Distributed Change Detection *

Henrik Ohlsson *** Tianshi Chen *
Sina Khoshfetrat Pakazad * Lennart Ljung*
S. Shankar Sastry **

* Division of Automatic Control, Department of Electrical Engineering,
Linképing University, Sweden, e-mail: ohlsson@isy.liu.se.
** Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, CA, USA.

Abstract: Change detection has traditionally been seen as a centralized problem. Many
change detection problems are however distributed in nature and the need for distributed
change detection algorithms is therefore significant. In this paper a distributed change detection
algorithm is proposed. The change detection problem is first formulated as a convex optimization
problem and then solved distributively with the alternating direction method of multipliers
(ADMM). To further reduce the computational burden on each sensor, a homotopy solution
is also derived. The proposed method have interesting connections with Lasso and compressed
sensing and the theory developed for these methods are therefore directly applicable.

1. INTRODUCTION

The change detection problem is often thought of as a cen-
tralized problem. Many scenarios are however distributed
and lack a central node or require a distributed processing.
A practical example is a sensor network. It may be vulnera-
ble to select one of the sensors as a central node. Moreover,
it may be preferable if the sensor failing can be detected
in a distributed manner. Another practical example is the
monitoring of a fleet of agents (airplanes/UAVs/robots) of
the same type, see e.g., Chu et al. [2011]. The problem is
how to detect if one or more agents start deviating from
the rest. Theoretically, this can be done straightforwardly
in a centralized manner. The centralized solution, however,
poses many difficulties in practice. For instance, the com-
munication between the central monitor to the agents and
the computation capacity and speed of the central monitor
is highly demanding due to a large number of agents in the
fleet and/or the extremely large data sets to be processed,
Chu et al. [2011]. Therefore, it is desirable to deal with the
change detection problem in a distributed way.

In a distributed setting, there will be no central node. Each
sensor or agent makes use of measurements from itself and
the other sensors or agents to detect if it has failed or
not. To tackle the problem, we first formulate the change
detection problem as a convex optimization problem. We
then solve the problem in a distributed manner using
the so-called alternating direction method of multipliers
(ADMM, see for instance Boyd et al. [2011]). The opti-
mization problem turns out to have connections with the
Lasso [Tibsharani, 1996] and compressive sensing [Candes
et al., 2006, Donoho, 2006] and the theory developed for

* Ohlsson, Chen and Ljung are partially supported by the Swedish
Research Council in the Linnaeus center CADICS and by the Euro-
pean Research Council under the advanced grant LEARN, contract
267381. Ohlsson is also supported by a postdoctoral grant from the
Sweden-America Foundation, donated by ASEA’s Fellowship Fund,
and by a postdoctoral grant from the Swedish Research Council.

these methods are therefore applicable. To further reduce
the computational burden on each sensor, a homotopy
solution (see e.g., Garrigues and El Ghaoui [2008]) is also
studied. Finally, we show the effectiveness of the proposed
method by a numerical example.

2. PROBLEM FORMULATION

The basic idea of the proposed method is to use system
identification, in a distributed manner, to obtain a nominal
model for the sensors or agents and then detect whether
one or more sensors or agents start deviating from this
nominal model.

To set up the notation, assume that we are given a sensor
network consisting of N sensors. Denote the measurement
from sensor 7 at time ¢ by y;(¢t) and assume that there is
a linear relation of the form

yi(t) =] ()0 + ei(t), (1)
describing the relation between the measurable quantity
yi(t) € R™ and known quantity o7 (t) € R™*™. We will
call # € R™ the state. The state is related to the sensor
reading through ¢;(t). e;(t) € R™ is the measurement
noise and assumed to be white Gaussian distributed with
zero mean and variance o?. Moreover, e;(t) is assumed
independent of that of e;(t), for all ¢ = 1,...,N and
j=1,...,i—1,2+1,...,N. At time ¢ it is assumed that
sensor ¢ obtains y;(¢) and knows ¢;(t).

The problem is now, in a distributed manner, to detect a
failing sensor. That is, detect if the relation (1) is no longer
valid.

