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Abstract: We present a novel identification framework that enables the use of first-order
methods when estimating model parameters near a periodic orbit of a hybrid dynamical system.
The proposed method reduces the space of initial conditions to a smooth manifold that contains
the hybrid dynamics near the periodic orbit while maintaining the parametric dependence of
the original hybrid model. First-order methods apply on this subsystem to minimize average
prediction error, thus identifying parameters for the original hybrid system. We implement the
technique and provide simulation results for a hybrid model relevant to terrestrial locomotion.

Keywords: parameter identification; hybrid systems; model reduction; periodic motion

1. INTRODUCTION

Many physical processes are fundamentally hybrid, such as
phase transition in a chemical reaction, gene activation in
a biochemical reaction network, and impact of a limb with
a substrate during terrestrial locomotion. Faithful models
for each of these phenomena are constructed from smooth
submodels by specifying rules that switch between the
submodels when certain logical propositions are satisfied
(e.g. “gene is activated” or “limb impacts substrate”).

The simplest non-equilibrium attractor of a dynamical sys-
tem is a periodic orbit. Such orbits are important for reg-
ulating concentrations of nutrients and proteins (Atkinson
et al. [2003]) and for describing the steady-state running
gaits of legged robots and animals (Holmes et al. [2006]).
Studying these dynamical behaviors requires identifying
unknown parameters in a given hybrid dynamical model.
Unfortunately, there are few identification tools applicable
to the dynamics encountered in legged locomotion and
biochemistry other than global search. Recently, Burden
et al. [2011b] developed a method to reduce a hybrid sys-
tem to a smooth dynamical system near a periodic orbit.
In this paper, we apply this model reduction technique to
enable the use of first-order methods to solve the param-
eter identification problem. In addition to reducing the
computation required to identify the hybrid model, this
approach overcomes technical limitations of prior work.
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2. RELATED WORK

Estimation and identification for hybrid dynamical sys-
tems has been an active area of research for several
decades; refer to the surveys Tugnait [1981], Paoletti et al.
[2007] and references therein. Most contributions address
the identification of piecewise affine ARX models. Unfortu-
nately, these techniques are not applicable to the nonlinear
dynamics and deterministic hybrid transitions generally
encountered in biochemistry and biomechanics.

This paper considers the parameter estimation problem for
hybrid dynamical systems in state space form. In general,
the identification of hybrid systems is a combinatorial
problem: one considers all possible discrete state sequences
by hypothesizing, at each observation time, that the sys-
tem has evolved to any of the known discrete modes. For
each discrete state sequence, continuous model parame-
ters are estimated using classical methods. Finally, the
model is selected that gives the best agreement with the
observations; see for instance Cinquemani et al. [2008],
Balakrishnan et al. [2004], Op Den Buijs et al. [2005], van
Riel et al. [2005]. Unless additional structure is imposed—
non-zero dwell time of the switching dynamics or a priori
knowledge of the discrete mode of some observations—this
combinatorial approach is computationally intractable, ne-
cessitating approximate methods.

One approximation to the combinatorial problem is ob-
tained by applying a change detection algorithm to de-
termine the discrete state, then using classical methods to
estimate the continuous dynamics; see for instance Ferrari-
Trecate et al. [2001], Altendorfer et al. [2001], Srinivasan
and Holmes [2008], Vries et al. [2009]. An alternative
approximation to the combinatorial problem that imposes
no a priori assumptions on the discrete state transitions is
prediction error minimization; see Ljung [1999] for details.



Starting from an initial parameter estimate, one minimizes
the squared residuals between predicted and observed
output by iteratively stepping in the direction opposite
the prediction error gradient. This method is not directly
applicable in the present context since the hybrid flow
(and hence the prediction error) is generally not differ-
entiable over the entire parameter space due to discrete
transitions. The gradient of the flow can be propagated
forward through discrete transitions using the methods
of Hiskens and Pai [2000], Phipps et al. [2005], Hoffman
et al. [2009]. However, since the maps that reset the state
during a discrete transition are not invertible in general,
such computations cannot be applied in backward time
through a discrete transition. Therefore existing approxi-
mate methods require some information about the discrete
mode to be known a priori. A primary aim of the present
work is to overcome this fundamental technical limitation.
Recently, Burden et al. [2011b] provided an analytical
technique to extract a reduced-order smooth dynamical
system near a periodic orbit of a hybrid dynamical system.
In this paper, we use this smooth subsystem to identify
parameters for the original model.

