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Abstract: Given a linear system in a real or complex domain, linear regression aims to recover
the model parameters from a set of observations. Recent studies in compressive sensing have
successfully shown that under certain conditions, a linear program, namely, `1-minimization,
guarantees recovery of sparse parameter signals even when the system is underdetermined. In
this paper, we consider a more challenging problem: when the phase of the output measurements
from a linear system is omitted. Using a lifting technique, we show that even though the phase
information is missing, the sparse signal can be recovered exactly by solving a semidefinite
program when the sampling rate is sufficiently high. This is an interesting finding since the
exact solutions to both sparse signal recovery and phase retrieval are combinatorial. The results
extend the type of applications that compressive sensing can be applied to those where only
output magnitudes can be observed. We demonstrate the accuracy of the algorithms through
extensive simulation and a practical experiment.
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1. INTRODUCTION

Linear models, e.g., y = Ax, are by far the most used and
useful type of model. The main reasons for this are their
simplicity of use and identification. For the identification,
the least-squares (LS) estimate in a complex domain is
computed by 1

xls = argmin
x
‖y −Ax‖22 ∈ Cn, (1)

assuming the output y ∈ CN and A ∈ CN×n are given.
Further, the LS problem has a unique solution if the
system is full rank and not underdetermined, i.e., N ≥ n.

Consider the alternative scenario when the system is
underdetermined, i.e., n > N . The least squares solution is
no longer unique in this case, and additional knowledge has
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1 Our derivation in this paper is primarily focused on complex
signals, but the results should be easily extended to real domain
signals.

to be used to determine a unique model parameter. Ridge
regression or Tikhonov regression [Hoerl and Kennard,
1970] is one of the traditional methods to apply in this
case, which takes the form

xr = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖22, (2)

where λ > 0 is a scalar parameter that decides the trade
off between fit (the first term) and the `2-norm of x (the
second term).

Thanks to the `2-norm regularization, ridge regression is
known to pick up solutions with small energy that satisfy
the linear model. In a more recent approach stemming
from the LASSO [Tibsharani, 1996] and compressive sens-
ing (CS) [Candès et al., 2006, Donoho, 2006], another
convex regularization criterion has been widely used to
seek the sparsest parameter vector, which takes the form

x`1 = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖1. (3)

Depending on the choice of the weight parameter λ, the
program (3) has been known as the LASSO by Tibsharani
[1996], basis pursuit denoising (BPDN) by Chen et al.
[1998], or `1-minimization (`1-min) by Candès et al. [2006].
In recent years, several pioneering works have contributed
to efficiently solving sparsity minimization problems such
as Tropp [2004], Beck and Teboulle [2009], Bruckstein
et al. [2009], especially when the system parameters and
observations are in high-dimensional spaces.



In this paper, we consider a more challenging problem. We
still seek a linear model y = Ax. Rather than assuming
that y is given we will assume that only the squared
magnitude of the output is given

bi = |yi|2 = |〈x,ai〉|2, i = 1, · · · , N, (4)

whereAT = [a1, · · · ,aN ] ∈ Cn×N and yT = [y1, · · · , yN ] ∈
C1×N . This is clearly a more challenging problem since
the phase of y is lost when only the (squared) mag-
nitude is available. A classical example is that y rep-
resents the Fourier transform of x, and that only the
Fourier transform modulus is observable. This scenario
arises naturally in several practical applications such as op-
tics (Walther [1963], Millane [1990]), coherent diffraction
imaging (Fienup [1987]), astronomical imaging (Dainty
and Fienup [1987]), and is known as the phase retrieval
problem.

We note that in general phase cannot be uniquely recov-
ered regardless whether the linear model is overdetermined
or not. A simple example to see this, is if x0 ∈ Cn is a
solution to y = Ax, then for any scalar c ∈ C on the
unit circle cx0 leads to the same squared output b. As
mentioned in Candès et al. [2011a], when the dictionary A
represents the unitary discrete Fourier transform (DFT),
the ambiguities may represent time-reversed solutions or
time-shifted solutions of the ground truth signal x0. These
global ambiguities caused by losing the phase information
are considered acceptable in phase retrieval applications.
From now on, when we talk about the solution to the phase
retrieval problem, it is the solution up to a global phase.
Accordingly, a unique solution is a solution unique up to
a global phase.

