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Abstract — We propose an efficient distributed object
recognition system for sensing, compression, and recogni-
tion of 3-D objects and landmarks using a network of wire-
less smart cameras. The foundation is based on a recent
work that shows the representation of scale-invariant image
features exhibit certain degree of sparsity: If a common ob-
Jject is observed by multiple cameras from different vantage
points, the corresponding features can be efficiently com-
pressed in a distributed fashion, and the joint signals can
be simultaneously decoded based on distributed compres-
sive sensing theory. In this paper, we first present a public
multiple-view object recognition database, called the Berke-
ley Multiview Wireless (BMW) database. It captures the 3-D
appearance of 20 landmark buildings sampled by five low-
power, low-resolution camera sensors from multiple van-
tage points. Then we review and benchmark state-of-the-art
methods to extract image features and compress their sparse
representations. Finally, we propose a fast multiple-view
recognition method to jointly classify the object observed
by the cameras. To this end, a distributed object recogni-
tion system is implemented on the Berkeley CITRIC smart
camera platform. The system is capable of adapting to dif-
ferent network configurations and the wireless bandwidth.
The multiple-view classification improves the performance
of object recognition upon the traditional per-view classifi-
cation algorithms.

Keywords: Distributed object recognition, compressive
sensing, smart camera networks.

1 Introduction

Distributed object recognition is a fast-growing research
topic [7,8, 11,20, 24,26], mainly motivated by the prolifer-
ation of portable camera devices and their integration with
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modern wireless sensor network technologies. Given a wire-
less network of cameras, the new paradigm studies how to
classify a 3-D object that may be captured from multiple
vantage points. The ability to acquire multiple-view ob-
servations of a common object can effectively compensate
many visual nuisances such as object occlusion and pose
variation, and may further boost the recognition accuracy if
the multiple-view images are properly utilized.

Recent studies in distributed object recognition can be
summarized in three intimately related areas. The first area
is focused on the development of smart camera platforms.
In recent years, several experimental platforms have suc-
cessfully integrated high-resolution cameras (together with
other sensing modalities) with state-of-the-art mobile pro-
cessors and considerable amounts of memory. The reader is
referred to [6] for more details in this area.

The second area concerns the extraction of dominant im-
age features to represent the 3-D objects that are captured in
the images. Leveraging on the available processing power
of many smart cameras, these image features can be di-
rectly extracted on the camera sensor without relaying the
full-resolution images to a base-station computer. Then, the
choice of optimal object features for particular applications
boils down to two factors: on one hand, the efficiency to
compute these image features on the smart sensor; on the
other hand, the accuracy to concisely represent the 2-D ap-
pearance of the objects. The success of SIFT-type viewpoint
invariant feature detectors [13, 14] has led to the develop-
ment of other improved feature detectors and descriptors,
such as SURF [2] and CHoG [5], which are better suited for
deployment on mobile camera platforms.

The third area concerns the correspondence and compres-
sion of image features extracted from the multiple camera
views. In a per-view basis, [26] argued that reliable fea-
ture correspondence can be established in a much lower-
dimensional space between camera sensors, even if the fea-
ture vectors are linearly projected onto a random subspace.
With multiple camera views, [8] studied a SIFT-feature se-
lection algorithm, where the number of SIFT features that
need to be transmitted to the base station can be reduced



by considering the joint distribution of the features among
multiple camera views of a common object. A recent work
[21] further considered using robust structure-from-motion
techniques (e.g., RANSAC) to select strong object features
between two camera views that satisfy an epipolar con-
straint induced by a large baseline transformation, and sub-
sequently reject weak features as outliers from the final stage
of object recognition.

