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Abstract. Several formulations based on Random Fields (RFs) have
been proposed for joint categorization and segmentation (JCaS) of ob-
jects in images. The RF’s sites correspond to pixels or superpixels of an
image and one defines potential functions (typically over local neighbor-
hoods) which define costs for the different possible assignments of labels
to several different sites. Since the segmentation is unknown a priori, one
cannot define potential functions over arbitrarily large neighborhoods as
that may cross object boundaries. Categorization algorithms extract a set
of interest points from the entire image and solve the categorization prob-
lem by optimizing cost functions that depend on the feature descriptors
extracted from these interest points. There is some disconnect between
segmentation algorithms which consider local neighborhoods and cate-
gorization algorithms which consider non-local neighborhoods. In this
work, we propose to bridge this gap by introducing a novel formulation
which uses models of objects with deformable parts, classically used for
object categorization, to solve the JCaS problem. We use these models
to introduce two new classes of potential functions for JCaS; (a) the
first class of potential functions encodes the model score for detecting
an object as a function of its visible parts only, and (b) the second class
of potential functions encodes shape priors for each visible part and is
used to bias the segmentation of the pixels in the support region of the
part, towards the foreground object label. We show that most existing
deformable parts formulations can be used to define these potential func-
tions and that the resulting potential functions can be optimized exactly
using min-cut. As a result, these new potential functions can be inte-
grated with most existing RF-based formulations for JCaS.

1 Introduction

The goal of JCaS is to assign an object category label to each pixel in the
image. Several solutions to JCaS use RF-based formulations, wherein algorithms
define a RF whose sites correspond to pixels in the image and/or superpixels
of the image [1–3, 7–9, 13–16, 19–21, 23, 25, 26]. To solve the JCaS problem, one
defines potential functions (or potentials) which define costs for the different
assignments of category labels to the sites. These potentials aggregated over
local neighborhoods are then used to define an energy function over the different
labelings, the minimizer of which is used to obtain a labeling for the image.
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The potential functions used by most of the existing algorithms are local in
nature. The unary potential for a site, which depends on the label of that single
site only, is typically defined by using feature descriptors extracted from a local
neighborhood of the site, e.g., [21, 14]. The features cannot be extracted from
arbitrarily large neighborhoods since they might cross the objects’ boundaries.
Some methods consider non-local interest regions [26, 23] and use them to define
pairwise potentials, which depend on labels of just two sites. Unary and pairwise
potentials are typically not sufficient to describe all relationships amongst the
sites. Hence, some algorithms use higher order potentials that depend on several
sites [14, 20, 13]. While these potentials are also defined over local neighborhoods
such as neighboring pixels or superpixels, there are a few exceptions [20, 22].

We argue that one can improve performance by using potentials that are
defined over larger non-local neighborhoods, preferably all the regions covered
by an object. However, such potentials can lead to a computational bottleneck.
Therefore, it is preferable to define potentials over some representative subset
region of the object. In this work, we propose to use models of objects with
deformable parts [4, 6, 28], which have traditionally been used for object cate-
gorization, to define higher order potential functions over non-trivial non-local
neighborhoods. These models assume that each object has a set of parts and the
problem of detection corresponds to finding the locations of these parts in the
image. Our work is motivated by the fact that the locations of the object’s parts
help define the non-local neighborhoods for our proposed potentials.

Paper contributions. We propose to address the aforementioned issues by in-
tegrating deformable parts models with RF formulations for JCaS. We assume
that we are given a set of hypotheses as the output of detectors based on de-
formable parts models. Each hypothesis specifies for the object, a size, a pose
and the locations for the object’s parts. Given this, we propose a new energy
function for JCaS with the following properties.

1) The energy function solves for detection and segmentation in a unified
framework. The solution obtained by minimizing this function provides (i) a
segmentation of the image, (ii) a list of the hypotheses that are accepted from the
given ones, and (iii) a list of the visible parts for each of the accepted hypothesis.

