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Abstract— In this paper, we develop a novel mechanism for
reducing volatility of residential demand for electricity. We
construct a reward-based (rebate) mechanism that provides
consumers with incentives to shift their demand to off-peak
time. In contrast to most other mechanisms proposed in the
literature, the key feature of our mechanism is its modest
requirements on user preferences, i.e., it does not require
information of user responsiveness about shifting their demand
from the peak to off-peak time. Specifically, our mechanism
utilizes a probabilistic reward structure for users who shift
their demand to the off-peak time, and is robust to incomplete
information about user demand and/or risk preferences. We
approach the problem from the public good perspective, and
demonstrate that the mechanism can be implemented via
lottery-like schemes. Our mechanism permits to reduce the
distribution losses, and thus improve efficiency of electricity
distribution. Finally, the mechanism can be readily incorporated
into the emerging demand response schemes (e.g., the time-of-
day pricing, and critical peak pricing schemes), and has security
and privacy-preserving properties.

I. I NTRODUCTION

In recent years,demand response (DR) in smart gird
infrastructures has emerged as an important topic of research.
These schemes aim to control/flatten the aggregate demand
curves by shifting the users’ consumption times to improve
efficiency. For e.g., time-of-day variations of residential
demand for electricity posit a considerable problem for
stability and efficiency of electric grid. Indeed, higher volatil-
ity of user demand results in higher average distributor’s
expenses on network maintenance and electricity provision
which creates upward pressure on retail prices. Altogether,
these reasons have resulted in a considerable interest in
mechanisms for reducing demand volatility. The ongoing
deployments of Advanced metering infrastructures (AMI)
and Smart Utility Networks (SUN) present new opportunities
for the deployment of DR schemes.

Real-time pricing may sound as an attractive theoretical
choice for DR via AMI/SUN. However, numerous com-
plications arise in any practical implementation of real-
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time pricing. Firstly, various studies on risk preferencesof
users indicate that they prefer flat-rate prices, and are even
willing to pay a premium to avoid being charged a non-flat
price for their electricity consumption. Moreover, residential
users show low responsiveness to price signals. Secondly,
the communication of disaggregated user demand data to a
distribution utility (distributor) may cause substantialprivacy
concerns. The bi-directional real-time communication be-
tween the distributor and the users also introduces numerous
insecurities [1]. For e.g., the demand data from AMIs to
the distributor could be falsified, corrupted, or suppressed.
Even when the actual demand data reaches the distributor
uncorrupted, the pricing information could be maliciously
altered (e.g., by fraudulent users). Systematic exploitation of
such insecurities could even induce network instability [8].

Yet, with increasing wholesale price(s), and predictions of
further price escalation, distributors are experimentingwith
tiered pricing schemes. Essentially, the distributors’ consid-
erations about DR schemes in smart infrastructures include
the following trade-off: On one hand, in order to increase
the efficiency of electricity provision, user prices should
reflect the scarcity of electricity. On the other hand, fairness,
privacy and security considerations limit the usability and
attractiveness of real-time pricing for retail electricity.

In this paper, we develop a DR scheme of reducing
the volatility of residential energy demand by building on
Morgan’s paper [10] on economics of public goods. We view
the user actions that contribute to the reduction of demand
volatility as means of public good provision. Thus, while
we employ Morgan’s technique [10], in our model, the users
contribute not the money, butnegawatts[16], i.e., the amount
of demand they shift from peak to off-peak time. Our goal
here is to design a reward-based scheme that incentivizes
users to shift their demand to off-peak times. The key
feature our scheme is its relative simplicity. Specifically, our
scheme does not require the knowledge of how responsive
the users are in shifting their demand. Essentially, we employ
a probabilistic reward structure for users who shift their
demand to the off-peak times. This feature makes our scheme
robust to incomplete information about user demand and risk
preferences, and introduces privacy-preserving features. In
addition, our scheme is advantageous from the perspective
of cyber-security. Lastly, our incentive scheme could be
used in conjunction with other existing demand response
mechanisms (e.g., the time-of-day pricing [5]).