Contributions. We present a systematic study on dis-
tributed object recognition in low-power wireless smart
camera networks. The work is based on an open-source
smart camera platform, called CITRIC [6], which integrates
a high-resolution camera with a 600 MHz fixed-point mo-
bile processor and 80 MB memory. First, we propose a new
multiple-view object database as a public platform to bench-
mark the system, which is referred to as the Berkeley Mul-
tiview Wireless (BMW) database. We assume the camera
sensors and the network station are connected only through
a band-limited wireless channel. Motivated by the emerging
theory of compressive sensing (CS), we overview a sparsity-
based distributed sampling scheme to compress certain fea-
ture histograms that concisely represent the appearance of
a common object in multiple views [24]. The discussion
also covers the most recent development in CS to effectively
recover sparse signals using fast /;-minimization (¢1-min)
algorithms. Finally, we propose a multiple-view recognition
method to jointly classify the object observed by multiple
cameras in the network, a concept that has been largely ig-
nored by existing solutions. We show that the multiple-view
classification significantly improves the performance upon
traditional per-view classification algorithms in both small-
baseline and large-baseline situations. Furthermore, the sys-
tem is capable of adapting to the change in different network
configurations and the wireless bandwidth.

2 Berkeley Multiview Wireless Database

In the literature, there exist several public image-based
object recognition databases, such as Oxford Buildings [17],
COIL-100 [15], and Caltech-101 [10]. However, most of
the databases are constructed using high-resolution cam-
eras that do not take into account the real-world noise
and distortion exhibited by most low-power camera sensors
in surveillance applications. In addition, some databases
only capture object images in lab-controlled indoor envi-
ronments (such as COIL-100), while others collect a wide
variety of object images in the same categories that may
not necessarily share the same appearance in 3-D (such
as Caltech-101). To aid peer evaluation of distributed ob-
ject recognition methods for the wireless surveillance sce-
nario, we have constructed a public multiple-view image
database, namely, the BMW database. The database can
be accessed online at: http://www.eecs.berkeley.
edu/~yang/software/CITRIC/.

The BMW database consists of multiple-view images of
20 landmark buildings on the campus of University of Cal-

ifornia, Berkeley. For each building, 16 different vantage
points have been selected to measure the 3-D appearance of
the building. The apparatus for image acquisition incorpo-
rates five low-power CITRIC camera sensors [6] on a tripod,
which can be triggered simultaneously. Figure 1 shows the
configuration of the camera apparatus. Figure 2 shows some
examples of the captured building images. The cameras on
the periphery of the cross are named Cam 0, Cam 1, Cam 4,
Cam 3 with a counter-clockwise naming convention, and the
center camera is named Cam 2. Thus, the BMW database
has a total of 960 images.

Cam 2
@©—>Cam 3

Cam 1

Figure 1: The apparatus that instruments five camera sensors.
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(b) Five large-baseline images captured at different vantage points.

Figure 2: Examples of multiple-view images of a building (the
Campanile at UC Berkeley) in the BMW database.

It is worth emphasizing the following properties of the
BMW database:

1. The images have been captured outdoor in different
sessions. Therefore, some variations in ambient illumi-
nation exist within each building category and across
different categories.

2. The image quality is considerably lower than many
existing high-resolution databases, which is intended
to reproduce realistic imaging conditions for camera
surveillance applications. All images are 640 x 480
RGB color images. Since the CITRIC camera sen-
sor does not have an auto-focus mechanism, the focal
length of the camera is permanently set to maximum.
However, it is noticeable that some images are slightly
out of focus. In some cases, small image regions are
visibly corrupted by dust residual on the camera lenses.

3. More importantly, the database provides a two-tier
multiple-view relationship to systematically bench-
mark the performance of multiple-view object recog-
nition algorithms, as shown in Figure 2. Specifically,



the five images sampled at each vantage point simu-
late small-baseline camera transformations, while the
images sampled at different vantage points simulate
large-baseline camera transformations. Furthermore,
the small-baseline image sets can be used to simulate
the scenario where a slowly moving camera continu-
ously sample images in a short time frame. In Sec-
tion 5, we will systematically examine the recognition
performance in both small-baseline and large-baseline
scenarios.

3 Encoding Multiple-View Object Images
via A Joint Sparsity Model

In this section, we briefly review a sparsity-based sam-
pling scheme [24] to encode useful information in multiple-
view object images from a distributed camera network. To
implement a fast codec to recover distributed source signals
in a sensor network setup, we also discuss the latest results
on accelerated ¢;-min algorithms in the CS and optimization
literature [23].