Remark 2.1. (Time varying state). A dynamical equation
or a random walk type of description for the state 6 can
be incorporated. This is straightforward but for the sake
of clarity and due to page limitations, this is not shown
here. Actually, the only restriction is that § does not vary
over sensors (that is, not dependent on 7).

Remark 2.2. (Partially observed state). Note that (1) does
not imply that the sensors need to measure all elements of
6. Some sensors can observe some parts and other sensors
other parts.

Remark 2.3. (Time-varying network topology). That sen-
sors are added and taken away from the network is a very
realistic scenario. We will assume that N is the maximum
number of sensors in the network and set ¢;(t) = 0 if
sensor ¢ is not present at time t.

Remark 2.4. (Multidimensional y;(t)). For notational sim-
plicity, from now on, we have chosen to let y;(t) € R. How-
ever, the extension to multidimensional y;(¢) is straightfor-
ward.

Remark 2.5. (Distributed system identification). The pro-
posed algorithm could also be seen as a robust distributed
system identification scheme. The algorithm computes, in
a distributed manner, a nominal model using observations
from several systems and is robust to systems deviating
from the majority.

A straightforward way to solve the distributed change

detection problem as posted here would be to

(1) locally, at each sensor, estimate 0

) broadcast the estimates and the error covariances

) at each sensor, fuse the estimates

) at each sensor, use a likelihood ratio test to detect
a failing sensor (see e.g., Willsky and Jones [1976],
Willsky [1976])

This method will work fine as long as the number of

measurements available at each sensor well exceeds m. Let

us say that {(yi(t), ¢i(t))}{_p_1, 1 is available at sensor 4,

i=1,...,N.Itis hence required that T1,T5, ..., Ty > m.

If m > T, for some i = 1,..., N, the method will however

fail. That m > T; for some i = 1,..., N, is a very realistic

scenario. T; may for example be very small if new sensors

may be added to the network at any time. The case

T1,Ts,...,Tn > m was previously discussed in Chu et al.

[2011].

Remark 2.6. (Sending all data). One may also consider to

broadcast data and solve the full problem on each sen-

sor. Sending all data available at time T may however

be too much. Sensor ¢ would then have to broadcast

{(yi(t), @i(t))}tT:T—TiH-
3. BACKGROUND

Change detection has a long history (see e.g., Gustafsson
[2001], Patton et al. [1989], Basseville and Nikiforov [1993]
and references therein) but has traditionally been seen as
a centralized problem. The literature on distributed or
decentralized change detection is therefore rather small
and only standard methods such as CUSUM and general-
ized likelihood ration (GLR) test have been discussed and
extended to distributive scenarios (see e.g., Tartakovsky
and Veeravalli [2002, 2003]). The method proposed here
has certainly a strong connection to GLR (see for instance
Ohlsson et al. [2012]) and an extensive comparison is seen
as future work.

The change detection algorithm proposed has also connec-
tions to compressive sensing and ¢;-minimization. There
are several comprehensive review papers that cover the
literature of compressive sensing and related optimization

techniques in linear programming. The reader is referred
to the works of Candes and Wakin [2008], Bruckstein et al.
[2009], Loris [2009], Yang et al. [2010].

4. PROPOSED METHOD —~ BATCH SOLUTION

Assume that the data set {(yi(t), 0i(t))}—p_r, 41 is avail-
able at sensor 4, ¢ = 1,...,N. Since (1) is assumed to
hold for a functioning sensors, we would like to detect a
failing sensor by checking if its likelihood falls below some
threshold. What complicates the problem is that:

e 0 is unknown,

e m >T; forsomei=1,..., N, typically.
We first solve the problem in a centralized setting.

4.1 Centralized Solution

Introduce 6; for the state of sensor ¢,7 = 1,..., N. Assume
that we know that k sensors have failed. The maximum
likelihood (ML) solution for 6;, i = 1,..., N (taking into
account that N — k sensors have the same state) can then
be computed by

N T
. (+) _ T 12
amin > 3) - ol (612 (2)

..... i=1t=T—-T;+1
subj.to || (116 — Ol 162 — Ol - 185 — 6ll,] ||, = &,
(2b)

with || - ||, being the p-norm, p > 1, and || - ||,2 defined
as || - /oi||l2. The k failing sensors could now be identified
as the sensors for which ||6; — 0||, # 0. It follows from

basic optimization theory (see for instance Boyd and
Vandenberghe [2004]) that there exists a A > 0 such that

N T

SO It - TR

i=1t=T—T;+1

X[16 =01l 112 =0l ... 165 = 0lp] [, (3)
gives exactly the same estimate for 61,...,0x,0, as (2).