3. HYBRID DYNAMICAL SYSTEMS
3.1 Background from Differential Geometry

We assume familiarity with the tools and terminology of
differential geometry. If any of the concepts we discuss
are unfamiliar, we refer the reader to Marsden and Ratiu
[1999], Lee [2002] for more details.

A smooth n-dimensional manifold M with boundary OM
is an n-dimensional topological manifold covered by a
collection of smooth coordinate charts, and we write dim M
for the dimension of M; elementary examples include n-
dimensional Euclidean space R™ and the n-dimensional
unit sphere S™. The topological boundary OM C M is
a smooth (n — 1)-dimensional submanifold. Each z € M
has an associated tangent space T,M, and the disjoint
union of the tangent spaces at each point comprises the
tangent bundle TM := ] ., T M; note that any element
in TM may be regarded as a pair (z,v) where z € M
and v € T,M. We let T(M) denote the set of smooth
vector fields on M, i.e. smooth maps G : M — TM for
which G(z) = (x,v) for some v € T, M and all z € M. If
f: M — N is a smooth map between smooth manifolds,
we write dom f = M and imf = N. At each z € M
we let Df(x) : T,M — Ty N denote the Jacobian
linearization of f. The rank of f : M — N at the point
x € M is rank, f = rank Df(x). If rank, f = r for all
x € M, we write rank f = r. If rank f = dim M and f
is a homeomorphism onto its image, then f is a smooth
embedding, and f(M) is a smooth embedded submanifold.
In this case, any smooth vector field G € T(M) determines
a unique Df(G) € T(f(M)). A vector field G € T(M) is
tangent to a k-dimensional submanifold S at x € S if
G(z) € T, S C T, M; otherwise G is transverse.

3.2 Smooth & Hybrid Dynamical Systems

Smooth dynamical systems are comprised of a state space
together with a vector field that encodes the dynamics.

Definition 1. A smooth dynamical system is specified by a
pair (M, G):

M is a smooth manifold with boundary 0M;
G is a smooth vector field on M, i.e. G € T(M).

Hybrid dynamical systems are obtained from smooth sys-
tems by specifying (i) regions of the state space that trigger
transitions and (ii) rules to reinitialize the state once a
transition occurs. We consider the following class of hybrid
systems, described in detail in Burden et al. [2011b].

Definition 2. A hybrid dynamical system is specified by a
tuple (D, F,G, R):

D =[],c; Dj is a smooth hybrid manifold;

F € T(D) is a smooth hybrid vector field on D;

G C 9D is a smooth open hybrid submanifold;
R : G — D is a smooth hybrid map.

We call R the reset map and G the guard and assume F
is transverse to G to ensure trajectories are well-defined.

8.8 Example Hybrid Dynamical System: Vertical Hopper

We illustrate the components of a hybrid system in the
vertical hopper shown in Fig. 1. This system evolves
through an aerial mode and a ground mode. The aerial
mode consists of the set of configurations D, where the
lower mass is above the ground (see Fig. 1 for notation),

(0,9,9,7,%) € Dy = S* x TR x TR>q.
In this mode, the dynamics are governed by Newton’s laws
together with the linear clock dynamics ¢ = w,
6 =uw,
Flp, = { pj = k(b — (y —x)) + asino — pug,
mi = —k(ly — (y — x)) — asino — bk — mg.

The boundary 0D, contains the states where the lower
mass has just impacted the ground,

0D, ={(o,y,9,2,%) € D, : x =0}.
A hybrid transition occurs on the subset of the boundary
G, C 0D, where the lower mass has negative velocity,

G, ={(0,9,9,0,%) € D, : & < 0}.
In this case, the state is reinitialized in the ground mode
by annihilating the velocity of the lower mass,

R|Ga 1 Gy — Dg7 R|Ga (0’, v,9,0, CL‘) = (Uv Y, y)

In the ground mode, the lower mass is pressed into the

ground and the boundary consists of the set of configura-
tions where the forces acting on this mass balance,

