g, (z(t)) = %T(x(g)(t))D(&")x(t). O

Proposition 6: Let 1) be the constraint function defined in
(8). The directional derivative of¢(p(A; &, 77)) evaluated at
A=0is

Oh,;
DEM ), = 20 (8 D& 24
= Jmax o (1)) a(t) 24
where Ac = {(j,t) € T x [0, pug] | by (9 (8)) = 0 () }.
Proof. This follows from Proposition 8 in [7]. O

We prove one last technical result that is used in our proof
of the convergence of our algorithm.
Proposition 7: Consider the function (, defined in Equation
(13). If C(€,m) < 0, then \&"), as defined in Equations (14)
and (15), is strictly positive.

Proof. First, assume 1 (§) < 0. Note that as k — oo,

% [J(p(8%:&,m)) = J(©)] = DI (25
Since ¢(&,17) > DM J and ¢(£,n) < 0, it follows that
al(€,m) > D€ J. Hence, for k large enough,

3 o5 6m) = 7€) <acem. @6)
Also, if 9(£) < 0 then clearly for k large enough

w(p(ﬂk; §,n)) <0, and if 1(£) = 0 note that the definition
of ¢ implies that D&M < 0, hence, using the same
argument, for k large enough

(p(B5:&m) = v(p(B*:€.m)) — (&) <0

Therefore there exists ko € N such that (&) = gko,
The case when ¢(§) > 0 follows using the same argument.
O

27)



Finally, we can prove that our algorithm has the sufficient
descent property.
Theorem 1: Let F denote the set of feasible points in X.
Algorithm a, as defined in Step 3 of Algorithm 1, has the
sufficient descent property with respect to 0 for the cost
Sfunction J and feasible set F, and for each & € F we have
a(§) € F. Moreover, if ¥(§) > 0 then Algorithm a has
the sufficient descent property with respect to 0 for the cost
function ) and feasible set X.

Proof. First note that a(§) € F whenever £ € F. We need
to show that for each £ € X N F such that 6(§) < 0, there
exists ¢ < 0 and a neighborhood of &, denoted by Us C &,
such that

J(a(€)) —J(€) < b, V€ E€UNF. (28

Let b : X — X be defined by b(o, s,u,w) = (o, s,u,w),
where (s’,u') = a(s,u). Since @ is a descent algorithm
by Assumption 3, J(b(§)) < J(§) for each ¢ € F.
Using this definition, note that a can be defined as a(§) =
b(p()\(f’ﬁ);f,ﬁ)), where A&7 is defined as in Equations
(14) and (15), and 7 € H¢ is such that {(£,7) < 0, as
defined in Step (3a) of Algorithm 1. Let

e = 5 [T(p0ED6,0) ~ 7(©)]

then clearly d¢ < 0, and let

U = {¢ € X | 7 (p(\Ds¢,i) = J(€) < b¢ ), (0)

which is open in X since both J and p are continuous with
respect to £. Then, given &' € Ug N F,

J(a(§) = J(€) < T(p(X: & 1) — I (&) < e

If ¢)(£) > 0, then the proof of a having sufficient descent
with respect to 6 for the cost function ¢ and feasible set X’
follows similarly. O

(29)

€1y

We have that our algorithm is a Phase I/Phase II algorithm
and converges to points that satisfy our optimality condition
as desired. Indeed, the algorithm stops only if the variation
p cannot make a significant decrease in either the cost (for
feasible points) or the infeasibility (for infeasible points), or
if the decrease in the standard cost J is smaller than the
increase in J due to the insertion of new modes, which is
exactly the definition of our optimality condition.

V. IMPLEMENTATION

In this section, we describe the numerical implementation
of Algorithm 1. First, we describe how to reformulate Stage
1 in the Bi-Level Optimization Scheme via a transformation
into a canonical optimal control problem. Second, we discuss
the implementation of our optimality function.

