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Abstract—Sensor network scenarios are considered where the
underlying signals of interest exhibit a degree of sparsity, which
means that in an appropriate basis, they can be expressed in
terms of a small number of nonzero coefficients. Following the
emerging theory of compressive sensing, an overall architecture is
considered where the sensors acquire potentially noisy projections
of the data, and the underlying sparsity is exploited to recover
useful information about the signals of interest, which will be
referred to as distributed sensor perception. First, we discuss the
question of which projections of the data should be acquired, and
how many of them. Then, we discuss how to take advantage of
possible joint sparsity of the signals acquired by multiple sensors,
and show how this can further improve the inference of the
events from the sensor network. Two practical sensor applications
are demonstrated, namely, distributed wearable action recog-
nition using low-power motion sensors and distributed object
recognition using high-power camera sensors. Experimental data
support the utility of the compressive sensing framework in
distributed sensor perception.

I. INTRODUCTION

In the last decade, the information technology industry
continues to advance on multiple scientific fronts, including
integrated circuit design, wireless communication, and hetero-
geneous sensor technologies. Recent progress in more power-
ful mobile processors and wireless devices has empowered
new applications in wireless sensor networks (WSNs) that
differentiate themselves from traditional low-power sensor ap-
plications in the past, such as simple detection and registration
of temperature, precipitation, and sound. For instance, today
many mobile phones possess considerable computation and
communication capabilities. Often, these devices also retain
rich sensing components to interact with the environment
and human users, including cameras, microphones, positioning
sensors, and motion sensors. In industrial surveillance, mul-
tiple wireless devices with heterogeneous sensing capabilities
can be configured in a network to monitor the environmental
information in factories. In intelligent transportation, station-
ary and mobile sensor networks have been used to support
real-time traffic surveillance and autonomous driving.

A WSN usually consists of a set of sensor nodes and one
or more base-station computers. A wireless sensor node is
often called a mote, which is an integrated device consisting
of sensing, data processing, and communication components.
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Stationary motes can be deployed both indoors and outdoors.
Mobile motes can be instrumented on humans or air/ground
vehicles. As shown in Figure 1, these motes can communicate
among each other via wireless channels, and also communicate
with base stations as gateways and output the sensor data for
processing in higher-level applications. The reader is referred
to [1]–[3] for more detailed surveys about the literature of
WSNs.

Fig. 1. A typical architecture of WSNs.

The infrastructure of WSNs can provide great benefits to
their applications. Possibly the most important benefit is that,
with mobile processors and memory directly integrated with
sensors, certain computation can be “pushed” to the edge
of the networks for faster decision making for time-critical
applications. In addition, wireless communication between
sensors and to the base station enables miniature sensors to
be rapidly deployed in complex indoor or outdoor terrain.
Furthermore, sensor networks can fuse measurements from a
wide spectrum of sensing modalities.

However, these advantages cannot come without sacrifices
on the resources allocated for WSNs. The fundamental con-
straint for a wireless sensor is its limited power supply,
typically from portable batteries integrated as part of the
sensor node. Assuming a WSN is intended to function over
a prolonged period of time, it dictates that the hardware
implementation of the sensor node can only provide limited
computational power and limited communication bandwidth.

Among many important problems associated with analyzing
sensor networks (such as hardware design, communication
channels, and security, etc.), in this paper, we are interested
in estimation and recognition of certain physical events that
are observed within the setting of a WSN, which is referred
to as distributed sensor perception. Applications in distributed
sensor perception must answer a quintessential question: How
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to design a sensor network system such that its performance
in sensing and perception surpasses simply the sum of its indi-
vidual parts? More specifically, distributed sensor perception
concerns the following fundamental problems:

1) How does an algorithm effectively harness the dis-
tributed nature of sensor networks to detect and recog-
nize events of interest?

2) How does an algorithm address the robustness issue in
the presence of moderate data noise and outliers?

3) How does an algorithm adapt to on-the-fly changes in
the network configuration?

The focus of the paper, under the overarching theme of this
special issue, is to investigate the rich phenomena of sparsity
that are often exhibited in distributed sensor signals, and to
showcase how one can take advantage of the emerging theory
of compressive sensing (CS) in searching for elegant solutions
to the above questions.

The paper intends to present a hands-on survey about the
state-of-the-art research results broadly related to WSNs and
CS. Although the concept of sparse representation in sensor
networks is still quite abstract at this point, an investigator
who would like to design a sensor system to solve a practical
problem at hand must have a clear understanding about at least
the following two components: First, what sampling functions
the system should employ to measure the physical events on
the sensor side; Second, what inferencing functions the system
should design on the base-station side to accurately reconstruct
and represent the events of interest. The paper will guide the
reader step-by-step in seeking these answers.