However, both (2) and (3) are non-convex and combinato-
rial, and in practice unsolvable.

min
01,...,0n,0

What makes (3) non-convex is the second term. It has
recently become popular to approximate the zero-norm by
its convex envelope. That is, to replace the zero-norm by
the one-norm. This is in line with the reasoning behind
Lasso [Tibsharani, 1996] and compressed sensing [Candes
et al., 2006, Donoho, 2006]. Relaxing the zero-norm by
replacing it with the one-norm leads to the convex criteria

N T N
R D DI D ORI W 1
e i=1t=T—T;+1 i=1
0 should be interpreted as the nominal model. Most sensg%g
will have data that can be explained by the nominal model
0 and the criterion (4) will therefore give 6; = 6 for most
1’s. However, failing sensors will generate a data sequence
that could not have been generated by the nominal model
represented by 6 and for these sensors, (4) will give 6; # 0.

In (4), X regulates the trade off between miss fit to the
observations and the deviation from the nominal model 6.
In practice, a large A will make us less sensitive to noise
but may also imply that we miss to detect a deviating

sensor. However, a too small A may in a noisy environment
generate false alarms. A\ should be seen as an application
dependent design parameter. The estimates of (2) and (3)
are indifferent to the choice of p. The estimate of (4) is
not, however. In general, p = 1 is a good choice if one
is interested in detecting changes in individual elements of
sensors’ or agents’ states. If one only cares about detecting
if a sensor or agent is failing, p > 1 is a better choice.

What is remarkable is that under some conditions on ¢; (%)
and the number of failures, the criterion (4) will work
exactly as good as (2). That is, (4) and (2) will pick out ex-
actly the same sensors as failing sensors. To examine when
this happens theory developed in compressive sensing can
be used. This is not discussed here but is a good future
research direction.

4.2 Distributed Solution
Let us now apply ADMM (see e.g., Boyd et al. [2011],

[Bertsekas and Tsitsiklis, 1997, Sec. 3.4]) to solve the
identification problem in a distributed manner. First let

yi(T —Ti + 1) o (T —T;+1)
yi(T —T; +2) o (T —T; + 2)
yi(T) ¢i (T)

The optimization problem (4) can then be written as

Y; — ®,0;|2 ;

Lo Z ¥ = @2 + N — llp, (60)
subj. to 19179*O, i=1,...,N. (6Db)

Let 27 = [6] ...0y 9] ...95], and let

vT= [vl vy VN] be the Lagrange multiplier vector

and v; be the Lagrange multiplier associated with the ith
constraint ¢; — 6 = 0, ¢ = 1,...,N. So the augmented
Lagrangian takes the following form

N
Ly(O,2,v) =Y |IYi = @022 + Alds = 05, (Ta)
i=1
+ul (9 = 0) + (p/2)|10; — 0]>. (7b)
ADMM consists of the following update rules
2" = argmin L, (6%, z, V") (8a)
N
O = (1/N) Y (05 + (1)) (8b)
i=1
UL = uF 4 p(9F Tt —) fori=1,...,N. (8c)
Remark 4.1. Tt should be noted that given 6 v*. the

criterion L, (0%, z, /) in (8a) is separable in terms of the
pairs ¥;,0;, i = 1,..., N. Therefore, the optimization can
be done separately, for each i, as

95t 05T = argmin [|Y; — ®:6;]|25 + Allds — 65,
9,.0: i
+ W)W = 0%) + (p/2) |19 — 0% (9)
Remark 4.2. (Boyd et al. [2011]). It is interesting to note
that no matter what v! is

N

k _
E v =
i=1

k> 2. (10)

To show (10), first note that

N N N
Zz/f"’l = ny + pZﬁfH — NpgF+t,
i=1 i=1 i=1

Inserting #¥*1 into the above equation yields (10). So
without loss of generality, further assume
N
Z vl =0.
i=1
Then the update on 6 reduces to

1/N Z,lngrl

kE>1. (11)

(12)

9k+1

k> 1. (13)

As a result, in order to implement the ADMM in a
distributed manner each sensor or system ¢ should follow
the steps below.