3.1 The Joint Sparsity Model

We assume multiple cameras are equipped to observe a
common 3-D scene from different vantage points. For dis-
tributed object recognition, it is reasonable to simplify the
communication model between sensors and the base station
as a single-hop wireless network, i.e., the topology of the
network is a star shape with the computer at the center and
all the sensors directly communicate to the computer.

Using a SIFT-type feature detector, certain viewpoint-
invariant features can be extracted from the images, as
shown in Figure 3. For an object database (e.g., BMW), ob-
ject features may be shared between different object classes.
Therefore, all features extracted from the training images
can be clustered/quantized based on their visual similarities
into a vocabulary. The clustering normally is based on a
hierarchical k-means algorithm [12]. The size of a vocabu-
lary for a large database ranges from thousands to hundreds
of thousands. For example, in this paper, we use hierar-
chical k-means to construct 10,000-D vocabularies for the
BMW database, with & = 10 and four hierarchies. Figure
4 shows the 10,000-D vocabulary tree constructed using all
the CHoG features from the BMW training set (see Section
5 for more detail).

Figure 3: CHoG feature points detected in a pair of image views
of a building.

Figure 4: The 10,000-D vocabulary tree built using all CHoG fea-
tures extracted from the training images in the BMW database. The
tree is radially represented, with the center being the root node.

In [24], the authors have argued that, given a large vo-
cabulary that contains quantized SIFT features from many
classes, the representation of the features extracted from a
single image is sparse, which is called a SIFT histogram. If
we denote L as the number of the camera sensors that ob-
serve the same object in 3-D, and &1, x5, - - - , 7, € R are
the corresponding SIFT histogram vectors. Then each coef-
ficient in x; represents the instances of one type of the SIFT
feature in the i-th view. Since only a small number of the
features may be exhibited in a single image, the majority of
the histogram coefficients should be (close to) zero. More
importantly, since SIFT-type features are robust to some de-
gree of camera rotation and translation, images from differ-
ent vantage points may share a subset of the same features,
thus yielding histograms with similar coefficient values, as
shown in Figure 5.

Histogram value
o o o o
v & » =

)

2000 4000 6000 8000 10000
Histogram bin

Qo
@

=g
@

o
>

Histogram value

o
Y]

3

0 2000 4000 6000 8000 10000
Histogram bin

Figure 5: The 10,000-D feature histograms corresponding to the
image pair in Figure 3. The joint sparsity patten indicates certain
dominant features are shared between the two views.

The problem of encoding multiple-view object images
can be formulated as the following. For the high-
dimensional histogram vectors extracted from the L images,



define a joint sparsity (JS) model as

r1 = T+ =21,

ey
r, = x.+zL,
where x. represents the common component, and each z;
represents an innovation. Furthermore, both . and z; are
also sparse. On each camera sensor, an encoding function
b; = f(x;) € R? is sought to compress the histogram
vector x;. At the base station, upon receiving by, --- , by,
compressed features, the system should simultaneously re-
cover the source signals x1,--- ,xr, and further proceed
to classify the 3-D object represented by the multiple-view
histograms.

3.2 Distributed Encoding of JS Signals

The fact that each x; is sparse against a large vocabulary
provides a means to effectively sample the signal via a lin-
ear projection, motivated by the CS theory. In particular,
we define a random matrix A € R?*P as an overcomplete
dictionary (i.e., d < D) whose elements are sampled from
independent and identically-distributed Gaussians. Then a
random projection function is defined as:

f:b=Azx. 2)

However, recovering x from (2) essentially is an inverse
problem, as the number of observations in b is smaller than
the number of unknowns in . The CS theory [4, 9] shows
that if the underlying signal x; is sufficiently sparse and the
projection dimension d > §(A)D is above a threshold de-
termined by 6(A), then x; is the unique solution to a convex
program called ¢;-min:

(P1): min||x||; subjectto b = Ax. 3)

In other words, (P;) guarantees that no information is lost
by projecting x; onto a low-dimensional random subspace,
as long as x; is sufficiently sparse.