2) Our key contribution is the design of two new higher order potential
functions for defining the above energy function. The first family of potentials
models the detection score for the deformable parts model. The binary-valued
variables of this family of potentials indicate whether a part is detected/occluded
at a certain location and the potential encodes the object detection score as a
function of the visible parts only. The second family of potentials is used to
model the shape prior of a part. Specifically, a part’s shape prior provides for
each pixel in the support region of that part, the probability that it belongs to
the foreground object. Our proposed potentials use these probabilities to bias
the segmentations of the pixels towards the foreground object label.

3) The problem of computing the minimizer of our proposed function is a
discrete optimization problem, which can be NP-hard in general. We show that
a global optimum to our optimization problem can be computed using min-cut.
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Related work. The following are a few examples that have used object models
for non-local potentials for JCaS. [15] modeled the object using multiple blobs.
[8] and [9] used the output of object detectors to localize the objects in images.
[22] and [25] used Bag of Features as the object model, while [1] and [2] used
Poselets for their model. Our work, in contrast, uses the deformable parts model.

The works most closely related to our work are those of [12], [13] and [27].
[12] was perhaps the first work to use deformable parts models for object seg-
mentation. The solution is obtained via an iterative process where the algorithm
alternates between sampling from the space of possible hypothesis and comput-
ing the segmentation given the hypothesis. [27] extends [12] to deal with multiple
object categories. [27] takes as input a set of hypothesis, all of which are used for
segmentation. Our proposed framework has a few differences with these. First,
we model the detection score as a function of the visible parts, while the above
do not. Second, [27] computes the solution using EM, while we compute the
segmentation in a single step using min-cut. Finally, in contrast to [27], our
algorithm allows for rejection of some of the hypotheses provided as input.

[13] takes as input a set of hypotheses giving the locations of different parts
of the image. Given these hypotheses, [13] defines a potential function which
penalizes the number of pixels in the support region for each object part, which
deviate from the foreground label. There is no shape prior used to bias the pixels
differently based on their location in an object part’s support region. Moreover,
they do not model the detection score as a function of the visible parts.

Paper outline. In §2, we review some definitions that are relevant to our pro-
posed formulation. In §3, we propose a new cost function for JCaS. We introduce
two new higher order potentials for this cost function and discuss the constraints
on these potentials that make them amenable to efficient inference using min-
cut. We outline how the parameters of our cost function can be learned using
max-margin methods. In §4, we evaluate the performance of our formulation on
the PARSE dataset [17] and highlight our framework’s advantages/limitations.

2 Review

In this section, we briefly review some concepts relevant to our formulation.

2.1 Random fields (RFs) formulations for JCaS

Given an image I, we define a RF, the set of whose sites is denoted as V. These
sites correspond to pixels or superpixels of the image. A binary-valued random
variable X(vi) is defined at each site vi ∈ V and can take any value x(vi) in
the set of possible labels B = {0, 1}. Any assignment of labels to the random
variables is referred to as a labeling and is denoted as x ∈ B|V|. We denote the
restriction of the random variables and labeling to a set of sites A⊆V as X(A) and
x(A), respectively. Note that x(vi) is the restriction of x to the site vi. Though
the set of possible labels can contain several values for multiple categories, we
restrict our analysis to the case of two labels for the ease of exposition.
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The neighborhood of the RF is defined using the set of edges E ⊂ V ×V. An
edge that spans two sites vi and vj is denoted by eij . Larger neighborhoods are
defined using cliques, where a clique c ⊂ V defines a set of sites, e.g., the set of
pixels in a superpixel. We denote the set of all cliques in the RF as C. One defines
potential functions for each clique to model the scores for different assignments
of labels to the clique. The following are a few commonly used potentials.

A unary potential ψi(x(vi); I) is defined for each site i ∈ V, such that ψi(b; I)
defines the cost of assigning the label b ∈ B to the site i. This cost is typically
computed using appearance-based or location-based feature descriptors. A pair-
wise potential ψij(x(vi), x(vj); I) is defined for each pair of neighboring sites vi
and vj ∈ V, where eij ∈ E , such that ψij(bi, bj ; I) defines the cost of assigning
labels bi and bj to the sites vi and vj , respectively. These potentials help enforce
the spatial smoothness of x and align the edges across which the labeling changes
with the edges in the image. They are also used to encode context.