II. BACKGROUND

We first start with a brief overview of the basic CS theory.
The reader can find more thorough treatment of the theory in
[4]–[6]. In general, a signal x̃ ∈ Rn is considered sparse if
most of its coefficients x0 under an appropriate basis Ψ are
zero:

x̃ = Ψx0, (1)

where k = ‖x0‖0 is called the sparsity of x0. Sparsity and
many of its applications have been extensively studied in
the past. Arguably, one of the most popular applications of
sparse representation is in image compression, where a 2-D
image with dense (nonzero) pixel values can be encoded and
compressed using a small fraction of the coefficients after a
linear transformation. In this example, the transformation Ψ
may represent a discrete cosine transform (DCT) basis or a
wavelet basis.

Compressive sensing (CS) has been motivated by a striking
observation: If the source signal x0 ∈ Rn is sufficiently sparse,
with high probability, x0 can be recovered from a smaller set
of observations y ∈ Rd under a linear projection on x̃:

y = Ax̃ = AΨx0, (2)

where the sensing matrix A ∈ Rd×n is typically full-rank with
d < n.

In (2), the columns of the sensing matrix A constitute an
overcomplete dictionary, and y lies in a lower-dimensional

space than x0. Therefore, there exist infinitely many solutions
of x that give rise to y. The theory of CS states that, for most
full-rank matrices A that are incoherent to Ψ, if x0 is sparse
with respect to its dimension n, it is the unique solution of a
regularized `0-minimization (`0-min) program [7]:

min ‖x‖0 subject to y = AΨx. (3)

Unfortunately, `0-min is an NP-hard problem, and solving
for the optimal solution basically requires an expensive com-
binatorial search over all possible combinations of nonzero co-
efficients. Hence, the bulk of study in CS involves determining
a nontrivial equivalence relationship that provides a theoretical
guarantee: If the true solution x0 is sufficiently sparse, x0 can
be efficiently recovered by a more tractable `1-minimization
(`1-min):

min ‖x‖1 subject to y = AΨx. (4)

This relationship is conveniently called `0/`1 equivalence [5],
[8]. The literature of convex optimization has provided a long
list of solvers for this task, such as orthogonal matching pur-
suit (OMP) [9], basis pursuit (BP) [10], least angle regression
(LARS) [11], and the LASSO [12].

The phenomena of sparsity are abundant in sensor networks.
For camera sensors, a poster example is the so-called single-
pixel camera [13]. Traditional imaging mechanisms require
expensive sensing arrays and memory to store 2-D image
pixels in full resolution, only to be reduced to a small portion
of (nonzero) coefficients later in the compression stage. In
contrast, a single-pixel camera sequentially samples one pixel
at a time, each of which is a random linear projection of the
original image pixels. In the compressive sensing formulation
(2), each sequential observation becomes a scalar coefficient
in y, and a random linear projection is represented by a row
vector in the sensing matrix A. To recover the image pixels
x̃ from y, the decoder should choose a proper sparsity basis
Ψ (e.g., the Fourier basis or the wavelet basis), and call upon
the `1-min algorithm (4) to recover the sparse coefficients x0.

The idea of single-pixel camera captures a unique benefit
of CS in sensor networks: In resource-constraint systems, if
high-dimensional observations exhibit certain sparsity in either
the spatial or frequency domain, CS provides a means to
simultaneously sense and compress the data using just matrix-
vector multiplication at the edge of the network. Subsequently,
the dominant complexity in computation to decode the original
data is transferred to the decoder on the base station that often
has much higher computational power.

Applying the principles of CS in a distributed sensor
network naturally raises two questions: First, on each sensor
node, how should one properly choose a good sensing matrix
A based on the characteristics of the sensor measurements,
and what is a good projection dimension d to guarantee a `1-
min algorithm can later recover the high-dimensional sparse
signals? Second, on the base-station side, if a physical event is
observed in multiple instances by sensors at different locations
or the same sensor over time, how can one take advantage of
the possible joint sparsity among multiple sensor observations
and improve the accuracy in inferencing the event from the
network? These are the questions we intend to answer.
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The rest of the paper is organized as the following. Section
III discusses sensing matrices for distributed sensors and their
individual performance bounds; Section IV formulates the
concept of joint sparsity and discusses strategies to implement
global inferencing algorithms over the network.