Now we can consider the decoding problem at the base
station. Given the fact that all camera views may share a
sparse component x., the ensemble x1,--- , xy can be si-
multaneously recovered at the base station with the accuracy
that may exceed that by estimating (P;) individually [24].
In particular, the JS model can be solved in a single linear

system:
[bll Ay A1 O - 01 oty
by Ap o 0 Al |y, “)
& b = Az e R

Enforcing the JS model can boost the estimation accuracy
in (P;) when d; = dy = --- = dy, = d is uniform. More
importantly, it also makes it possible to choose different
sampling rates for individual camera sensors. This property
is particularly relevant to wireless sensor networks, where

sensor nodes that have lower bandwidth or lower power re-
serve may choose to reduce their sampling rates in order to
preserve energy.

More specifically, the strategy of choosing varying sam-
pling rates can be viewed as an application of the celebrated
Slepian-Wolf theorem [19]. For the simplest case of two
source channels X7 and X5, the theorem shows that, given
sequences x1 and x5 that are generated from the two chan-
nels respectively, the sequences can be jointly recovered
with vanishing error probability asymptotically if and only
if

Ry, > H (X 1 |X 2
Ry > H (X2|X 1),
Ri+ Ry > H(X1,Xo),

where R is the bit rate function, H(X;|X;) is the condi-
tional entropy for X; given X, and H (X, X;) is the joint
entropy.

In distributed object recognition, with the JS model,
a necessary condition for simultaneously recovering
x1,---,axr can be found in [1]. Basically, it requires that
each sampling rate §; = % guarantees the so-called min-
imal sparsity signal of z; is sufficiently encoded, and also
the total sampling rate guarantees that both the joint sparsity
and the innovations are sufficiently encoded.

);
)

3.3 Decoding Sparse Signals via Fast /;-
Minimization Algorithms

Finally, we briefly discuss the state of the art in effectively
solving the convex program (P;) via an accelerated £;-min
technique. A comprehensive review of existing fast £1-min
algorithms can be found in [23].

The convex program (P;) has traditionally been formu-
lated as a linear programming problem called basis pursuit
(BP), which has several well-known solutions via iterative
interior-point methods. However, the computational com-
plexity of these interior-point methods is often too high for
many real-world, large-scale applications. The main reason
is that they all involve expensive operations such as matrix
factorization and solving linear least squares.

Recently, iteraive shrinkage-thresholding (IST) methods
have been recognized as a good alternative to the exact
BP solutions. The approach is also appealing to large-
scale applications because its implementation mainly in-
volves lightweight operations such as vector operations and
matrix-vector multiplications, which is in contrast to most
past ¢1-min algorithms.

In a nutshell, IST considers a variation of (P;) that takes
into account the existence of measurement errors in the sens-
ing process:

(Pl)g) :

where € is a bound on the additive white noise in b. By the
Lagrangian method, (PLQ) is rewritten as an unconstrained
composite objective function:

min ||z||; subjectto ||b — Ax||s <€,  (5)

. 1
min F(z) = 5[|b— Az|3 + All2|1, (©6)
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Figure 6: Flow diagram of the sparsity-based distributed object recognition system.

where A > 0 is the Lagrangian multiplier.

We can immediately see that the main issue in optimizing
such a composite function F'(x) is that its second term || ||
is not a smooth function and therefore is not differentiable
everywhere. Nevertheless, one can always locally linearize
the objective function in an iterative fashion as [3,22]:

204 = argming{f(@®) + (@ — 2®)TV(al¥)
+ylle —aW3- V2 (M) + Ag(z)}
arg ming{ (z — ™) TV f(z*)

+o 2 —2®3 4 Ag()},

%

(7
where the hessian V2 f (x(*)) is approximated by a diagonal
matrix o®) T

One can further show that the linearized objective
function (7) has a closed-form solution called the soft-
thresholding function [3, 22]. Furthermore, the speed of
convergence from an initial guess z(°) to the ground-truth
sparse signal can be accelerated by a numerical technique
called the alternating direction method (ADM) [25]. For
{1-min, ADM iteratively optimizes both the sparse signal «
and the residual term e:

. Loz, L 2 T
— —|A — — A —
min{llelli 5 lell "+ g3l Azt+e=bl"~y" (Az+e=b)},
®

where y € R? and ;o > 0 are two additional variables. It
is easy to see that when e is fixed, (8) can be converted to
the standard IST problem in (7); when « is fixed, since the
¢1-norm ||z||; becomes a constant, the objective function
becomes smooth and its optimum is trivial to compute.

4 Multiple-View Object Recognition using a
Hierarchical Vocabulary Tree

In this section, we explain an efficient multiple-view
object recognition algorithm that takes multiple-view his-
tograms as the input, and outputs a label as the classification
of the object in 3-D. Figure 6 summarizes the complete sys-
tem diagram.

Given a large set of robust image features (e.g., SIFT), we
can construct a vocabulary tree using hierarchical k-means,
where k represents the branch factor of the tree [16]. On the

highest level of the tree, all the feature descriptors are par-
titioned into k clusters, with the mean of each cluster rep-
resenting the cluster center. At each lower level, k-means is
applied within each previous cluster in order to further parti-
tion the space into k clusters. The process is continued until
there are k™ clusters at the H-th level (as shown in Figure
4).

With the vocabulary tree constructed, the feature descrip-
tors in each training image are propagated down the tree.
Then a term-frequency inverse-document-frequency (#f-idf)
weighted histogram y can be defined for each training im-
age as follows. First, assign an entropy-based weight w,, to
each quantized leaf node feature p in the vocabulary tree as

(©))

wp = log Fp’
where N is the total number of the training images, and N,
is the number of training images that contain the same fea-
ture vector p. With the weight w, computed in this man-
ner, all the elements of the training histograms y and test
histograms x are multiplied element-wise with this weight
function in order to achieve the #f-idf weighting scheme. For
each object category, ¢ = 1---C, multiple weighted his-
tograms are generated for all m training images of that ob-
ject and grouped into a set, Y; = {y1, Yy, , Y,, }- All the
C sets further form the training set, Y = {Y¥7,Ya,--- ,Yc}.

During the testing phase, feature descriptors are extracted
for each single-view query image and propagated down
the vocabulary tree by the same fashion to obtain a single
weighted query histogram X = {x}. The query image is
then given a single-view relevance score s based on the ¢;-
normalized difference between the weighted query and the
ith training set Y;:

s(2,Y;) = min | —— — 2
v el Ty,

1- (10)

When multiple-view histograms of the query object are
available, X = {@1,x2, -+ ,x}, a new method to per-
form joint classification is necessary to take into account the
multiple-view information. In this case, the median of the



single-view relevance scores is used to determine the aver-
aged multiple-view relevance score:
s(X,Y;) = mediang, c x s(x;, ;). 11

We choose median as a robust mean operator, which is more
suitable for situations where some query images are not well
matched with any training images in 3-D. Notice that when
X only contains a single camera view, (11) is identified as
(10).

Finally, the label of the object category for the multiple-
view histograms is assigned as:

label(X,Y) = arg min s(X,Y;), (12)
i€[1---C]

which is simply the object category that achieves the mini-
mal multiple-view relevance score.

In this paper, we are concerned with the implementation
of the above multiple-view recognition system on a band-
limited camera sensor network. As shown in Figure 6, on
the sensor side, each query histogram after the quantization
process is projected onto a lower-dimensional feature space
by random projection, and transferred to a base-station com-
puter. On the computer side, the received feature vectors
b1, by, -+ , by, are jointly decoded in (4) by ¢;-min to ob-
tain the estimates X = {&1, &2, -+, &} of the original
weighted histograms. Finally, the joint classification algo-
rithm (12) is employed to recover a label of the object that
minimizes the multiple-view relevance score s.