Recent work has addressed the use of higher order potentials defined on
larger cliques [14, 20, 13, 22]. A higher order potential ψc(x(c); I) is defined on
the clique c ∈ C, such that ψc(bc; I) is the cost of assigning the labels bc ∈ B|c|
to the clique c. The potential ψc(x(c); I) can be defined over the the clique of
pixels that belong to a superpixel. It can also be used to encode higher order con-
textual information about co-occurence of different categories [20] or to encode
bin counts of histograms of quantized descriptors of interest points [22].

Most algorithms solve JCaS by minimizing an energy function of the form

E1(x; I) =
∑
c∈C

λcψc(x(c); I), (1)

where ∀c ∈ C, λc ∈ R. Note that (1) includes unary and pairwise potentials as
special cases when |c| = 1 and 2, respectively. E1(x; I) is typically designed such
that min-cut based solvers provide the global minimum for the 2-label case and
a local minimum (with optimality bounds) for the multi-label case.

As described in §1,it is preferable to have global object models that consider
larger non-local neighborhoods, preferably all the sites with the same label. Such
neighborhoods cannot be imposed apriori because the labeling is unknown.

2.2 Detection of objects with deformable parts

The algorithms in this genre assume that an object consists of P ∈ Z+ parts
[4–6, 28]. Given an image I, a hypothesis θ specifies the object’s pose π(θ),
object’s scale (size) s(θ) and a set of locations l(θ) = [l1(θ), . . . , lP (θ)]> ∈ Ω(I)P

for the different parts, where Ω(I) ∈ R2
+ denotes the pixel domain of image

I. The algorithms compute a detection score for the different hypotheses. The
hypotheses with scores better than a threshold (say κ) are treated as accepted.

To define a detection score for a hypothesis θ, the algorithms consider two
different kinds of cost functions. The first type of cost function is an appearance-
based cost for each of the different parts. For the pth part (p = 1, . . . , P ), one
extracts feature descriptors from a support region (say Rp(θ)) around lp(θ),
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where the size of the support region depends on the object’s pose, scale and the
part. The appearance-based cost φappp (θ; I) for the pth part is then computed
as the output of a linear filter applied to these features descriptors, where the
filter’s coefficients depend on the pose, scale and part.

The second cost function takes into account the constraints on the relative
locations of the different parts. Given locations lp1(θ) and lp2(θ) for parts p1
and p2, the cost φdefp1,p2(θ) is a quadratic function of the entries of the vector
lp1(θ) − lp2(θ), where the coefficients of the quadratic function depend on the
object’s pose and scale. While one may construct a deformation cost for each of

the P (P−1)
2 possible pairs of parts, most algorithms assume, for computational

ease, that only a subset of these pairs are relevant for the purpose of detection. In
fact, it is assumed that this subset of pairs can be represented using a tree. These
connections between the parts are defined by the set of edges Eobj = (p1, p2).

Given an image I, one then defines the detection score for a candidate θ as

E2(θ; I) =

P∑
p=1

φappp (θ; I) +
∑

(p1,p2)∈Eobj

φdefp1,p2(θ) (2)

Due to the small number (say M) of possible poses and number (say S) of
scales considered by detection algorithms, it is possible to do a brute force com-
putation of the energy for the different poses and scales. Since the number of
possible locations of the parts is high, i.e., |Ω(I)|P , it is not possible to compute
the energy for all possible locations. To address this, given partial information
for a hypothesis θ in terms of the pose π(θ) and scale s(θ), the part locations
l(θ) that minimize E2(θ; I) can be found using dynamic programming with time
complexity O(|Ω(I)|P ) [5]. We note that in the literature, the best hypothesis
is typically obtained by solving a maximization problem. We can always refor-
mulate the problem to get an equivalent minimization problem. In our work,
we assume, without loss of generality, that the best hypotheses are obtained
by solving a minimization problem, i.e., lower hypothesis scores are considered
better.

In this formulation, the algorithm assumes that for a given pose, each part is
assumed to be detected/visible in the image. There has been work to deal with
occlusions, but an occluded pose is modeled as a pose different from the original
pose [4]. We argue that it is of interest to explicitly model occlusion of parts
within a certain pose rather than modeling occlusions using different poses.