Given a £ € X, we discuss how to solve Stage 1 in the
Bi-Level Optimization Scheme by transforming our problem
into one where the optimization over the switching instances
and continuous control becomes an optimization over the
initial condition and the continuous control. Algorithms to
solve this type of formulation while satisfying Assumption

3 have been extensively studied in the literature [11]. We
introduce functions 7 : [0,1] — R and zj : [0,1] — R™ for
k=1,...,#0c which are solutions to:

Vi (t) = s(k)L(zk(t), uk(t)), m(0) =0,
Z(t) = s(k) for) (2r(t), Ur(t)), 21(0) = zx_1(1),

where we let zo(1) = xo and @ (t) = u(t-s(k)+ p(k —1))
forall ¢ in [0,1] and k = 1,. .., #0. Given these definitions,
we construct new state variables, wy, : [0,1] — R"*? and
define a new optimal control problem whose solution is a
transformed version of the solution to our problem:

(32)

#o w
' 1)+ i(Zw(s) (1 (33)
{S(k)g%lﬁcMgw( ) ;¢ (2w (1))
{an}fe, cu
subject to:
(k) foy (20 (t), k(1)) zi—1(1)
Gn(t) = 0 w0 = | k)|,
s(k)L(zk(t),ﬂ;c(t)) 0
hj(zk(t)) <0,VjeJ,Vtelo,1], Vk=1,...,#0c
(34

The solution to this problem is tractable and equivalent to
the solution of Stage 1. In practice, the time is discretized in
order to approximate each of the k = 1,..., #o differential
equations. Since we must evaluate the state at each of the
objectives in order to solve Stage 1, by associating each
of the objectives with an element of o, as we do with
the objective mapping space, we can guarantee that this
evaluation is possible. If the objective mapping space was
instead not employed and the objectives were allowed to
move arbitrarily in time, their evaluation maybe required at
a time step where a discrete sample is unavailable.

Next, we discuss the implementation of our optimality
function. In Algorithm 1, given a £ € X, we check to
see if 8(§) = 0. If #(¢) < 0, we find any point n € H,
such that ((£,n) < 0. Since 6(£) is a non-convex min-max
optimization problem, it can be implemented either applying
a min-max optimization algorithm (similar to those presented
in Section 2.5 of [11]) or employing the epigraph transforma-
tion to obtain a standard constrained minimization problem.
Again, the time is discretized in order to approximate the
differential equation; hence, the computation of 6(¢) is done
by solving an optimization problem over u € U for each
& € Q and each  in the set of discretized times.

VI. EXAMPLES

In this section, we apply Algorithm 1 to calculate an
optimal control for two examples.

A. Bevel-Tip Flexible Needle

Bevel-tip flexible needles are asymmetric needles that
move along curved trajectories when a forward pushing
force is applied. The 3D dynamics of such needles has been
described in [10] and the path planning in the presence of
obstacles has been heuristically considered in [4]. Letting
the origin be the point of entry of the needle, x,y, z be the
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Fig. 1: Optimal trajectories (drawn in blue) on the top row and bottom left in an
environment with three obstacles (drawn in gray) and objectives (drawn in
green) and inputs on the bottom right for the fourth iteration with forward
mode (called 1, drawn in blue), turn mode (called 2, drawn in pink), and
restrictions (drawn in red).

position of the needle relative to this coordinate system, §,
be the yaw of the needle in the plane, 3, be the pitch of the
needle out of the plane, and (3, be the roll of the needle in
the plane, the equations of motion are given as:

X

0 sin (3,(1)
ygt) — coS (ﬂp( )) sin (B, (t))

0

0
£(t) _ | cos (By(t) cos (By(t)) 0 [ul(t)]
,By( ) K COS (BT( )2 sec (By(t)) 0| |ua(t)
ﬁp(t) K sin (B,(t)) 0
B (t) —rcos (B, (1)) tan (B,(t)) 1

(35)
In the above, u; € [0,3] is the insertion speed, us €
[—%, %] is the rotation speed of the needle, and & is the
curvature the needle follows and is equal to .22 where all the
units are specified according to the centimeter-gram-second
system. As suggested by [4], we hybridize the dynamics by
introducing two modes: Forward and Turn. For the Turn
mode we set u; = 0 and for the Forward mode we set
up = 0. We consider the optimal control of the needle
under the scenario presented in Figure 1 while avoiding
three spherical obstacles (drawn in gray) located at (0, 0, 5),
(1,3,7), and (=2, 0, 10) all with radius 2 under a cost

function specified by:

L(x(é)(t),u(t)):U(t) {0(())5 0(())05] ul?)
" Z‘(Uw(l) —2 i
P ) =0 [ytpen) | =2 o
[ (py) 27’
o)) =15 | )| |3 ||+
L2 (pf) 10

The cost per number of modes was chosen as C' = 2, and
the parameters inside the optimality function were chosen as
Y1 = 1 and Y2 = 10.