S Experiment

5.1 Setup

We use the BMW database to benchmark the performance
of the algorithm (12). First, we divide the database into a
training set and a testing set. As the vantage points of each
object are named numerically from 0 to 15, images from all
the even number locations are designated as the training set,
and the ones from the odd number locations are assigned
to the testing set. Furthermore, since the main purpose of
the experiment is to validate the recognition performance of
using multiple-view festing images, we do not include the
redundant multiple views in the training set. More specifi-
cally, only training images from a single camera, i.e., Cam
2, are used for the construction of the vocabulary tree and
for the subsequent recognition process.

Based on the BMW database, we choose to compare how
discriminative three existing robust feature descriptors are
in representing the image appearance of objects, namely,
SIFT [13], SURF [2], and CHoG [5]. The original SIFT
framework includes a gradient-based interest-point detector
with a single-scale 128-D descriptor for each feature. The
SUREF algorithm is based on sums of approximated 2D Haar
wavelet responses, and it also makes use of integral images
to speed up the keypoint detection and descriptor extraction.
The quantization process yields a 64-D vector. The rela-
tively newer CHoG feature detector and descriptor has been

specially designed for platforms with low processing capa-
bilities, and yields a 45-D descriptor for each detected fea-
ture.

We design two testing scenarios to evaluate the perfor-
mance of the distributed recognition scheme, namely, the
small-baseline and the large-baseline scenarios. In the
small-baseline scenario, images captured concurrently from
multiple cameras at one vantage point are used to determine
the object category. We evaluate the recognition perfor-
mance using one camera (i.e., Cam 2), two cameras (i.e.,
Cam 1 and Cam 2), and three cameras (i.e., Cam 1, Cam 2,
and Cam 3). In the large-baseline scenario, images captured
from one to three vantage points are randomly chosen from
the same testing category for recognition. The two scenarios
are well illustrated in Figure 2.

In terms of system implementation, the CITRIC mote has
been shown to have the capacities to locally extract and
compress high-dimensional histograms [24]. Nevertheless,
in this paper, the data processing and classification on the
BMW database are performed on a Linux workstation. All
the code has been implemented in MATLAB/C++ with a
MEX compiler interface.

5.2 Small-Baseline Results

To establish a baseline performance, we first evaluate the
recognition accuracy of (12) without involving the random-
projection and /1 -min codec. In other words, we assume the
classifier can directly access and process all the images in
their full resolution. Table 1 shows the recognition rates for
the three camera configurations based on the SIFT, SURF,
and CHoG feature descriptors. It shows that in all the three
cases, the recognition rates improve when more views of the
query object are included in the global recognition scheme.
Overall, CHoG features yield the best recognition rates com-
pared to the other two feature descriptors. We find this to our
benefit, as CHoG features have been designed for distributed
wireless camera applications [5], and thus have the lowest
dimensionality and extraction time compared to SURF and
SIFT feature descriptors. For this reason, we will choose
the CHoG features exclusively for the multiple-view recog-
nition experiment in the rest of the section.

Table 1: Small-baseline recognition rates without histogram com-
pression. The best rates are marked in bold face.

Expt. # Train | # Test SIFT SURF CHoG
Images | Images | Rate(%) | Rate(%) | Rate(%)

1 Cam 160 160 71.25 80.62 81.88

2 Cam 160 320 72.5 81.25 84.38

3 Cam 160 480 73.75 81.88 86.25

Next, we activate the ¢;-min codec in the same camera
configurations, and evaluate the recognition accuracy when
the query histograms are projected from its original 10,000-
D space to lower projection dimensions ranging from 1000
to 9000. For each projection dimension d and each camera
sensor j, we create a fixed random projection matrix Ag4; of-
fline. The ¢;-min algorithm to reconstruct the JS signals (4)



is based on the alternating direction method [25]. Figure 7
shows the recognition rates for the three experiments against
the projected dimension.

90

Table 2: Large-baseline recognition rates without histogram com-
pression. The best rates are marked in bold face.