Dy = {(va,y) €S'XTR: —k(fy —y) —asino < mg},
aDg = {(Uay7y) € Dg : 7k(€0 - y) —asino = ’rTL'g}7
FDg:{U..:w’ _
pij = k(lo —y) + asino — pug.
A hybrid transition occurs when the forces balance and will
instantaneously increase to pull the mass off the ground,

Gy = {(a,y,y) € 0D, : % (ky(t) —asino(t)) > O} ,

and the state is reset in the aerial mode by initializing the
position and velocity of the lower mass to zero,

R|Gg : Gg — Daa Rng (vaay) = (Uay»y'7070)~
This defines a hybrid dynamical system (D, F, G, R) where
D=D,[[ Dy, FET(D), G=G,[[Gy, R:G— D.
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Schematic of vertical hopper and trajectory converging to periodic orbit. Two masses m and u, constrained

to move vertically above a ground plane in a gravitational field with magnitude g, are connected by a linear
spring with stiffness k£ and nominal length ¢3. The spring is equipped with an actuator that exerts a periodically-
varying force f(t) := asino(t) where o € S! and ¢ = w. The lower mass experiences viscous drag proportional to
velocity with constant b when it is in the air, and impacts plastically with the ground (i.e. it is not permitted
to penetrate the ground and its velocity is instantaneously set to zero whenever a collision occurs). With
parameters (m, u, k,b, o, a,w,g9) = (1,2,10,5,2,2,27,2), the vertical hopper possesses a stable periodic orbit
v = (o*,y*, 9", 2*,2*) to which nearby trajectories (o,y,y,x,%) converge asymptotically. In the trajectory plot,
filled vertical gray regions indicate when the transient trace is in the ground mode, and the line styles in the velocity
plot match the styles for the corresponding state variables in the position plot.

4. PARAMETER IDENTIFICATION

If each component of the hybrid dynamical system
(D, F,G,R) depends smoothly on a parameter § € ©
where © is a smooth manifold, then the parameters may
be appended to the continuous state to obtain the hybrid
dynamical system (D x O, Fg,G x ©, Rg) where

Fo = (F,O@) S {.T(D X @),

R@Z(R,id@):GX@—)DX@;
here, 0o € T(©) denotes the zero vector field and
idg © — O the identity map on ©. In the sequel
we will suppress parametric dependence and refer to the
continuous state of a hybrid system alternately as an initial
condition or parameter. Note that if the original hybrid
system has a periodic orbit, the augmented system does
as well, hence the model reduction result in Burden et al.
[2011b] generalizes to parameterized hybrid systems (see
also Section 4.2).

4.1 Parameter Identification

Given a hybrid system (D, F, G, R), let ¢(t,x) € D denote
the point on the trajectory for the system at time ¢
from initial condition z € D. Then given an observation

function ¥ : D — R™ and data {m}fil C R™ with
sampling period 7 € R, form the average prediction error

N
N 1 ) 2
e (2 b)) = v DIV tna) —uml® ()
i=1
and pose the parameter identification problem as
. . AN
o* = argmilte (x, {’7%}1':1) . (2)

Note that the prediction error € can be discontinuous in x
due to discontinuities in the hybrid flow ¢ during discrete
transitions, whence in general we must resort to global

optimization techniques to solve the problem in (2). This
is clear in the vertical hopper example since observations
of the velocity of the lower mass & are discontinuous in
time as shown in Fig. 1.

Even if € is piecewise smooth, first-order methods may
fail to converge to parameters near the transition surface
G C 0D. To see this, consider the problem of identify-
ing an initial condition for the vertical hopper near G,
(o*,y*,y",x,2%) € D,, 0 < x < 1, & < 0. A first-order
method initialized in D, near R(G,) will converge to a
point near R(c*,y*,9,0,2*) € Dy. The reset map R|q, is
not invertible since dimdom R|g, > dimim R|¢g,, there-
fore it is not obvious how the method could be modified
to step back to D, and recover the correct parameters.

4.2 Model Reduction Near Periodic Orbits

Under a non-degeneracy condition on rank loss in the
Poincaré map associated with a periodic orbit of a hybrid
system, there exists a smooth system that (i) embeds in
the hybrid system near the periodic orbit and (ii) attracts
all nearby trajectories in finite time. We formalize these
facts as follows.