3 A Novel Energy Function for JCaS

In this section, we define a new energy function to model non-local interactions
amongst the sites of RFs for JCaS. For expositional ease, we make two simplifying
assumptions. First, the number of parts (say P ) is the same for all the poses.
This is not necessary in practice. Second, we assume that the image is segmented
into two groups only – an object of a particular category vs. background. Our
analysis can be extended to deal with multiple semantic categories too.
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We now introduce some notation. Given an image I, we denote the set of
sites representing the pixels as Vpixels = {v1, . . . , vN}, where N = |Ω(I)|. We do
not introduce any additional sites for superpixels since potentials defined over
superpixels can be redefined as potentials defined over the pixels [14]. We assume
that we are given a set of H hypotheses, Θ = {θ1, . . . , θH}. For each hypothesis
θh (where h = 1, . . . ,H), we define a set of P+1 sites Vobj(θh) = {vh0 , vh1 , . . . , vhP }.
The site vh0 is used to represent the hth hypothesis θh and for p = 1, . . . , P , the
site vhp is used to represent the pth object part for hypothesis θh.

We introduce binary-valued variables for the sites. For each site vi ∈ Vpixels,
the variable x(vi) takes value 0 or 1 and represents segmentation as background
or object, respectively. For each site vh0 , the variable x(vh0 ) takes value 0 or 1
and represents whether the hypothesis θh is rejected or accepted, respectively.
For each site vhp ∈ Vobj(θh), where p > 0, x(vhp ) takes value 0 or 1 and represents

whether the pth part for the hth hypothesis is occluded or visible, respectively.
In this work, we propose to solve the JCaS problem by computing the values

for the variables x that minimize an energy function of the form

EJCaS(x; I,Θ) = λsegEseg(x(Vpixels); I) + λhyp
H∑
h=1

Edet(x(Vobj(h)); I, θh)

+

H∑
h=1

P∑
p=1

λshapep (π(θh))Eshape
p (x(vhp ),x(Rp(θh)); I, θh),

(3)

where λseg, λhyp and λshapep (·) are all non-negative scalars, and Rp(θh) is the sup-
port region for the p’th part in hypothesis θh. The term Eseg(·) is a segmentation-
based energy function. It encodes the cost of assigning segmentation labels to
the pixels, where the cost is computed using feature descriptors such as color,
texture, etc. This energy can also be thought of in more general terms and can
be replaced by energy functions used by existing JCaS algorithms.

Our main contribution is the design of the energies Edet(·) and Eshape
p (·). The

term Edet(·) is a detection-based energy function and computes the detection
score for each of the H hypotheses, as a function of the visible parts only. The
third term Eshape

p (·) is an energy function that connects the segmentation and

detection terms. It helps encode how the pth part, if visible, affects the segmen-
tation of the image region where the part is detected. We will discuss later, that
it also helps in the use of the segmentation of an image region to verify whether
a part is visible or not. In what follows, we define these energy functions and
discuss how we can obtain x as the minimizer of EJCaS(·).

3.1 Definition of the energy terms

Detection. We first extend the detection score defined in (2) by introducing the
binary-valued variables x(vhp ) that model the visibility/occlusion of the parts, as

φ(x; I, θh)=

P∑
p=1

φappp (θh; I)x(vhp ) +
∑

(p1,p2)∈Eobj

φdefp1,p2(θh)x(vhp1)x(vhp2). (4)
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The appearance score for the pth part is accounted for only if it is visible (x(vhp ) =
1). The deformation score for a pair of parts is accounted for only when both
parts are visible. Hence, the detection score depends on the visible parts only.

Given this definition of the score, we define the hypothesis score as follows

Edet(x(Vobj(θh)); I, θh)=


φ(x; I, θh)−κ if φ(x; I, θh)≤ κ
0 if φ(x; I, θh)≥κ and x(Vobj(θh))=0

∞ if φ(x; I, θh)≥κ and x(Vobj(θh)) 6=0

,

(5)
where κ is a pre-defined threshold applied to the detection score, to accept a
hypothesis (recall from §2.2). We have considered three different cases in defining
Edet(·). In the first case, the detection score is below the threshold and the
hypothesis is accepted. The cost paid in this case is a negative value and is
precisely equal to φ(x; I, θh)−κ. When the detection score is above the threshold,
we want to reject the hypothesis and we don’t want any of the parts to be
detected. The third case in (5) ensures that none of the parts are detected when
the detection score is more than κ, by assigning a very high cost, i.e., ∞, to this
undesirable case. The second case in (5) corresponds to the case when we reject
the hypothesis and no part is detected. In this case, we pay a constant cost 0.