III. RANDOM PROJECTIONS: A UNIVERSAL
DIMENSIONALITY-REDUCTION SCHEME

An unconventional result in CS is that, in high dimensional
spaces, random projections can be a universal sampling op-
eration to encode sparse signals in an appropriate basis. We
mentioned earlier that an important property for a good sensing
matrix A in (4) is that A must be sufficiently incoherent to
the basis Ψ under which the signal is sparse [6], [8], [14].

To define random projections, a standard approach con-
siders a matrix A whose entries aij are drawn from an
independent and identically distributed (i.i.d.), zero-mean
Gaussian distribution. In practice, the random coefficients
aij are generated by a pseudo-random number generator.
Furthermore, due to a practical concern that most current low-
power mobile processors only support fixed-point instructions,
another projection matrix is often used called the Rademacher
random matrix, whose entries are assigned to be only ±1
with equal probability. After the projection, each scalar sample
yi = [ai1, · · · , ain] ·x0 is a random combination of the sensor
measurements x0.

Depending on the nature of applications, in fact, many
other sensing matrices have been studied aside from random
projections. For instance, in image compression, several papers
in the past have studied star-shape Fourier sampling [15],
random partial Fourier matrices [16], and scrambled block
Hadamard ensembles [17]. These sensing matrices are all
designed to cater to a particular set of sparse signals, and
hence, they generally would perform better in recovering
sparsity in CS than random projections [18].

On the other hand, random projections as a universal encod-
ing strategy [8] do not depend on specific knowledge about the
source signals. This is particularly relevant to applications in
sensor networks, where a wireless network may support both
high-power imaging sensors and other low-power sensors, and
a wide range of inference functions may not be identified at
the time of deployment. More specifically, random projections
hold the following advantages:

1) Universal incoherence. Random matrices A can be cou-
pled with most conventional sparsity bases Ψ such that,
with high probability, sparse signals can be recovered
by efficient solvers, such as `1-min on the projected
measurements y.

2) Data independence. The construction of a random ma-
trix does not depend on any prior data from the appli-
cation. In fact, given an explicit pseudo-random number
generator, the sensors and the base station only need
to agree on a single random seed to generate the same
random matrices of any dimension.

3) Robustness. Transmission of randomly projected coeffi-
cients is robust to packet loss in the network. Even if
part of the coefficients in y is lost, the receiver can still

reconstruct a partial random matrix A and recover the
sparse signal at the expense of less accuracy. Another
strategy to improve robustness is to progressively sample
the source signal using random projections until the ac-
curacy of the reconstruction exceeds a certain threshold.

In this section, we will mainly focus on using random
projections as sensing matrices. One question we will discuss
in depth is: How many random projections d have to be
acquired in order to attain good performance? This question is
particularly interesting when the acquired random projections
are subject to additional noise, for example due to non-
idealities in the observation process or due to subsequent
compression. In the sequel, we provide a brief overview of
the state of the art regarding the necessary number of samples.
For clarity, in this paper, we often assume in our formulation
(4) that Ψ is an identity matrix I without loss of generality.

A. Exact Recovery

Let us first consider the requirement to exactly recover the
original sparse signal x0. From elementary linear algebra it
is clear that at least d ≥ k + 1 samples must be acquired;
otherwise, some of the k-dimensional subspaces spanned by
k columns of A must coincide, and hence, exact recovery is
not feasible. For nonzero sparsity rate ρ = limn→∞ k/n, it is
also instructive to write this in terms of a sampling rate δ =
limn→∞ d/n, meaning that the necessary condition becomes

δ ≥ ρ. (5)

This necessary condition still allows the subspaces corre-
sponding to different k-dimensional subsets of the columns
of A to coincide in k − 1 or fewer dimensions. When the
sparsity coefficients are drawn randomly from a continuous
distribution, this is not an issue since the probability that the
samples come to lie in this intersection is zero. However, if
one wants to require all subspaces to be distinct (and intersect
only at the origin), then a necessary condition is [7]

δ ≥ 2ρ. (6)

In order to attain these lower bounds, no efficient algorithms
are known and it appears that one has to resort to exhaustive
search over all possible (n

k ) sparse supports. However, a key
result of CS is that if further samples are acquired, then
polynomial-complexity algorithms exist (e.g., the aforemen-
tioned `0/`1 equivalence). A sufficient condition for this is to
acquire1

δ ≥ O (k/n log(n/k)) (7)

random projections. For the special case where A is a Gaus-
sian random matrix, the precise scaling constants have been
found [19]. However, the same constants are not currently
known in other cases. It is interesting to observe that this
still corresponds to a finite sampling rate, albeit potentially
considerably larger than the fundamental lower bound.