We model the interactions of the distributor with customers
(here assumed to be residential or household users) as a
game. Practically, electricity consumption of each individual



user has negligible effect on the aggregate demand faced
by the distributor. Still, the electricity price faced by each
user depends on the aggregate demand. This feature is
exactly what is considered in so-calledaggregative games.
In aggregative games, the payoff function of each player
depends on his own action and an aggregative term reflecting
the effect of other players’ actions; but not on the individual
actions of others, as in the standard non-aggregative games.
A generic payoff function of playeri in such a game with
an additive aggregative term is given by

ui



xi,
∑

j 6=i

xj



 .

Aggregative games in large-scale systems are often called
mean-field games[13], [14], [15]. To develop our reward-
based DR scheme, we model the provision of megawatts as
an aggregative game, where the reward is chosen by the dis-
tributor, based on his reduction of the network maintenance
costs, which we assume as a decreasing and convex function
of the maximum (peak) and variance of the demand. In our
setup, the users who shift their demand to the off-peak time
obtain rewards via a lottery-like scheme. We characterize
the equilibrium of the mean-field game and compare it with
the social optima. We demonstrate that the users and the
distributor are better off in the presence of our reward-based
mechanism. Specifically, in equilibrium, individual userswill
produce more negawatts, and therefore receive higher utility
relative to the case when such mechanism is not offered.

A. Outline

The rest of the paper is organized as follows. In Sec-
tion II we overview of lottery-based approach to public
good problem, and discuss technical problems that emerge
in adopting lotteries to reduce variability of electric demand.
We introduce our model in SectionIII . In SectionIV, we
formulate the corresponding mean field game. We prove the
existence and the uniqueness of the Nash equilibrium and
show that interior equilibrium (i.e., equilibrium in which
random rebates are offered) exists, and is welfare superiorto
the no-rebate case. In SectionV we conclude with a short
discussion of our results and future extensions.

II. BACKGROUND

A. Literature Review

Below we briefly review three different threads of research
relevant for our paper.

I. In the first part, we cover the literature about demand
shaping, which naturally divides into two approaches,

II. The second part of our review covers mean field-like
game models in electricity market. The aggregate response
of several consumers (or producers) to a price signal may
be modeled as a function of individual contribution and an
aggregative term [2], [3], [4].

In [5] Jiang and Low analyzed demand management in
smart grid. They considered the case user demand is not
time-correlated and provided an independent optimization

scheme per time period. In [6] studied real-time demand
response with uncertain renewable energy in smart grid. They
designed and evaluated distributed algorithms for optimal
energy procurement and demand response in the presence
of uncertain renewable supply and time-correlated demand.
When random renewable energy is realized at delivery time,
it actively manages user load through real-time demand
response and purchases balancing power on the spot market
to meet the aggregate demand. A summary of recent progress
on demand response can be found in [9].

The authors in [7] proposed a decentralized charging
control strategy for large populations of plug-in electric
vehicles (PEVs). They have proposed aggregative and mean-
field games in situation where PEV agents are rational and
weakly coupled via their operation costs. Each of the PEV
agents reacts optimally with respect to the average charging
strategy of all the PEV agents.

III. Lastly, in the third part, we discuss the papers which
apply lottery-like mechanisms to address public good provi-
sion.

We are building on the insights of a famous paper about
the economics of public goods [10], i.e., by viewing user
actions that are reducing demand volatility as a tool of
public good provision. However, the specifics of demand
management for residential electricity usage requires sub-
stantial changes of Morgan’s approach in [10].

The idea of lotteries have also been used in other contexts,
e.g.,for the raffle scheduling technique applied in computer
operating systems. Recent interest in application of lotteries
to congestion management was facilitated by Mergu, Prab-
hakar, and Rama who demonstrated with a field study that
lottery-based mechanisms can be used to decongest trans-
portation systems.In contrast, our focus is similar to [12], and
it is predominantly methodological. These papers approach
lotteries as a technical tool of congestion management, and
also compare their setup(s) to Morgan’s scheme of using
lotteries for funding public goods. We refer to [12] (and
the references therein) for an overview of the driving forces
behind the lottery-based schemes usage to reduce congestion
in different domains (internet and traffic).