Shape prior. Eseg(·) and Edet(·) are defined on disjoint sets of vertices, i.e.,
Vpixels and Vobj(·), respectively. Eshape

p (·) serves to connect the segmentation
variables with the hypotheses variables. Given a hypothesis θh, we define for
each part p, a shape prior (see Figure 1(a)) over its support region Rp(θh), as

∀vi ∈ Rp(θh) : ξ(vi, p) = prob(x(vi) = 1|x(vhp ) = 1) (6)

More specifically, the shape prior specifies for each pixel in the support region of
a visible part, the probability that it will be assigned to the foreground object.

Now, note that it is straightforward to define an energy function for the
pth part, as

∑
vi∈Rp(θh)

(
−ξ(vi, p)x(vi)x(vhp )

)
. Specifically, when the pth part is

detected (x(vhp ) = 1) and a pixel vi in its support region is assigned to the fore-
ground, a negative cost −ξ(vi, p) is paid. This implies that all the pixels which
have a high probability (as given by the shape prior) of belonging to the fore-
ground, will have a greater bias towards being segmented as foreground. In this
manner, we see how the detection of parts can help improve the segmentation.
However, there must be a symbiotic interplay between segmentation and detec-
tion, and we argue that segmentation must also help improve the detection. We
propose a constraint that a part must be treated as being detected/visible, only
if a sufficient number of pixels in its support region are segmented as belonging
to the foreground. To this effect, we define the energy function as

Eshape
p (x(vhp ),x(Rp(θh); I, θh),=

{∑
vi∈Rp(θh)

−ξ(vi, p)βp(π(θh)) if x(vhp ) = 0∑
vi∈Rp(θh)

−ξ(vi, p)x(vi) if x(vhp ) = 1
,

(7)
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where βp(π(θh)) > 0. When the pth part is not detected, a constant cost (which
does not depend on the segmentation) is paid. When the part is detected, the
cost depends on the segmentation in the support region. Moreover, notice from
(7) that when a sufficient number of pixels in Rp(θh) are assigned to the fore-
ground, i.e., when

∑
vi∈Rp(θh)

−ξ(vi, p)x(vi) ≤ βp(π(θh))
∑
vi∈Rp(θh)

−ξ(vi, p),
this energy function biases the pth part towards being detected.

3.2 Inference

The potentials defined in (5) and (7) are higher order potentials that depend on
the labels of more than two sites. We will now show how these potentials can be
expressed using unary and pairwise potentials. Since energy functions with unary
and pairwise potentials can be minimized using min-cut, our proposed potentials
can be integrated into existing JCaS algorithms that use min-cut based solvers.

To find the global optimum using min-cut, there are no constraints on the
unary potentials. The pairwise potentials, however, do need to satisfy the sub-
modularity constraint [11]. If one considers pairwise potentials that are defined
over two binary-valued variables, say y1 and y2, the pairwise potentials γ1y1y2
and γ2ȳ1y2 (where ȳ1 = 1− y1) are submodular only if γ1 ≤ 0 and γ2 ≥ 0 [11].

We first see that the energy Eshape
p (·) defined in (7) can be rewritten as

Eshape
p (x(vhp ),x(Rp(θh); I, θh) =

∑
vi∈Rp(θh)

−ξ(vi, p)
(
βp(π(θh))x̄(vhp ) + x(vi)x(vhp )

)
.

(8)
It is easy to verify that for x(vhp ) = 0 and x(vhp ) = 1, the score in (8) is exactly the
same as that in (7). The first term in the summation in (8) is a unary term that
depends only on x(vhp ). The second term is a pairwise potential that depends on

x(vi) and x(vhp ). In this case, we note that by its definition in (6), ξ(vi, p) ≥ 0.

Therefore, the potential −ξ(vi, p)x(vi)x(vhp ) is submodular by construction.