1“f = O(g)” means function f is bounded from above by g asymptotically.
“f = Θ(g)” means f is bounded from both above and below by g
asymptotically.
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B. Recovery with small `2 distortion

When noise is added to the samples, generally it will not be
possible to exactly recover the original signal x0. The noisy
random projections are given by

y = Ax0 + e, (8)

where e is white Gaussian noise. To state our results, we
need some assessment of the amount of noise, and we will
use the following definition of signal-to-noise ratio: SNR =
‖A‖22/‖e‖22. Moreover, let us consider the following distortion
criterion:

D`2 =
‖x0 − x̂‖2
‖x0‖2

, (9)

where x̂ denotes the estimate. Then, it can be shown that a
sufficient sampling rate again has the shape

δ ≥ O (k/n log(n/k)) , (10)

for all SNR > 0 and all D`2 > 0. The sufficiency of this
sampling rate has been shown via polynomial-time algorithms
(`1-min), see [8], [20]. However, this bound is loose in that
little is known about the involved constants, and thus, there is
no interesting characterization of the trade-offs between the
sampling rate, the distortion, and the SNR, other than the
following statement: It can be shown that for any 0 < ρ < 1,
there exists a finite sampling rate δ such that

D`2 = O(1/SNR). (11)

A wealth of algorithms have been developed for recovery with
respect to an `2 criterion (see [6]).

C. Recovery with small `0 distortion

Another naturally arising criterion is the recovery of the
sparsity pattern, i.e., the locations of the nonzero elements
in the vector x0. We will denote the set of these indices by
S. To study this problem, let us consider the same setup as
in Section III-B, but restrict attention to the case of linear
sparsity, i.e., k = ρ · n. Additionally define the quantities
P = (1/|S|)

∑
i∈S x

2
i as well as B = mini∈S x

2
i , leading

to the minimum-to-average ratio MAR = B/P .2 Moreover,
for simplicity, we will assume that the entries of A are i.i.d.
Gaussians.

First, consider the (asymptotic) exact recovery of the spar-
sity pattern S, i.e., the requirement that the probability of exact
reconstruction tends to one as n → ∞. For this problem, it
was shown in [21] that the necessary sampling rate δ is infinite.
Subsequent work [22], [23] has shown that more precisely, the
number of required samples is at least d ≥ k+1+Θ(k log n),
which can be attained by a simple thresholding algorithm of
complexity linear in n.

These negative results say that an excessive number of
random projections must be acquired for the task of exact
recovery of the sparsity pattern (in the presence of noise),
suggesting that this problem is out of reach of the methodology
of random projections. Fortunately, it is possible to relax the

2|S| denotes the cardinality of S.

recovery criterion slightly and obtain a positive result. In fact,
for the relaxed problem, sampling requirements are found that
closely match those for `2 recovery, further supporting random
projections as universal signal acquisition.

More precisely, since the degree of sparsity k = ρn is
assumed to be known, the estimated support Ŝ has exactly
k elements, and we define

D`0 = 1− |Ŝ ∩ S|
k

, (12)

which can be interpreted as the percentage of nonzero loca-
tions in x0 that were incorrectly recovered. It was shown that
for any 0 < SNR < ∞, 0 < MAR ≤ 1, and 0 < D`0 < 1,
a finite sampling rate δ is sufficient via the analysis of an
exhaustive procedure [21], [24]:

Ŝ`0 = arg min
S

inf
u∈Rk

‖y −ASu‖2, (13)

which can be shown to be equivalent to constrained `0-min
(for correctly chosen constraints). More recently, it was also
shown that even for a simple thresholding algorithm given by

ŜMC = arg max
S
‖AT

Sy‖2, (14)

the sampling rate is still finite [25]. Note that this algorithm
merely amounts to sorting the magnitudes of AT y ∈ Rn, and
is thus of linear complexity in n.

Remarkably, by contrast to the problem of recovery within
an `2 distortion requirement, for approximate sparsity pattern
recovery, a set of quite sharp bounds on the sampling rates
are available [26]. Together, they establish that the required
number of random projections is of a similar behavior as the
one for `2 recovery. To conclude this section, we give a few
illustrations of this. For example, it can be shown that for any
0 < ρ < 1, there exists a finite sampling rate δ such that

D`0 = O(1/SNR), (15)

by analogy to the result quoted above for `2 distortion. More
interestingly, the dependence of the sampling rate ρ on the
SNR can be characterized as

δ = ρ+ Θ
(

1
log(1 + SNR)

)
, (16)

for D`0 � 1 and MAR � 1. A more precise evaluation
of the bounds is given in Figure 2 for fixed MAR and D`0 ,
illustrating the sharpness of the existing bounds.