Further note that since (4) is nonlinear in the unknown
x, N � n measurements are in general needed for a
unique solution. When the number of measurements N
are fewer than necessary for a unique solution, additional
assumptions are needed to select one of the solutions (just
like in Tikhonov, LASSO and CS).

Finally, we note that the exact solution to either CS and
phase retrieval is combinatorially expensive (Chen et al.
[1998], Candès et al. [2011b]). Therefore, the goal of this
work is to answer the following question: Can we effectively
recover a sparse parameter vector x of a linear system up
to a global ambiguity using its squared magnitude output
measurements via convex programming? The problem is
referred to as compressive phase retrieval (CPR).

The main contribution of the paper is a convex formulation
of the sparse phase retrieval problem. Using a lifting tech-
nique, the NP-hard problem is relaxed as a semidefinite
program. Through extensive experiments, we compare the
performance of our CPR algorithm with traditional CS
and PhaseLift algorithms. The results extend the type
of applications that compressive sensing can be applied
to, namely, applications where only magnitudes can be
observed.

1.1 Background

Our work is motivated by the `1-min problem in CS and
a recent PhaseLift technique in phase retrieval by Candès
et al. [2011b]. On one hand, the theory of CS and `1-min
has been one of the most visible research topics in recent

years. There are several comprehensive review papers
that cover the literature of CS and related optimization
techniques in linear programming. The reader is referred
to the works of Candès and Wakin [2008], Bruckstein
et al. [2009], Loris [2009], Yang et al. [2010]. On the other
hand, the fusion of phase retrieval and matrix completion
is a novel topic that has recently being studied in a
selected few papers, such as Chai et al. [2010], Candès
et al. [2011b,a]. The fusion of phase retrieval and CS was
discussed in Moravec et al. [2007]. In the rest of the section,
we briefly review the phase retrieval literature and its
recent connections with CS and matrix completion.

Phase retrieval has been a longstanding problem in optics
and x-ray crystallography since the 1970s [Kohler and
Mandel, 1973, Gonsalves, 1976]. Early methods to recover
the phase signal using Fourier transform mostly relied on
additional information about the signal, such as band lim-
itation, nonzero support, real-valuedness, and nonnegativ-
ity. The Gerchberg-Saxton algorithm was one of the pop-
ular algorithms that alternates between the Fourier and
inverse Fourier transforms to obtain the phase estimate it-
eratively [Gerchberg and Saxton, 1972, Fienup, 1982]. One
can also utilize steepest-descent methods to minimize the
squared estimation error in the Fourier domain [Fienup,
1982, Marchesini, 2007]. Common drawbacks of these it-
erative methods are that they may not converge to the
global solution, and the rate of convergence is often slow.
Alternatively, Balan et al. [2006] have studied a frame-
theoretical approach to phase retrieval, which necessarily
relied on some special types of measurements.

More recently, phase retrieval has been framed as a low-
rank matrix completion problem in Chai et al. [2010],
Candès et al. [2011a,b]. Given a system, a lifting technique
was used to approximate the linear model constraint as
a semidefinite program (SDP), which is similar to the
CPR objective function (10) only without the sparsity
constraint. The authors also derived the upper-bound for
the sampling rate that guarantees exact recovery in the
noise-free case and stable recovery in the noisy case.

We are aware of the work by Moravec et al. [2007],
which has considered compressive phase retrieval on a
random Fourier transform model. Leveraging the sparsity
constraint, the authors proved that an upper-bound of
O(k2 log(4n/k2)) random Fourier modulus measurements
to uniquely specify k-sparse signals. Moravec et al. [2007]
also proposed a compressive phase retrieval algorithm.
Their solution largely follows the development of `1-min in
CS, and it alternates between the domain of solutions that
give rise to the same squared output and the domain of an
`1-ball with a fixed `1-norm. However, the main limitation
of the algorithm is that it tries to solve a nonconvex
optimization problem which assumes the `1-norm of the
true signal is known.

2. CPR VIA SDP

In the noise free case, the phase retrieval problem takes
the form of the feasibility problem:

find x subj. to b = |Ax|2 = {aH
i xxHai}1≤i≤N , (5)

where bT = [b1, · · · , bN ] ∈ R1×N . This is a combinatorial
problem to solve: Even in the real domain with the sign



of the measurements {αi}Ni=1 ⊂ {−1, 1}, one would have
to try out combinations of sign sequences until one that
satisfies

αi

√
bi = aT

i x, i = 1, · · · , N, (6)

for some x ∈ Rn has been found. For any practical size of
data sets, this combinatorial problem is intractable.