(1) Initialization: set 6%, 1} and p.
(2) OFFL or = argming, . L,(0%, 2, v%).
(3) Broadcast 9¥*! to the other systems (sensors), j =
1,...,t—1,¢4+1,...,N.
N ok
(4) it = (1/N) >y Uy
(5) v = 4 (07— g,
(6) If not converged, set k = k + 1 and return to step 2.
To show that ADMM gives:
e 0F —9k 5 0ask —o00,i=1,...,N.
o« SV = @052, + NI}
the optimal objective of (4).

it is sufficient to show that the Lagrangian (Lo (0, z,v), the
augmented Lagrangian evaluated at p = 0) has a saddle
point according to [Boyd et al., 2011, Sect. 3.2.1] (since the
objective consists of closed, proper and convex functions).
Let 0*,2* denote the solution of (4). It is easy to show
that 6*,2* and v = 0 is a saddle point. Since Ly(0, z,0) is
convex,

— 0%, — p*, where p* is

Lo(07,27,0) < Lo(0,2,0) VO,x (14)
and since Lo(60*,z*,0) = Lo(0*,2*,v), Vv, 0%, 2" and v =
0 must be a saddle point. ADMM hence converges to the
solution of (4) in the sense listed above.

5. PROPOSED METHOD —~ RECURSIVE SOLUTION

To apply the above batch method to a scenario where we
continuously get new measurements, we propose to re-run
the batch algorithm every Tth sample time:

(1) Initialize by running the batch algorithm proposed in
the previous section on the data available.

(2) Every Tth time-step, re-run the batch algorithm
using the sT, s € N, last data. Initialize the ADMM
iterations using the estimates of # and v from the
previous run. Considering the fact that faults occur
rarely over time, the optimal solution for different
data batches are often similar. As a result, by using
the estimates of # and v from the previous run for
initializing the ADMM algorithm can speed up the
convergence of the ADMM algorithm considerably.

To add T new observation pairs, one could possibly use
an extended version of the homotopy algorithm proposed
by Garrigues and El Ghaoui [2008]. The homotopy algo-
rithm presented in Garrigues and El Ghaoui [2008] was
developed for including new observations in Lasso.

The ADMM algorithm presented in the previous section
could also be altered to use single data samples upon
arrival. In such a setup, instead of waiting for a collection
or batch of measurements, the algorithm is updated upon
arrival of new measurements. This can be done by studying
the augmented Lagrangian of the problem. The augmented
Lagrangian in (7) can also be written in normalized form
as

N
Ly(0,2,7) =Y |[Vi — ®ib[|22 + A0 — 0,
i=1
+Hp/2N10: — (0 —) |I* = (p/2)l|mll*, (15)
where 7; = v/p. Hence, for p = 2, the update in (9) can
be achieved by solving the following convex optimization
problem, which can be written as a Second Order Cone
Programming (SOCP) problem, [Boyd and Vandenberghe,
2004],
min. 07 H;0; — 207 hi + (p/2)9]9; — pO] h¥ 4 As
subj.to [0 — %]l < s (16)
where the following data matrices describe this optimiza-
tion problem

H;=®]®;/0?, h; =®]Y;/o?, hF =0~ —0F. (17)
As can be seen from (17), among these matrices only H;
and h; are the ones that are affected by the new measure-
ments. Let y** and ¢} denote the new measurements.
Then H; and h; can be updated as follows
Hi « H; + @} 0T 07, hi hi + @}y o}
(18)
To handle single data samples upon arrival, step 2 of the
ADMM algorithm should therefore be altered to:

(2) If there exits any new measurements, update H; and

h; according to (18). Find 9%, §¥ by solving (16).
Remark 5.1. In order for this algorithm to be responsive
to the arrival of the new measurements, it is required to
have network-wide persistent communication. As a result
this approach demands much higher communication traffic
than the batch solution.