IV. EXPLOITING JOINT SPARSITY AMONG MULTIPLE
SENSOR OBSERVATIONS

In this section, the discussion will move on from individual
sensors at the edge of the network to the base station, which
receives multiple sensor observations y from a communication
channel. Suppose certain event of interest occurs within the
network, then it can be measured by one or more sensors.
Clearly in the former case, if a sparse representation exists, the
network does not gain any more information to improve the
performance. We are more interested in the latter case. More
specifically, we will show in several exemplary applications
that modeling possible joint sparsity shared between multiple
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Fig. 2. Sampling requirements for approximate sparsity pattern
recovery as a function of SNR. “Exhaustive search” refers to the
estimator in (13), and “maximum correlation recovery” to (14). The
corresponding performance bounds, along with the fundamental lower
bound, are given in [25].

sensor observations is crucial in applying the theory of CS on
distributed sensor data.

A. Distributed Sparsity-Based Classification

We first present a direct application of CS to simultaneous
event detection and classification in sensor networks, where
individual sensor nodes have sufficient computational capacity
and memory to process high-dimensional sensor data. In such
configurations, distributed pattern recognition becomes possi-
ble, where each sensor node is capable of certain decision-
making, including classification based on local observations.
Only when the local classifier detects a possible occurrence of
an event does the sensor node become active and transmit the
data to the base station. On the base station, a global classifier
receives the data from possibly multiple sensor nodes, and
further optimizes upon the classification given the local sensor
decisions.

A distributed recognition system presents certain unique
advantages for sensor network applications. First, good deci-
sions about the validity of the local measurement can reduce
the communication between the nodes and the server, and
hence reduce the power consumption. Second, although the
recognition on the individual sensor nodes is clearly limited
by the accuracy of the local observation, such abilities make
the design of the global classifier at the network station more
flexible. Finally, the ability for individual sensor nodes to make
local decisions can be used as feedback to support certain level
of autonomous actions without the intervention of a central
system.

As an example, we will examine the problem of wearable
human action recognition [27], where a network of wearable
motion sensors are utilized to recognize certain body actions,
such as sitting, running, and going upstairs/downstairs. Figure
4 illustrates some action sequences measured in our exper-
iment. The testbed consists of up to five wearable motion
sensors instrumented at different body locations, each of which
carries a triaxial accelerometer and a biaxial gyroscope at a

sampling rate of 30 Hz. The goal is to detect the temporal
support of the actions and correctly classify the actions against
a list of possible action categories.

The proposed solution is based on a new classification
framework, primarily developed for the classical problem of
face recognition [28]. In this framework, the distribution of
multiple event classes is modeled as a mixture subspace model,
one subspace for each class. Given C classes and a test sample
y, we seek the sparsest linear representation of the sample with
respect to all training examples:

y = [A1, A2, · · · , AC ]x + e = Ax + e, (17)

where the column vectors v of each Ai represent training
examples from the ith class, and e represents the measurement
error. Clearly, if y is a valid test sample, i.e., y is associated
with one of the C classes, y can be written as a linear
combination of the training samples only from the true class:

y = Aixi + e. (18)

Therefore, the corresponding representation in (17) has a
sparse representation x = [· · · ,0T ,xT

i ,0
T , · · · ]T : in average

only a fraction of 1
C coefficients are nonzero, and the dominant

nonzero coefficients in sparse representation x reveal the true
class.

In order to formulate wearable action recognition in the
same classification framework, we first define the notation
that we use to describe the distributed sensor data. Suppose
in a network of L sensor nodes, each sensor j is capable
of measuring m-D observations v(j) as stacked accelerometer
and/or gyroscope signals over a window of time. For a set
of C classes, ni training examples A(j)

i ∈ Rm×ni shall be
collected from the distribution of the i-th class on the j-
th sensor. Now, given a test sample y(j) on sensor j, the
classification can be easily formulated as solving the following
sparse representation:

y(j) = [A(j)
1 , A

(j)
2 , · · · , A(j)

C ]x = A(j)x ∈ Rm. (19)

Equation (19) is the basis to first discuss local classification
on the sensor side. Although in theory a sparse solution can be
recovered via `1-min from (19), in sensor networks, we often
need to reduce the dimension of the linear system and thus its
complexity. A linear dimensionality reduction function can be
defined by choosing a projection Rj ∈ Rd×m:

ȳj
.= Rjyj = RjA

(j)x
.= Ā(j)x ∈ Rd. (20)

After projection Rj , the feature dimension d typically becomes
much smaller than the number n of the training samples: d�
n. Therefore, the new linear system (20) is underdetermined.