We now use the variable x(vh0 ) to rewrite Edet(·) defined in (5), as

Edet(x(Vobj(θh)); I, θh) = (φ(x; I, θh)− κ)x(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )). (9)

When x(vh0 ) = 1, the hypothesis is accepted and the cost is equal to φ(x; I, θh)−
κ. When x(vh0 ) = 0, the hypothesis is rejected and the third term∞(x̄(vh0 )x(vhp ))

ensures that all the x(vhp ) = 0 when x(vh0 ) = 0. The cost paid when x(Vobj(θh)) =
0 is equal to 0. Therefore, this energy represents the detection energy in (5). Now,
given the expression in (4), we can rewrite the right hand side of (9) as

(φ(x; I, θh)− κ)x(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )) =

P∑
p=1

φappp (θh; I)x(vhp )x(vh0 )

+
∑

(p1,p2)∈Eobj

φdefp1,p2(θh)x(vhp1)x(vhp2)x(vh0 )− κx(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )).

(10)
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Notice that the first and second expressions are potentials defined over two vari-
ables

(
x(vhp )x(vh0 )

)
and three variables

(
x(vhp1)x(vhp2)x(vh0 )

)
, respectively. How-

ever any solution x∗ that minimizes the energy satisfies the constraint that ∀p =
1, . . . , P, x∗(vhp ) = 1, only if x∗(vh0 ) = 1. To this effect, x∗(vhp )x∗(vh0 ) = 1, only

if x∗(vhp ) = 1. Similarly, x∗(vhp1)x∗(vhp2)x∗(vh0 ) = 1, only if x∗(vhp1)x∗(vhp2) = 1.

Hence, we can drop x(vh0 ) in the first and second terms and rewrite Edet(·) as

Edet(x(Vobj(θh)); I, θh) =

P∑
p=1

φappp (θh; I)x(vhp ) +
∑

(p1,p2)∈Eobj

φdefp1,p2(θh)x(vhp1)x(vhp2)

− κx(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )),

(11)

such that the minimizers of (9) and (11) are the same. The first and third terms
in (11) are unary potentials. The fourth term ∞x̄(vh0 )x(vhp ) is submodular by

construction. The second term φdefp1,p2(θh)x(vhp1)x(vhp2) is submodular if and only

if φdefp1,p2(θh) ≤ 0. This score φdefp1,p2(θh) is a quadratic function computed as

φdefp1,p2(θh)=

dl1dl2
1

>a1(s(θh), π(θh)) 0 b1(s(θh), π(θh))
0 a2(s(θh), π(θh)) b2(s(θh), π(θh))

b1(s(θh), π(θh)) b2(s(θh), π(θh)) c(s(θh), π(θh))

dl1dl2
1

, (12)

where [dl1, dl2]> = lp1(θh)−lp2(θh) [5]. Note that by definition, a1(s(θh), π(θh)) >
0 and a2(s(θh), π(θh)) > 0 [5]. We now describe how the parameters of φdefp1,p2(·)
can be updated for a given image, such that the classification results are not
affected and φdefp1,p2(θh) ≤ 0 for all possible (lp1(θh), lp2(θh)).

If we update φdefp1,p2(·) to φ̃defp1,p2(·), such that all the parameters are kept con-
stant but c(·) is updated as c̃(s(θh), π(θh)) = c(s(θh), π(θh)) +∆c(s(θh), π(θh)),
we have for all θh, φ̃defp1,p2(θh) = φdefp1,p2(θh) + ∆c(s(θh), π(θh)). This does not al-
ter the relative ordering of the scores of the different hypotheses. The detection
results are the same if one updates the threshold κ as κ̃ = κ+∆c(s(θh), π(θh)).

Given an image I, since there are only a finite number of locations used to
compute the expression in (12), we can always find a ∆c(s(θh), π(θh)) for that
image, such that φ̃defp1,p2(θh) ≤ 0 for all possible (lp1 , lp2). This implies that we
can always update the parameters to construct submodular pairwise potentials.

3.3 Parameter learning

Notice that the energy EJCaS(x; I,Θ) defined in (3), can be rewritten as

EJCaS(x; I,Θ) = w>Ψ(x; I,Θ)

=



λseg

λhyp

...
λshapep (πm)

...