Since (5) is nonlinear in the unknown x, N � n measure-
ments are in general needed for a unique solution. When
the number of measurements N are fewer than necessary
for a unique solution, additional assumptions are needed
to select one of the solutions. Motivated by compressive
sensing, we here choose to seek the sparsest solution of
CPR satisfying (5) or, equivalent, the solution to

min
x
‖x‖0, subj. to b = |Ax|2 = {aH

i xxHai}1≤i≤N .

(7)
As the counting norm ‖ · ‖0 is not a convex function,
following the `1-norm relaxation in CS, (7) can be relaxed
as

min
x
‖x‖1, subj. to b = |Ax|2 = {aH

i xxHai}1≤i≤N .

(8)

Note that (8) is still not a linear program, as its equality
constraint is not a linear equation. In the literature, a
lifting technique has been extensively used to reframe
problems such as (8) to a standard form in semidefinite
programming, such as in Sparse PCA [d’Aspremont et al.,
2007].

More specifically, given the ground truth signal x0 ∈ Cn,
let X0

.
= x0x

H
0 ∈ Cn×n be a rank-1 semidefinite matrix.

Then the CPR problem can be cast as 2

min
X
‖X‖1

subj. to bi = Tr(aH
i Xai), i = 1, · · · , N,

rank(X) = 1, X � 0.

(9)

This is of course still a non-convex problem due to the rank
constraint. The lifting approach addresses this issue by
replacing rank(X) with Tr(X). For a semidefinite matrix,
Tr(X) is equal to the sum of the eigenvalues of X. This
leads to an SDP

min
X

Tr(X) + λ‖X‖1
subj. to bi = Tr(ΦiX), i = 1, · · · , N,

X � 0,

(10)

where we further denote Φi
.
= aia

H
i ∈ Cn×n and where

λ > 0 is a design parameter. Finally, the estimate of x
can be found by computing the rank-1 decomposition of
X via singular value decomposition. We will refere to the
formulation (10) as compressive phase retrieval via lifting
(CPRL).

We compare (10) to a recent solution of PhaseLift by
Candès et al. [2011b]. In Candès et al. [2011b], a similar
objective function was employed for phase retrieval:

min
X

Tr(X)

subj. to bi = Tr(ΦiX), i = 1, · · · , N,
X � 0,

(11)

2 ‖X‖1 for a matrix X denotes the entry-wise `1-norm in this paper.

albeit the source signal was not assumed sparse. Using the
lifting technique to construct the SDP relaxation of the
NP-hard phase retrieval problem, with high probability,
the program (11) recovers the exact solution (sparse or
dense) if the number of measurements N is at least of the
order of O(n log n). The region of success is visualized in
Figure 1 as region I with a thick solid line.

If x is sufficiently sparse and random Fourier dictionaries
are used for sampling, Moravec et al. [2007] showed that
in general the signal is uniquely defined if the number of
squared magnitude output measurements b exceeds the
order of O(k2 log(4n/k2)). This lower bound for the region
of success of CPR is illustrated by the dash line in Figure 1.

Finally, the motivation for introducing the `1-norm regu-
larization in (10) is to be able to solve the sparse phase
retrieval problem for N smaller than what PhaseLift re-
quires. However, one will not be able to solve the compres-
sive phase retrieval problem in region III below the dashed
curve. Therefore, our target problems lie in region II.
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Fig. 1. An illustration of the regions in which PhaseLift
and CPR are capable of recovering the ground truth
solution up to a global phase ambiguity. While
PhaseLift primarily targets problems in region I,
CPRL operates primarily in region II.

3. NUMERICAL SOLUTIONS FOR NOISY DATA

In this section, we consider the case that the measure-
ments are contaminated by data noise. In a linear model,
typically bounded random noise affects the output of the
system as y = Ax+ e, where e ∈ CN is a noise term with
bounded `2-norm: ‖e‖2 ≤ ε. However, in phase retrieval,
we follow closely a more special noise model used in Candès
et al. [2011b]:

bi = |〈x,ai〉|2 + ei. (12)

This nonstandard model avoids the need to calculate the
squared magnitude output |y|2 with the added noise term.
More importantly, in practical phase retrieval applications,
measurement noise is introduced when the squared mag-
nitudes or intensities of the linear system are measured,
not on y itself (Candès et al. [2011b]).