Definition 8. A hybrid dynamical embedding of a smooth
system (M,G) into a hybrid system (D,F,G,R) is a
hybrid embedding f : M — D for which Df(G) = F|¢(r)
and R|fanng is a hybrid diffeomorphism.

Theorem 4. (Theorem 1 in Burden et al. [2011b]). Let y be
a periodic orbit of the hybrid dynamical system (D, F, G, R)
and suppose the composition of a Poincaré map for v with
itself at least min e y dim D; times has constant rank equal
to r on a neighborhood of its fixed point. Then there is an
(r 4+ 1)-dimensional dynamical system (M,G), a hybrid
dynamical embedding f : M — D, and an open hybrid set
W C D so that v C f(M)NW and trajectories starting
in W flow into f(M) in finite time.



4.8 Ezample of Model Reduction: Vertical Hopper

Choosing a Poincaré section ¥ in the ground domain D,
at phase ¢ = 7w, ¥ := {(0,y,9) : 0 =7} C D,, we find
numerically that the hopper possesses a stable periodic
orbit «y that intersects the Poincaré section at yNY = {&}
where £ = (y,9) = (1.95,1.91). The linearization DP of
the associated Poincaré map P : ¥ — 3 has eigenvalues
spec DP(§) &~ —0.27 + 0.73; at the fixed point P(§) = ¢&.
Since neither eigenvalue is near the origin, we conclude
the Poincaré map P is a local diffeomorphism, hence the
rank hypothesis of Theorem 4 is trivially satisfied. Thus
the dynamics of the hopper collapse to a one degree-of-
freedom mechanical system after a single hop.

4.4 Parameter Identification Near Periodic Orbits

Given a hybrid system (D, F,G, R) with periodic orbit
~ and associated reduced-order subsystem (M,G) with
hybrid dynamical embedding f : M — D, the smooth
subsystem inherits the parametric dependence of the orig-
inal hybrid system, thus the identification problem may
be posed on this subsystem. To that end, let ¢(¢,2) € M
denote the point on the trajectory for the subsystem at
time ¢ from initial condition z € M. Form the average
prediction error confined to the subsystem

N
1 .
e (2 nbly) = 5 W o slelim ) —mll*, @)
i=1
and pose the parameter identification problem as
2" =argmin e (Z {771}1=1) : (4)

Now ¢ is smooth if and only if Yo f : M — R™ is smooth.
In examples relevant to the study of legged locomotion,
the observed states (e.g. body center-of-mass trajectory)
are affected by hybrid transitions only indirectly through
the change in the vector field, hence Y o f is smooth. In
this case, (4) can in principle be solved using any first-
order method applicable to the smooth manifold M, e.g.
the trust-region method of Absil et al. [2007].

In general, obtaining coordinates for the smooth subsys-
tem M requires solving the nonlinear ODE in each hybrid
domain explicitly so that the invariant submanifold of the
Poincaré section can be extracted. However, it is common
in models of terrestrial locomotion for the center-of-mass
state variables to give coordinates for this invariant sub-
manifold near the periodic orbit.

4.5 Ezample of Parameter Identification: Vertical Hopper

In the vertical hopper, the invariant subsystem coordinates
are comprised of the actuator state o together with the
position and velocity of the upper mass (y, ¢). In this case,
it is possible to obtain explicit coordinates for the Poincaré
section ¥ C DN M, and then every z € M can be obtained
by following the dynamics on M from a point { € ¥ for
a certain amount of time ¢ € Rx¢ so that ¢(¢,{) = =z.
Therefore in practice, we reformulate the problem in (4)
to search over initial conditions in the Poincaré section and
initial simulation time:

(#,¢) = argmin e (060, {nb) . (5)

(t,C)ERZQ X

We implemented a steepest descent algorithm with step
sizes chosen using the Armijo rule (refer to Bertsekas [1999]
for details) and the error gradient approximated using
finite differences to solve the problem in (5) for simulated
data from the vertical hopper. In particular, we identified
initial conditions and parameters from noisy observations
of the height of the upper mass. The algorithm reliably
converges to a local minimum of the prediction error
that is near the correct parameter values; results from
one particular experiment are shown in Figs. 2 & 3.
Our method recovers the correct initial condition from
a randomized starting point chosen near the hopper’s
periodic orbit using 40 noisy observations sampled over
two cycles, as shown in Fig. 2; accurately estimating model
parameters requires data from significantly more cycles, as
shown in Fig. 3.