In pattern recognition, although Rj can be also viewed as a
sensing matrix that essentially reduce the dimensionality of the
system (19) as in Section III, the optimality of the projection
is rather determined by its discriminative power, that is, good
dimensionality reduction for classification must preserve the
pairwise distance of within-class samples that should be close
to each other, and at the same time maximize the sample
distances between different classes such that stable decision
boundaries can be estimated to partition the distribution of



THE PROCEEDINGS OF IEEE 6

mixture classes.
Nevertheless, for the classification framework (17) that is

based on sparse representation, it was discovered in [28]
that if the inherent sparsity is properly sought, the choice of
projection Rj is no longer critical. To this end, any Gaussian
random matrix performs equally well as many traditional
methods such as principal component analysis (PCA) and
linear discriminant analysis (LDA), if sufficient projection
dimension is provided. Of course, the disadvantage is also
clear: in low-dimensional projection spaces (e.g., d < 100),
the classification accuracy using random projections would be
inferior to those using other discriminative projection methods
(e.g., PCA and LDA).

The classification framework (17) also provides an effective
means to reject possible invalid observations based on the
sparsity assumption. In particular, if a test vector y(j) is not
a valid measurement with respect to the C classes, one can
show that the dominant coefficients of its sparse representation
x should not correspond to any single subspace/class. Then,
the notion of class concentration of the nonzero coefficients
can be used as a threshold to reject invalid outliers [28]. Figure
3 shows a comparison of two `1-minimization solutions, one
using a valid sample and the other using an outlier.

Fig. 3. Top: The dominant coefficients of a valid sample are
concentrated in the first action class. Bottom: Coefficients of an
outlier are not concentrated in any particular class.

Now, consider at the base station, L′ active sensors output
their measurements (L′ ≤ L). The change in active sensors can
be attributed to rejection of invalid samples, sensor failure,
or network congestion. Without loss of generality, assume
these features are from the first L′ sensors: ȳ1, ȳ2, · · · , ȳL′ .
All the L′ measurements, if valid, can only represent one
action class. However, short-range sensors such as motion
sensors can only make biased decisions based on their own
local observations, even if the observations are perfect without
noise. For example, a motion sensor located on the upper body
could not observe and classify any action of the lower body,
and vice versa. It renders the popular majority-voting type
mechanism impractical to reach a consistent global decision
at the base station. Therefore, we need to construct another
layer of global classification to jointly classify the L′ samples.

In the work [27], another formulation for global classifica-

tion of wearable sensors was considered as follows. Denote

ȳ′ = [ȳT
1 , · · · , ȳT

L′ ]T ∈ RdL′
(21)

as the stacked L′ sensor features, and the training samples
from all the L sensors are collected in the similar fashion:

A = [(A(1))T , (A(2))T , · · · , (A(L))T ]T . (22)

Then a global sparse representation x satisfies the following
linear system

ȳ′ =

[
R1 ··· 0 ··· 0

...
. . .

...
...

0 ··· RL′ ··· 0

]
Ax = R′Ax = Ā′x, (23)

where R′ is a new projection matrix that only extracts the low-
dimensional features from the first L′ nodes. Hence, the effect
of changing active sensor nodes in the global classification
is formulated via the global projection matrix R′. The linear
system (20) then becomes a special case of (23) where
L′ = 1. The overall algorithm both on the sensors (20) and
on the network station (23) is called distributed sparsity-based
classification (DSC) [27].

Figure 4 demonstrates the results of detection and clas-
sification of three human actions using the DSC algorithm.
The training samples are manually segmented by human. In
the testing step, a sliding window scans through an entire
motion sequence along the time axis. False segmentations
that correspond to invalid action samples with respect to the
training samples are rejected, and the remaining valid samples
are classified by the DSC algorithm.

Fig. 4. Detection and classification of three human actions. The
plots show readings from the x-axis accelerometers over time. The
correct classification is indicated as black boxes superimposed in the
sequences. The incorrect classification is indicated as red rectangles.

B. Distributed Compression of Joint Sparse Signals

The previous subsection has presented a distributed classifi-
cation algorithm (DSC) to classify biased local measurements
by short-range motion sensors. Other sensors that measure
temperature, light, precipitation, or the electromagnetic field
also belong to this category. Another category of sensing
modality called long-range sensors is also widely used, includ-
ing cameras, sonars, and lidars. Long-range sensors typically
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consume higher energy than their short-range counterparts.
But they also provide much richer information about the
environment and dynamic events that take place within the
network.