> 

Eseg (x(Vpixels); I)∑H
h=1E

det (x(Vobj(h)); I,Θ)
...∑H

h=1 δ(π(θh) = πm)Eshape
p (x(vhp ),x (Rp(θh)); I, θh)

...

 ,
(13)
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where δ(·) is the 0-1 indicator function and w ∈ R2+(P×M) contains the param-
eters that regulate the relative contributions of the different potentials.

Recall that we segment an image I by minimizing E(x; I,Θ). Hence, we want
that the true segmentation y of image I minimize the energy E(x; I) as ∀x ∈
BN+(H×(P+1)) \ y, E(x; I,Θ) > E(y; I,Θ), i.e., w>Ψ(x; I,Θ) > w>Ψ(y; I,Θ).
We now describe an optimization problem to learn w, motivated by this property.

Assume that we are given a training set of T images {It}Tt=1 with ground
truth labelings {yt}Tt=1. We refer to any labeling of an image that is different
from yt as a negative example of segmentation. We denote the set of negative
examples of segmentations for an image It as U−t . Since all negative segmentation
examples should not be treated equally, we propose to enforce the constraint

∀x∈U−t : w>
(
Ψ(x; It, Θt)−Ψ(yt; It, Θt)

)
>`(x,yt), (14)

where `(x,yt) is a loss function that quantifies errors in the segmentation, as

`(x,yt) =

∑
vi∈Vpixels

yt(vi)x̄(vi)∑
vi∈Vpixels yt(vi)

+

∑
vi∈Vpixels ȳt(vi)x(vi)∑

vi∈Vpixels ȳt(vi)
. (15)

`(x,yt) computes the sum of fractions of misclassified sites per category.
Given a regularization parameter C > 0, we propose to learn w by solving

{w∗, {η∗t }Tt=1} = argmin
w,{ξt}Ni=1

1

2
‖w‖2 +

C

T

T∑
t=1

ηt, subject to ∀t = 1, . . . , T

(a) ∀x ∈ U−t : w>
(
Ψ(x; It, Θt)− Ψ(yt; It, Θt)

)
≥ `(x,yt, Θt)− ηt,

(b) ηt ≥ 0 and (c) w ≥ 0.

(16)

This formulation is mostly based on [24] and we solve (16) using the cutting-
plane algorithm described in [24]. While we refer the readers to [24] for the
details, we now provide some intuition for (16). The constraint (a) is similar
to (14) except for the non-negative valued slack variable ηt which allow for the
violation of (14). Constraint (c) ensures that the resulting energy is submodular.

4 Experiments

Description of dataset. For the evaluation, we use the Image Parse Dataset [17]
which consists of 305 articulated full-body images of people. The first 100 images
are used as training data and the remaining 205 as test data. We have manually
segmented the images in the dataset for our quantitative evaluation.

Algorithms compared in the evaluation. We first describe the construction of the
energy EJCaS(·). We define Edet(·) using the outputs of the detector of [28].
Although our method can handle multiple detection hypotheses, we use only the
highest scoring hypothesis for each image in our experiments. We now describe
how we construct the shape priors for Eshape

p (·). We run the detection algorithm
of [28] on the training images. For each part type detected in an image, we find
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(a) (b)

Fig. 1. (a) Shape priors generated for 4 part types using the parts model of [28]. (b)
Two examples of shape priors being superimposed to generate foreground hypothesis.

the associated patch in its ground truth segmentation enclosed by the detection
box. Averaging the segmentation patches over all the training images provides
shape priors similar to those shown in Figure 1(a). Figure 1(b) shows examples
where the learned shape priors are placed at part detection sites. It is clear from
this image how the shape priors influence the segmentation of the people.

To construct Eseg(·), we use the given hypothesis to create a color-based
unary potential. We fit a a Gaussian Mixture Model (GMM) with 5 components
to the RGB-colors of all the image’s pixels that lie outside the detection boxes
for the parts. Given the color of a pixel vi in the image, we use this GMM to
define the background unary potential ψclri (0; I). We set the foreground unary
potentials to zero, i.e., ψclri (1; I) = 0. This reduces dependency on color for
segmenting the foreground while relying entirely on the detection and shape prior
potentials. We also define a color-based pairwise potential as ψclrij (x(vi), x(vj)) =

δ(x(vi) 6= x(vj))e
−β‖z(vi)−z(vj)‖2 where z(vi) is the RGB color at pixel vi, and

each vj is in the 4-neighborhood of pixel vi. In all our experiments we set β = 10.