5. DISCUSSION

We presented a first-order method for the identification
of parameters for a class of hybrid dynamical models. By
formally reducing the hybrid model to a smooth subsystem
that arises naturally near a hybrid periodic orbit, the
proposed method removes the requirement of prior work
that information about the the discrete state be known
a priori. Though applicable to the study of oscillatory
behavior in chemistry, biology, and robotics, the proposed
technique has some drawbacks; we conclude by discussing
these issues and future research efforts to address them.

First, the proposed method is only applicable in a neigh-
borhood of a periodic orbit. In practice, many models of
biochemical reaction networks and terrestrial locomotion
are deliberately designed to possess periodic orbits, and
the neighborhood over which the model reduction results
apply can be large; we plan to develop analytical tools
to discover periodic orbits and establish the size of the
reduction neighborhood. If multiple periodic orbits exist,
the technique presented here is only applicable near each
orbit individually; the practitioner must select amongst
the available orbits before identifying parameters.

Second, to enable the use of first-order methods, it was
necessary to restrict the initial conditions to the smooth in-
variant subsystem M ; the technique presented here cannot
identify initial conditions off this submanifold. However,
the model reduction result of Theorem 4 guarantees that
all initial conditions near the periodic orbit will collapse to
M after a finite number of cycles, n. Therefore removing
the first n cycles of data guarantees that the observations
are generated from an initial condition on the subsystem,
justifying the restriction to M. We note that it is possible
for parameters in the original system to become unidentifi-
able under the restriction to M; we are seeking conditions
that ensure identifiability is preserved.

Third, as noted in Section 4.4, we cannot expect in general
to obtain analytical coordinates for the invariant subsys-
tem whose existence is guaranteed by Theorem 4. There-
fore applying our identification procedure to a general
problem will require a numerical approximation of the
coordinates for the subsystem. Finally, for our technique
to accommodate process noise in addition to measurement
error, the model reduction result of Burden et al. [2011D)
must be generalized to stochastic hybrid systems.
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2. Identification of initial conditions for the vertical hopper. The model is simulated from the initial condition
z = (0,y,9) ~ (4.7,1.6,1.0) and the position of the upper mass is measured at 20Hz with independent and
identically distributed zero-mean Gaussian noise with variance 0.2. The initial conditions are identified by solving
the problem in (4) from the initial guess 2o = (o0, Y0, %0) = (8.0,1.5,1.1) using the first-order method described in
Section 4.5 to obtain the estimate z* = (¢*,y*, y*) ~ (4.6, 1.6, 1.1). Our method decreases the prediction error from
€(20) = 3.0x107! to e(2*) ~ 3.9x 1072, lower than the error obtained from the correct parameters €(z) = 4.0x 1072,

time (t)

3. Identification of initial conditions and parameters for the vertical hopper. In practice, some model parameters
may be known a priori or estimated from the data. When identifying the vertical hopper using data from a
physical system, the upper mass p, nominal leg length ¢y, actuator frequency w, and gravitational constant g
can be accurately estimated from the data or from a separate experiment, hence we assume they are known
and identify the lower mass m, spring stiffness k, damping coefficient b, and actuator amplitude a. The initial
condition z = (o,y,y,m, k,b,a) ~ (4.7,1.6,1.0, 1,10, 5,2) is sampled and identified as described in the caption for
Fig. 2 from the initial guess zo = (00, Yo, Yo, Mo, ko, bo, ag) ~ (8.0,1.5,1.1,0.97,11.2,5.3,2.3) to obtain the estimate
z* = (o*,y", y",m* k*, 0%, a*) ~ (4.8,1.6,1.2,0.95,10.1,5.2,2.0). Our method decreases the prediction error from
€(20) = 3.9 x 107! to e(2*) ~ 4.19 x 1072, lower than the error from the correct parameters €(z) = 4.22 x 1072.
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Appendix A. NUMERICAL METHODS

To simulate the vertical hopper, we use the algorithm
developed by Burden et al. [2011a] with step size h =
1 x 1072 and relaxation parameter ¢ = 1 x 107'°. The
sourcecode for simulations in this paper is available online
at http://purl.org/sburden/sysid2012.
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