One particular phenomenon that is quite characteristic about
a network of long-range sensors is that their fields of view may
share a large intersection in 3-D, and hence the environment
and the events inside the intersection may be measured by
multiple sensors from different vantage points. For example,
in object recognition, a common object (or scene) may be
observed by multiple surveillance cameras in proximity, and
therefore each sensor would obtain a copy of the description
of the object. The definition of the object description will
be discussed later in the section. Nevertheless, in order to
recognize the observed object based on a large object database,
which is a computation and memory intensive process, these
measurements need to be compressed on the sensor side and
transmitted to the base station.

In this subsection, using image-based distributed object
recognition as an example [29], we discuss distributed data
compression of high-dimensional sensor data when a joint
sparse pattern is present. We first define the problem of
distributed compression of joint sparse signals. Suppose a set
of L cameras are equipped to observe a single 3-D object. Each
camera i outputs a sparse description of the object xi ∈ Rn.
Furthermore, the corresponding object images between the
L cameras may share a set of common features, which is
formulated by the following joint sparsity (JS) model [30]:

x1 = xc + z1 ∈ Rn,
...

xL = xc + zL ∈ Rn.

(24)

In (24), xc is called common sparsity, and zi is called
innovation. Both xc and zi are also sparse. Suppose the L
cameras communicate with the base station via a band-limited
network, and each camera uses a linear encoding function:

fi : yi = fi(xi)
.= Aixi ∈ Rdi (di < n). (25)

Then on the base station, once y1,y2, · · · ,yL are re-
ceived, we seek simultaneous recovery of the source signals
x1,x2, · · · ,xL.3

In computer vision, a sparse representation can be defined
to concisely quantize the 2-D appearance of an object in vector
form, which is called a SIFT (scale-invariant feature transform)
histogram [34], [35]. The definition of SIFT histograms is
based on the observation that the object recognition function
can be constructed on the basis of decomposing object images
into constituent parts (i.e., distinctive image patches). For
example, a car figure is comprised of local features such

3Studies of joint sparsity models can be traced back to the problem of
multiple measurement vector (MMV) [31]–[33]. If all fi share the same linear
projection matrix A and the sparse supports are all the same, then x1, · · · , xL

can be simultaneously recovered by solving the following system

[y1, · · · , yL] = A[x1, · · · , xL]⇔ Y = AX.

However, MMV is not suitable for applications such as distributed object
recognition because it imposes critical limitations in terms of the distributed
signals xi and the sensing matrices Ai. Please refer to [29] for more detail.

as wheels, windows, car doors, and license plates, etc. Con-
versely, if these local features are detected from an image,
then it implies that one or more cars are present in the image
within a neighborhood of the local features. The approach is
generally referred to as the bag-of-words method [36]. Local
features are called codewords. Each codeword can be shared
among multiple object classes. Hence, the codewords from
all object categories can be clustered based on their visual
appearance into a vocabulary (or codebook). The size of
a typical vocabulary ranges from thousands to hundreds of
thousands. Given a large vocabulary that contains codewords
from many object classes, the histogram representation of a
single object image is then sparse, as shown in Figures 5 and
6 for two related view points of a toy object.

Fig. 5. Detection of interest points (red circles) in two image views
of a 3-D toy. The radius of each circle indicates the scale of the
interest point in the image. The correspondence of the interest points
that are invariant to viewpoint change is highlighted via red lines.

Fig. 6. The histograms representing the image features from the two
image views in Figure 5.

In order to simultaneously recover x1, · · · ,xL, the fact that
the common sparsity xc and innovations zi in (24) are all
sparse leads to the following solution. If we rewrite the random
projection on each node based on the JS model as

yi = Ai(xc + zi) = Aixc +Aizi, (26)

then an `1-min solver can be called to solve the following
extended linear system:[ y1

...
yL

]
=

[
A1 A1 0 ··· 0

...
. . . . . .

AL 0 ··· 0 AL

] xc
z1

...
zL


⇔ y′ = A′x′ ∈ RD, (D = d1 + · · ·+ dL).

(27)

We note the the most important part xc in fact indicates
the correspondence of object features that are matched across
multiple camera views (such as in Figure 5). As the solution
to recover it in (27) does not require any assumption about the
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relative position between the cameras, nor does it require any
prior training information about the appearance of the objects,
the distributed encoding method is viewpoint independent. In
addition, the JS model also improves the sparsity in (27): if
the common sparsity xc dominates the distributed signal, the
new coefficient vector x′ = [xT

c , z
T
1 , · · · , zT

L]T will have far
better sparsity ratio than the individual vectors x1, · · · ,xL.
On the other hand, in the worst case scenario, if no joint
sparsity exists, its sparsity ratio is still similar to the average
of decoding L projections individually.