In the example a constraint was added for the final position
of the needle to be at most at 0.3 centimeters from the
final waypoint. The algorithm was initialized with the mode
sequence 0 = (2,1,2,1), where mode 1 is Forward and
mode 2 is Turn. The first iteration resulted in an infeasible
trajectory. The result of the next three iterations, after Step
3 in Algorithm 1, are shown in Figure 1. A fifth iteration
was computed (J = 15.436, J = 35.436), but it passed the
condition in Step 4 of Algorithm 1, as the decrease in J
was negligible. On an AMD Opteron, 8 core, 2.2 GHz, 16
GB RAM machine with a MATLAB implementation the total
time to compute Stage 1 for all iterations was 148.37 seconds
and the total time to compute Stage 2 for all iterations was
156.49 seconds.

B. Quadrotor Helicopter Control

Next, we consider the optimal control of a quadrotor
helicopter using a two dimensional simplified model. Letting
z denote the position along the horizontal axes, 2z the height
above the ground, and 6 the roll angle of the helicopter, the
equations of motion is given as:

x(t) sinj%((z sinAZIEZ sin]%ii)) T1 (t) 0

Z(t) — | cos COS]\/[ cos]w T, (t) — g

0(t) T 0 _i Ts(t) 0
(37)

where in the above T and T3 are the thrusts applied at the
opposite ends of the quadrotor along the x axis, and 7% is
the sum of the thrusts of the other two rotors at the center
of mass of the quadrotor. The parameters M, L, I,, and
g denote the mass, distance from center of mass of each
of the rotors 77 and 73, moment of inertia about y axis,
and gravitational acceleration, respectively. The values of the
parameters for this example are taken from the STARMAC
experimental platform [9]. We hybridize the dynamics by
introducing three modes: Left, Right, and Up. For the Left
mode we set Ty = 1 Mg, T, = 3 Mg, and let T € [ Mg, 4].
In the Right mode, we set T3 = 1 Mg, T> = £ Mg, and let
Ty € [ Mg, 4], and in the Up mode we set T} = T3 = 1 Mg,
and let T, € [0, 12]. The objective is to reach two waypoints
(drawn in green in Figure 2) while avoiding obstacles (drawn
in brown in Figure 2), and maintaining a speed between zero



and three. We define the cost as

003 0 0
L(zO@),ut) =a®)” | 0 003 0 |a()
0 0 003
2
1 (2 (1)) =5 ’ [z Z:(i )] [160] = cos (0(tuw(1)))

$(@® (pg), py) = [Z Z; } [ } — cos (0(uy))+
&2 (pg) + 22 (pp) + gy

(38)

where @(t) = u(t) — ugs, with ugs = Mg- (5, 3, 1) is

the steady-state input The cost per number of modes was
chosen as C' = =, and the parameters inside the optimality
function were chosen as y1 = 1 and 5 = 10.

The algorithm was initialized with the sequence o =
(1,2, 3), where mode 1 is Up, mode 2 is Right, and mode 3
is Left. The result of the first three iterations, after Step 3 in
Algorithm 1, are shown in Figure 2. A fourth iteration was
computed, but passed the condition in Step 4 of Algorithm
1. On an AMD Opteron, 8 core, 2.2 GHz, 16 GB RAM
machine with a MATLAB implementation the total time to
compute Stage 1 for all iterations was 72.3 seconds and the
total time to compute Stage 2 for all iterations was 110.31
seconds.

VII. CONCLUSION

This paper presents an extension to an algorithm to numer-
ically determine the optimal control for constrained nonlinear
switched systems. For such systems, the control parameter
has both a discrete component, the sequence of modes, and
two continuous components, the duration of each mode and
the continuous input. We extend our original solution to this
problem in three ways to improve its utility. In practice, the
algorithm presented in this paper can be more readily applied
to any constrained nonlinear switched system to determine
an optimal control when compared to our previous algorithm.
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