As a baseline for comparison, we consider the GrabCut algorithm [18], which
considers only unary and pairwise potentials. It alternates between (a) fitting
GMMs of color for the foreground/background, given the segmentation, and (b)
computing the segmentation, given the potentials constructed with these GMMs.
We initialize GrabCut with a segmentation, where we label all the pixels inside
the detection boxes for the parts as the foreground, and the rest as background.
We run 10 iterations of GrabCut. Unlike the traditional GrabCut, we cannot
place any hard constraints on the pixels’ labels, since the detection boxes contain
pixels belonging to the background as well as foreground. We choose this baseline
to show that even if one is given a good initial object detection, using low-level
features such as color need not produce good JCaS results. This motivates our
argument for object models defined over non-trivial non-local neighborhoods.

We also consider a third algorithm, where we combine our algorithm with
GrabCut. We alternate between (a) computing the segmentation by minimizing
EJCaS(·), and (b) improving the color models given the segmentation.

The parameters for all the three algorithms are learnt as described in §3.3.
In what follows, we refer to our method as DPRF (deformable parts + random
fields) and to GrabCut as GC. The third algorithm is referred to as DPRF+GC.
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Foreground Background

Method mean std mean std

GC 0.74 0.15 0.46 0.20
DPRF 0.90 0.07 0.63 0.19

DPRF +GC 0.91 0.06 0.63 0.19

(a) Foreground I/U (b) Background I/U

Fig. 2. Comparison of I/U for the segmentation results produced by the 3 methods.

Evaluation. We evaluate the segmentations using the Intersection/Union (I/U)
metric given by #TP

#TP+#FP+#FN , where TP = true positives, FP = false posi-

tives and FN = false negatives. Better segmentation corresponds to higher I/U.
The results are presented in the table and the boxplots in Fig. 2. The top/

bottom edge of each boxplot for a set of values indicates the maximum/minimum
of the values. The bottom/top extents of the box mark the 25/75 percentile. The
red line in the box indicates the median and the red crosses outside the boxes
show potential outliers. The 5% confidence intervals for determining statistical
significance of difference between the medians are shown as red triangles.

The median I/U is notably lower for GC in comparison to DPRF and the 5%
confidence intervals for these results do not overlap. However, the medians for
DPRF and DPRF+GC are very similar and the 5% confidence intervals do over-
lap. This combined with the results in the table help us conclude that (a) DPRF
produces better results than GC, and (b) the introduction of color information
into DPRF, i.e., DPRF+GC does not produce any significant improvement.

Figure 3 presents a qualitative comparison of the results. The first column
shows the hypothesis for the deformable parts (from [28]) overlaid on the image.
The second column shows the result of pruning some of the detections using
DPRF. The third, fourth and fifth columns of the figure show the segmentation
produced by GC, DPRF and DPRF+GC, respectively. The first 3 rows show
examples where the results of GC are inferior to those produced by DPRF and
DPRF+GC. In these examples, the detection algorithm has fit the articulated
models to the data reasonably well. The next two examples show scenarios where
the detection algorithm errs and detects an extra limb (circled in white). As
seen in the second column, DPRF prunes out these errors and provides a better
segmentation than GC. The last two rows show examples where GC performs
comparable to or outperforms DPRF. The last failure case is due to the poor
part detection as seen in the first column in the last row.

5 Conclusion

We presented a JCaS framework where we proposed two new families of po-
tentials that combine detection hypothesis with the segmentation of the image.
These potentials can be integrated with existing RF-based JCaS algorithms. Re-
sults show that the detection hypothesis helps provide good segmentation results,
and the segmentation can be used to prune some errors in the hypothesis.
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Fig. 3. Column 1 shows the articulated model overlaid on the images. Column 2 shows
the pruned model that has rejected some part detections using DPRF. Columns 3-5
show the segmentations given by GC, DPRF and DPRF+GC. See text for explanation.
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