Furthermore, taking advantage of the JS model, flexible
strategies can be proposed for choosing the random projection
dimensions di. We know in Section III that if each sparse
signal xi is to be decoded independently, the sampling rate
should be proportional to the sparsity ki

.= ‖xi‖0:

δi
.= lim

n→∞
di/n = O (ki/n log(n/ki)) . (28)

With the JS model, a necessary condition for simultaneously
recovering x1, · · · ,xL can be found in [30]. Basically, it
requires each sampling rate δi guarantees that the so-called
minimal sparsity signal of zi is sufficiently encoded, and
the total sampling rate must also guarantee that both the
joint sparsity and the innovations are sufficiently encoded.4

This result suggests a flexible strategy to choose varying
sampling rates and communication bandwidth, that is, the
random project dimensions di need not to be the same for
the L sensors to guarantee perfect recovery of the distributed
data. For example, sensor nodes in a network that have lower
bandwidth or lower power reserve can choose to reduce the
sampling rate in order to preserve energy.

Figure 7 illustrates how the improved accuracy in distributed
data compression translates to better recognition rates [29].
In this experiment, a public object database called COIL-100
was used, which includes multiple-view images of 100 small
objects. The SIFT features extracted from the entire image
database are quantized to 1000 codewords, i.e., the dimension
of the SIFT histograms is 1000. The classifier to match a
test histogram vector with training histograms is based on the
support vector machines (SVMs) method. Figure 7 plots the
recognition performance based on several decoding methods:

1) The solid line on the top shows the baseline recogni-
tion accuracy assuming no compression is included in
the process, and the classifier has direct access to all
the SIFT histograms. Hence, the upper-bound per-view
recognition rate is about 95%.

2) The red curve shows the recognition accuracy directly on
the low-dimensional randomly projected feature space

4The strategy of choosing varying sampling rate is a direct application of
the celebrated Slepian-Wolf theorem [37]. In a nutshell, the theorem shows
that, given two sources X1 and X2 that generate sequences x1 and x2,
asymptotically, the sequences can be jointly recovered with vanishing error
probability if and only if

R1 > H(X1|X2),
R2 > H(X2|X1),

R1 + R2 > H(X1, X2),

where R is the bit rate function, H(Xi|Xj) is the conditional entropy for
Xi given Xj , and H(Xi, Xj) is the joint entropy [38].

y.5 In the low-dimensional regime, classification on
random features performs quite well. For example, at
200-D, directly applying SVMs on the random feature
space achieves about 88% accuracy.

3) When the dimensions of random projections becomes
sufficiently high, the accuracy via `1-min overtakes that
of the random features, and approaches the baseline
performance when the sparse signals are accurately
recovered.

4) With more camera views available, enforcing joint spar-
sity boosts the recognition rate. For example, at 200-D,
the average per-view recognition rate of a single camera
is about 47%, but it jumps to 71% with two camera
views, and 80% with three views.

Fig. 7. Per-view classification accuracy versus random projection
dimension.

To end this section, we want to point out that distributed
object recognition is just one of many applications of the JS
model in distributed source coding. Other examples can be
found in the literature, including distributed video compression
[42], image restoration [43], and analysis of DNA microarrays
[44]. The reader can refer to the discussion therein for further
reading.

V. CONCLUSION AND DISCUSSION

We have provided an overview about sparse representation
and compressive sensing as a powerful tool to represent
and encode high-dimensional signals in the field of sensor
networks. The performance metrics for sparsity recovery and
inference are primarily based on Gaussian random projections.
In some real-world applications, on the other hand, one may
be more interested in analyzing specific sensor networks and

5It makes sense to apply classifiers directly on randomly projected sub-
spaces due to another interesting property of random projections. In par-
ticular, Johnson-Lindenstrauss lemma [39] shows that, in high-dimensional
spaces, Gaussian random projections preserve pairwise `2 distance. This
result provides another approach to take advantage of random projections
without recovering the high-dimensional source signal. Its utility has been
demonstrated in WSNs, e.g., feature matching [40] and classification [41].
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hence their specific sensing matrices A, for instance, sparse
sensing matrices. In a resource-constrained situation, one may
also be interested in optimizing the columns of A to achieve
better sparsity detection and recovery. Existing results in CS
theory have provided good solutions to analyze small-sized
linear systems, such as the convex polytope theory and the
restricted isometry property. For future research, more efficient
algorithms are needed to analyze domain specific, medium to
large-sized linear systems.
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