Accordingly, we denote a linear function B of X

B : X ∈ Cn×n 7→ {Tr(ΦiX)}1≤i≤N ∈ RN (13)

that measures the noise-free squared output. Then the
approximate CPR problem with bounded `2 error model
(12) can be solved by the following SDP program:

min Tr(X) + λ‖X‖1
subj. to ‖B(X)− b‖2 ≤ ε,

X � 0.
(14)

The estimate of x, just as in noise free case, can finally
be found by computing the rank-1 decomposition of X via
singular value decomposition. We refer to the method as
approximate CPRL. Due to the machine rounding error,
in general a nonzero ε should be always assumed in the
objective (14) and its termination condition during the
optimization.

We should further discuss several numerical issues in the
implementation of the SDP program. The constrained
CPR problem (14) can be rewritten as an unconstrained
objective function:

min
X�0

Tr(X) + λ‖X‖1 +
µ

2
‖B(X)− b‖22, (15)

where λ > 0 and µ > 0 are two penalty parameters.

In (15), due to the lifting process, the rank-1 condition of
X is approximated by its trace function Tr(X). In Candès
et al. [2011b], the authors considered phase retrieval of
generic (dense) signal x. They proved that if the number
of measurements obeys N ≥ cn log n for a sufficiently large
constant c, with high probability, minimizing (15) without
the sparsity constraint (i.e., λ = 0) recovers a unique rank-
1 solution obeying X∗ = xxH .

In Section 4, we will show that using either random
Fourier dictionaries or more general random projections, in
practice, one needs much fewer measurements to exactly
recover sparse signals if the measurements are noisefree.
Nevertheless, in the presence of noise, the recovered lifted
matrix X may not be exactly rank-1. In this case, one can
simply use its rank-1 approximation corresponding to the
largest singular value of X.

We also note that in (15), there are two main parameters
λ and µ that can be defined by the user. Typically µ
is chosen depending on the level of noise that affects
the measurements b. For λ associated with the sparsity
penalty ‖X‖1, one can adopt a warm start strategy to
determine its value iteratively. The strategy has been
widely used in other sparse optimization, such as in `1-min
[Yang et al., 2010]. More specifically, the objective is solved
iteratively with respect to a sequence of monotonically
decreasing λ → 0, and each iteration is initialized using
the optimization results from the previous iteration. When
λ is large, the sparsity constraint outweighs the trace
constraint and the estimation error constraint, and vice
versa.

Example 3.1. (Compressive Phase Retrieval). In this ex-
ample, we illustrate a simple CPR example, where a 2-
sparse complex signal x0 ∈ C64 is first transformed by
the Fourier transform F ∈ C64×64 followed by random
projections R ∈ C32×64:

b = |RFx0|2. (16)

Given b, F , and R, we first apply the PhaseLift algorithm
[Candès et al., 2011b] with A = RF to the 32 squared
observations b. The recovered dense signal is shown in
Figure 2. PhaseLift fails to identify the 2-sparse signal.

Next, we apply CPRL (14), and the recovered sparse signal
is also shown in Figure 2. CPRL correctly identifies the two
nonzero elements in x.
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Fig. 2. The magnitude of the estimated signal provided by
CPRL and PhaseLift (PL). CPRL correctly identifies
elements 2 and 24 to be nonzero while PhaseLift
provides a dense estimate. It is also verified that the
estimate from CPRL, after a global phase shift, is
approximately equal the true x0.

4. EXPERIMENT

This section gives a number of examples. Code for the
numerical illustrations can be downloaded from http://
www.rt.isy.liu.se/~ohlsson/code.html.

4.1 Simulation

First, we repeat the simulation given in Example 3.1 for
k = 1, . . . , 5. For each k, n = 64 is fixed, and we increase
the measurement dimension N until CPRL recovered the
true sparse support in at least 95 out of 100 trials, i.e.,
95% success rate. New data (x, b, and R) are generated
in each trial. The curve of 95% success rate is shown in
Figure 3.

With the same simulation setup, we compare the accu-
racy of CPRL with the PhaseLift approach and the CS
approach in Figure 3. First, note that CS is not applicable
to phase retrieval problems in practice, since it assumes
the phase of the observation is also given. Nevertheless, the
simulation shows CPRL via the SDP solution only requires
a slightly higher sampling rate to achieve the same success
rate as CS, even when the phase of the output is missing.
Second, similar to the discussion in Example 3.1, without
enforcing the sparsity constraint in (11), PhaseLift would
fail to recover correct sparse signals in the low sampling
rate regime.