# Train | # Test SIFT SURF
Images | Images | Rate(%) | Rate(%)

CHoG

Expt. Rate(%)

1 Cam 160 160 71.25 80.62 81.88

2 Cam 160 320 76.88 88.13 93.75
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Figure 7: Comparison of the CHOG recognition rates (in color)
in the small-baseline scenario with different random projection di-
mensions.

We observe that, with small projection dimensions close
to 1000, the recognition rates using two or three cameras
improves significantly compared to the single-view recogni-
tion rates. For instance, at d = 1000, the recognition rate
from a single camera (i.e., Cam 2) is about 45%. The rate is
boosted to 68% with two cameras and 82% with three cam-
eras. It is also important to note that the improved recog-
nition rates using the multiple-view information are also
higher than merely increasing the projection dimension in
the single-camera scenario. For instance, The recognition
rate for 2-Cam at d = 2000 is higher than the rate for 1-
Cam at d = 4000.

As the projection dimension increases, the recognition
rates for the three scenarios increase as well and reach a
plateau beyond d = 8000. Interestingly, for the 3-Cam case,
the ground-truth recognition rate of 85% is achieved in a
very low projection space of 3000-D.

5.3 Large-Baseline Results

The large-baseline performance is evaluated using the
same procedure as in the small-baseline experiments. Table
2 shows the recognition rates for the three camera configura-
tions without involving the ¢;-min codec. Again, the recog-
nition rates improve when more views of the query object
are included in the global recognition scheme. Recognition
using the CHOG features not only outperforms that with the
other two feature descriptors, but is also drastically better
than the CHOG recognition rates in the small-baseline ex-
periments of Section 5.2. Specifically, there is about 10%
improvement in the recognition rates in the 3-camera case.
The result demonstrates that multiple large-baseline images
contain much more information about a common object in
3-D than a set of small-baseline images.

When the ¢;-min codec is included, Fig. 8 shows the
recognition rates versus the random projection dimension.
Clearly, the recognition rates using a single camera does

3 Cam 160 480 83.13 90.00 94.88

not change from the small-baseline scenario. As shown
in the plot, the recognition rates at the low projection di-
mension of 1000 are lower than those of the small-baseline
scenario for the 2 and 3-cam cases. However, as the pro-
jection dimension increases, the multiple-view recognition
rates reach about 95% and begin to plateau. Such rates are
never achieved even without random projection in the single
view case.
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Figure 8: Comparison of the CHOG recognition rates (in color)
in the large-baseline scenario with different random projection di-
mensions.

6 Conclusion and Discussion

We have presented a framework to jointly classify objects
observed from multiple vantage points in a distributed wire-
less camera network. The method is well suited for situ-
ations where the camera sensors and the base station are
connected only by a band-limited communication channel,
and the multiple-view information of the object is avail-
able to boost the global recognition. We have drawn from
recent developments in compressive sensing theory to for-
mulate a distributed compression scheme to transmit high-
dimensional object histograms from camera sensors view-
ing a common object in 3-D. Most importantly, the algo-
rithm does not require any calibration between the cameras.
Therefore, it is very flexible to the addition or omission of
some cameras in the network, and the cameras can also be
mounted on mobile robot platforms. Finally, we have con-
structed a new multiple-view object database, namely, the
BMW database. The performance of the system has been
extensively validated using the database.

Our investigation also has led to several intriguing open
problems for future investigation. First, the multiple-view



images may adversely introduce large amounts of outlying
features from different background images into the recogni-
tion process. However, it is possible to reject these features
by considering the geometric consistency between the mul-
tiple views during the (offline) training process, such as us-
ing the RANSAC technique in [21]. Second, in the paper,
the best recognition rate based on the images of the 20 land-
marks is about 95%. To successfully deploy such systems
in real-world surveillance applications, the recognition rates
have to be improved dramatically (e.g., > 99%). Finally,
robust techniques must be studied to deal with situations
where multiple objects of interest are captured in the im-
ages, or certain test images are irrelevant (as outliers) to the
given training categories. The new BMW database provides
a good public platform to further extend our investigation in
these directions.
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