6. IMPLEMENTATION ISSUES

Step 2 of ADMM requires solving the optimization prob-
lem
(19)

This problem is solved locally on each sensor once every
ADMM iteration. What varies from one iteration to the
next are the values for the arguments #* and v*. However,
it is unlikely that 6% and v* differ significantly from
g%+ and v**1. To take use of this fact can considerably
ease the computational load on each sensor. We present
two methods for doing this, warm start and a homotopy
method.

min Lp(ﬁk,;myk').
x

The following two subsections are rather technical and
we refer the reader not interested in implementing the
proposed algorithm to Section 7.

6.1 Warm Start for Step 2 of the ADMM Algorithm

For the case where p = 2, at each iteration of the ADMM,
we have to solve an SOCP problem, which is described

in (16) and (17). However, in the batch solution, among
the matrices in (17), only h¥ changes with the iteration
number. Therefore, if we assume that the vectors % and
vF do not change drastically from iteration to iteration, it
is possible to use the solution for the problem in (16) at the
kth iteration to warm start the problem at the (k + 1)th
iteration. This is done as follows.

The Lagrangian for the problem in (16) can be written as
L(95, 91,5, 2) = 0] Hibi — 207 hi + (p/2)9]9; — pO] b

e (])

for all ||z;2|| < 2z;1. By this, the optimality conditions for
the problem in (16), can be written as

(20)

2H;0; —2h; — 2o =0 (21a)
pi — pﬁf + 20 =0 (21b)
A—2z1=0 (21¢)
[zi2]l < 2i1 (21d)
16; — 9] < s (21e)
215+ 25(0; — 0;) = 0. (21f)

where z; = ?j [Boyd and Vandenberghe, 2004]. Let 67,
(2

97, t* and 2] be the primal and dual optimums for the
problem in (16) at the kth iteration and let Af ™' = ¥ 4
Ah;. These can be used to generate a good warm start
point for the solver that solves (16). As a result, by (21)
the following vectors can be used to warm start the solver

0 =0;
9 =97 + Ah; (22)
z’ =z}
sV =s"4+ As
where As should be chosen such that
107 — 9| < s+ As
(23)

S(s" + As) + 28T (00 —0F) =

for some p > 0.

6.2 A Homotopy Algorithm

Since it is unlikely that #* and v* differ significantly
from #**t1 and v**1, one can use the previously computed
solution z* and through a homotopy update the solution
instead of resolving (19) from scratch every iteration. We
will in the following assume that p = 1 and leave the details
for p > 1.

First, define
0 =v9; — 0;.
The optimization objective of (9) is then
95 (05,6:) 2I1Y; = @i0:22 + Mdill + ()T (8 + 0; — 6%)

+(p/2)16: + 0; — 071 (25)
It is then straightforward to show that the optimization
problem (9) is equivalent to

(24)

OF T, 65T = argmin g (6;, 6;). (26)
0i,0;
Moreover,
P = gL 4 gkt (27)

Now, compute the subdifferential of ¢;(6;,d;) w.r.t. 6; and
d;. Simple calculations show that

99,95 (0:,6:) =Vo,95 (0;,6;) = =2/ ®;
+2/0207] @ + (V)" + p(6; + 6 — 0°)7, (282)
D5, 9%(0,05) =20|63]|1 + (WE)T + p(0; + 0; — 0%)T. (28D)

A necessary condition for the global optimal solution
OF 1 SFFL of the optimization problem (9) is

0€ Do, gF (077,677, (29a)
0 € 05, 9% (051,601 (29b)
It follows from (28a) and (29a) that
07 =R (hi— v /2= (p/2) (8 = 0%)) (30)
where we have let
R; = ®]®;/07 + (p/2)1, hi = ®]Y, /o7 (31)

With (30), the problem now reduces to how to solve (29b).
Inserting (30) into (28b), and Q; £ I — (p/2)R; !, yields

05,95 (05T, 6,)=N0|6]|1 + ph{ Ry "+(vf — po* + pd;) T Q;

Now, replace 6% with 0% +tA0*T! and vF with vF+tAvk+L,
Let

GE(t) = A||6illx + phi R + (vf — p0" + p6;) T Qs

+t(AVFTE — pAGFTHTQ;. (32)