It is also interesting to see the performance as n and
N vary and k held fixed. We therefore use the same
setup as in Figure 3 but now fixed k = 2 and for n =
10, . . . , 60, gradually increased N until CPRL recovered
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Fig. 3. The curves of 95% success rate for CPRL,
PhaseLift, and CS. Note that the CS simulation is
given the complete output y instead of its squared
magnitudes.

the true sparsity pattern with 95% success rate. The same
procedure is repeated to evaluate PhaseLift and CS. The
results are shown in Figure 4.
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Fig. 4. The curves of 95% success rate for CPRL,
PhaseLift, and CS. Note that the CS simulation is
given the complete output y instead of its squared
magnitudes.

Compared to Figure 3, we can see that the degradation
from CS to CPRL when the phase information is omitted
is largely affected by the sparsity of the signal. More
specifically, when the sparsity k is fixed, even when the
dimension n of the signal increases dramatically, the num-
ber of squared observations to achieve accurate recovery
does not increase significantly for both CS and CPRL.

4.2 CPRL Applied to Audio Signals

In this section, we further demonstrate the performance
of CPRL using signals from a real-world audio recording.
The timbre of a particular note on an instrument is
determined by the fundamental frequency, and several
overtones. In a Fourier basis, such a signal is sparse, being
the summation of a few sine waves. Using the recording
of a single note on an instrument will give us a naturally
sparse signal, as opposed to synthesized sparse signals in
the previous sections. Also, this experiment will let us
analyze how robust our algorithm is in practical situations,

where effects like room ambience might color our otherwise
exactly sparse signal with noise.

Our recording z ∈ Rs is a real signal, which is assumed
to be sparse in a Fourier basis. That is, for some sparse
x ∈ Cn, we have z = Finvx, where Finv ∈ Cs×n is a matrix
representing a transform from Fourier coefficients into the
time domain. Then, we have a randomly generated mixing
matrix with normalized rows, R ∈ RN×s, with which our
measurements are sampled in the time domain:

y = Rz = RFinvx. (17)

Finally, we are only given the magnitudes of our measure-
ments, such that b = |y|2 = |Rz|2.

For our experiment, we choose a signal with s = 32
samples, N = 30 measurements, and it is represented
with n = 2s (overcomplete) Fourier coefficients. Also, to
generate Finv, the Cn×n matrix representing the Fourier
transform is generated, and s rows from this matrix are
randomly chosen.

The experiment uses part of an audio file recording the
sound of a tenor saxophone. The signal is cropped so that
the signal only consists of a single sustained note, without
silence. Using CPRL to recover the original audio signal
given b, R, and Finv, the algorithm gives us a sparse
estimate x, which allows us to calculate zest = Finvx.
We observe that all the elements of zest have phases that
are π apart, allowing for one global rotation to make zest

purely real. This matches our previous statements that
CPRL will allow us to retrieve the signal up to a global
phase.

We also find that the algorithm is able to achieve results
that capture the trend of the signal using less than s
measurements. In order to fully exploit the benefits of
CPRL that allow us to achieve more precise estimates with
smaller errors using fewer measurements relative to s, the
problem should be formulated in a much higher ambient
dimension. However, using the CVX Matlab toolbox by
Grant and Boyd [2010], we already ran into computational
and memory limitations with the current implementation
of the CPRL algorithm. These results highlight the need
for a more efficient numerical implementation of CPRL.
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Fig. 5. The retrieved signal zest using CPRL versus the
original audio signal z.
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Fig. 6. The magnitude of x retrieved using CPRL. The
audio signal zest is obtained by zest = Finvx.

5. CONCLUSION AND DISCUSSION

A novel method for the compressive phase retrieval prob-
lem has been presented. The method takes the form of
an SDP problem and provides the means to use compres-
sive sensing in applications where only squared magnitude
measurements are available. The convex formulation gives
it an edge over previous presented approaches and numer-
ical illustrations show state of the art performance.

One of the future directions is improving the speed of
the standard SDP solver, i.e., interior-point methods, cur-
rently used for the CPRL algorithm. Some preliminary re-
sults along with a more extensive study of the performance
bounds of CPRL are available in Ohlsson et al. [2011].
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