D5, 9F (081 65:) hence equals G¥(0). Let
6¥(t) = argming, G¥(t). It follows that

St =67(0), 671 =0r(1) (33)

Assume now that 5;“'1 has been computed and that the
elements have been arranged such that the g first elements
are nonzero and the last m — ¢ zero. Let us write

9
54 (0) = [56] .
We then have that (both the sign and | - | taken element-
wise)

9)167 ()l = [sign(6})" o],
Hence, that 0 € G¥(0) is equivalent with

Asign(6;) " + phi Byt + (vf — pf* + pof) T Qs = 0

M 4 phI R7Y + (vF — pb* + p6F)T Qi = 0

(34)

veR™ v < 1. (35)

(36a)

, (36Db)
with

R'=[R'R'Y,R'eR™ R e R™™ 4, (37)

Q=1[QQ], Qe R™1,QeR™™ 1. (38)

It can be shown that the partition (34) or the support
of §¥(t) will stay unchanged for t € [0t*), t* > 0 (see
Lemma 1 of Garrigues and El Ghaoui [2008]). It hence
follows that for ¢ € [0¢*]

0F (6)T=—(sign(8)T/p+h] R 1)Q; (6" — vf/p)TQQ™
(AP — Avf) TQQT (39)

where we introduced Q for the ¢ x ¢ matrix made up of
the top ¢ rows of Q. We can also compute

v ()X = —phl R ' + (p0% — vF — po¥ ()T Q:

+ t(pA@k — AVf)TQi
= —phl Ry '+ (p8* —v)TQ; — p(3(1))T Qs
+ t(pAG* — AUFYTQ;

= —ph{ R+ (p0" = vE)TQi = p(57(0))T Qs
+t(pA0" — AV)T(Qi — QQT'Qy)
where Q; was used to denote the top ¢ rows of Ql Now to
find t*, we notice that both §%(¢) and v are linear functions
of t. We can hence compute the minimal ¢ that:
e Make one or more elements of v equal to —1 or 1
or/and -
e make one or more elements of §¥(¢) equal to 0.
This minimal ¢ will be t*. At ¢* the partition (34) changes:
e Elements corresponding to v-elements equal to —1 or
1 should be included in §¥.
e Elements of 6¥(¢) equal to 0 should be fixed to zero.

Given the solution §%(¢*), we can now continue in a similar
way as above to compute 65(t), t € [t*,+**]. The procedure
continues until §¥(1) has been computed. Due to space
limitations we have chosen to not give a summary of
the algorithm. We instead refer the interested reader to
download the implementation available from http://www.
rt.isy.liu.se/~ohlsson/code.html.

7. NUMERICAL ILLUSTRATION

For the numerical illustration, we consider a network of
N = 10 sensors with #; = 05 = --- = 6o being random
samples from N(0,I) € R?°. We assume that there
exist 10 batches of measurements, each consisting of 15
samples. The regressors were unit Gaussian noise and the
measurement noise variance was set to one. In the scenario
considered in this section, we simulate failures in sensors
2 and 5, upon the arrival of the 4th and 6th measurement
batches, respectively. This is done by changing the 5th
component of 65 by multiplying it by 5 and changing the
8th component of 65 by shifting (adding) it by 5. It is
assumed that the faults are persistent.

With A = p = 20 both the centralized, the ADMM and
the ADMM with homotopy give identical results (up to the
2nd digit, 10 iterations were used in ADMM). As can be
seen from Figures 1-3 the result correctly detected that the
2nd and 5th sensors are faulty. In addition as can be seen
from Figures 2 and 3, ADMM and ADMM with homotopy
show that for how many data batches the sensors remained
faulty. Also the results detect which elements from 6, and
05 deviated from the nominal value. In this example (using
the ADMM algorithm), each sensor had to broadcast
m x ADMM iterations x number of batches = 20 x 10 x
10 = 2000 scalar values. If instead all data would have
been shared, each sensor would have to broadcast (m +
1) x T' x number of batches = (20 + 1) x 15 x 10 = 3150
scalar values. Using proposed algorithm, the traffic over
the network can hence be made considerably lower while
keeping the performance of a centralized change detection
algorithm. Using the Homotopy algorithm (or warm start)
to solve step 2 of the ADMM algorithm will not affect the
traffic over the network, but could lower the computational
burden on the sensors. It is also worth noting that the

2
II

1166,

0 & &
0 2 4 6 8 10
Sensor No.

Fig. 1. Results from the centralized change detection. As
can be seen sensors 2 and 5 are detected to be faulty.

0 & & & &
0 4 6 8 10
Sensor No.

Fig. 2. Results from the ADMM batch solution. Sensors 2
and 5 have been detected faulty for 6 and 4 batches.

o

0 rY =2 &
0 4 6
Sensor No.

@
>

Fig. 3. Results from the Homotopy solution. Sensors 2 and
5 have been detected faulty for 6 and 4 batches.

classical approach using likelihood ration test, as described
in Section 3, would not work on this example since 20 =
m >T =15.

8. CONCLUSION

This paper has presented a distributed change detection
algorithm. Change detection is most often seen as a cen-
tralized problem. As many scenarios are naturally dis-
tributed, there is a need for distributed change detection
algorithms. The basic idea of the proposed distributed
change detection algorithm is to use system identification,
in a distributed manner, to obtain a nominal model for
the sensors or agents and then detect whether one or

more sensors or agents start deviating from this nominal
model. The proposed formulation takes the form of a
convex optimization problem. We show how this can be
solved distributively and present a homotopy algorithm to
easy the computational load. The proposed formulation
has connections with Lasso and compressed sensing and
theory developed for these methods are therefore directly
applicable.

REFERENCES

M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes
— Theory and Application. Prentice-Hall, Englewood Cliffs, NJ,
1993.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

S. Boyd and L. Vandenberghe. Conver Optimization. Cambridge
University Press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine
Learning, 2011.

A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions
of systems of equations to sparse modeling of signals and images.
SIAM Review, 51(1):34-81, 2009.

E. J. Candés and M. B. Wakin. An introduction to compressive
sampling. Signal Processing Magazine, IEEE, 25(2):21-30, March
2008.

E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on Information Theory, 52:489—
509, February 2006.

E. Chu, D. Gorinevsky, and S. Boyd. Scalable statistical monitoring
of fleet data. In Proceedings of the 18th IFAC World Congress,
pages 13227-13232, Milan, Italy, August 2011.

. L. Donoho. Compressed sensing. IEEE Transactions on Infor-
mation Theory, 52(4):1289-1306, April 2006.

P. Garrigues and L. El Ghaoui. An homotopy algorithm for the
lasso with online observations. In Proceedings of the 22nd Annual
Conference on Neural Information Processing Systems (NIPS),
2008.

F. Gustafsson. Adaptive Filtering and Change Detection. Wiley,
New York, 2001.

I. Loris. On the performance of algorithms for the minimization of
£1-penalized functionals. Inverse Problems, 25:1-16, 2009.

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. Smoothed state
estimates under abrupt changes using sum-of-norms regulariza-
tion. Automatica, 48(4):595-605, 2012.

R. Patton, P. Frank, and R. Clark. Fault Diagnosis in Dynamic
Systems — Theory and Application. Prentice Hall, 1989.

A. Tartakovsky and V. Veeravalli. Quickest change detection in
distributed sensor systems. In Proceedings of the 6th Interna-
tional Conference on Information Fusion, pages 756—763, Cairns,
Australia, July 2003.

A.G. Tartakovsky and V.V. Veeravalli. An efficient sequential
procedure for detecting changes in multichannel and distributed
systems. In Proceedings of the Fifth International Conference on
Information Fusion, pages 41-48, 2002.

R. Tibsharani. Regression shrinkage and selection via the lasso.
Journal of Royal Statistical Society B (Methodological), 58(1):
267-288, 1996.

A. Willsky. A survey of design methods for failure detection in
dynamic systems. Automatica, 12:601-611, 1976.

A. Willsky and H. Jones. A generalized likelihood ratio approach
to the detection and estimation of jumps in linear systems.
IEEE Transactions on Automatic Control, 21(1):108-112, Febru-
ary 1976.

A. Yang, A. Ganesh, Y. Ma, and S. Sastry. Fast £;-minimization
algorithms and an application in robust face recognition: A review.
In ICIP, 2010.