B. Morgan’s model

Game-theoretic analysis in Morgan’s paper [10] shows that
lotteries are attractive tools for financing of public goods. We
now present an overview of Morgan’s results; also see [18].
Let N = {1, . . . , n} denote the set of users. Each useri ∈ N

has a wealthwi, and chooses an amountxi ∈ [0, wi] as his
contribution to the level of public goodG◦, which is defined
as the sum of individual contributions, i.e.,G◦ =

∑n

i=1 xi.
Under voluntary contributions (i.e., no incentive scheme), the
expected utility ofi−th user is:

Ui(xi, x−i) = wi + hi

(

n
∑

i=1

xi

)

− xi,

wherex−i denotes the vector of contributions of all users
but i, andhi(·) is a strictly increasing and strictly concave
function, and reflects the user’s valuation of public good.



The raffle-based schemein [10] gives a rewardR > 0
to one or more users, and each user’s expected reward is
proportional to his contribution to the public good. The
scheme is financed by deducting the rewardR from the total
contributionsG◦ of all users. Then, the expected utility of
i−th user becomes

Ui(xi, x−i) = wi + hi(G)− xi +R ·
xi

∑n

i=1 xi

, (1)

where the level of public good is nowG =
∑n

i=1 xi−R. An
underlying assumption in [10]) is that the lottery is conducted
by a charity. If the total contributions are insufficient to
cover the prize up to an arbitrarily small amountδ > 0
(i.e.,

∑n

i=1 xi < R − δ), the raffle is canceled and each
contributor gets his contribution back from the charity. Ifthe
denominator term

∑n
i=1 xi is zero, the payoff is the initial

wealth. This creates a discontinuity in the payoff function.
The aggregate welfareW is

W =

n
∑

i=1

Ui. (2)

Let social optimum be defined as an allocation with max-
imal aggregate (total) user welfare. In the following, the
superscript(eq) (resp. ∗) denotes the respective quantities
corresponding to Nash equilibrium (resp. social optimum).

Theorem 1 (Main results of Morgan [10]):
(i) For anyR > 0, there exists a unique Nash equilibrium,

whereas forR = 0, multiple equilibria can exist, all
with the same level of public good.

(ii) There exists a unique level of public goodG∗, which
maximizes the aggregate welfare, and for anyR > 0,
we haveG(eq)(0) < G(eq)(R) < G∗.

(iii) The equilibrium level of public good with the raffle-
schemeG(eq)(R) can be made arbitrarily close to the
socially optimal levelG∗ by choosing a sufficiently
large rewardR.

(iv) For anyR > 0, G(eq)(R) > 0 if and only if G∗ > 0.
(v) A fixed-prize raffle with a prizeR is outcome equivalent

to a game in which each individual receives a rebate
share that is proportional to his or her contributions
to the public good relative to total contributions. The
charity financing the public good stipulates a rebate
amountR which will be set aside from total contri-
butions (provided that these exceedR).

From Theorem1, we know that a probabilistic reward
scheme could be implemented as a raffle (see (v)). However,
to implement such a scheme with a goal of shaping electricity
demand, a number of issues must be addressed. First, we
have to decide who finances the rewardR and how. Here
we introduce the distributor as the player who organizes the
lottery. Second, in [10], the users participate in the lottery
via monetary contributions. However, in our model, the
electricity users contribute to demand shaping via negawatts.
Third, we need to explicitly consider the case when the
lottery might be canceled in equilibrium. In general, it is
hard to “return” the negawatts to the users. In [10], there
is a possibility of raffle cancelation in the case when users

believe that others would not contribute enough, and there
is no super-rich player who has sufficient funds to finance
the raffle. Lastly, since each electricity user has a negligible
effect on the aggregate demand faced by the distributor, a
mean-field game model is appropriate for our environment.

III. M ODEL

Consider n users and one distributor. We model the
distributor’s payoff as follows

πn(Rn) =
1

n
(Qn + Q̂n)p−

1

n
Rn − c0(

1

n
Qmax, σ),

where whereQmax is a peak demand,σ = 1
n2 [Q− Q̄]2, and

c0(
1
n
Qmax, σ) is the cost of network maintenance, which is

increasing and convex is in both arguments.
Each consumer has a certain peak demand that we de-

compose as shiftable demandqi and non-shiftable demand
q̂i. The choice variable for a useri is an amount of energy
consumptionxi ∈ [0, qi] that he shifts from the peak time.
The payoffui of useri is equal to

ui = w(si)− [qi + q̂i]p+ u2,i,

The second termu2,i reflects the incentive scheme:

u2,i = 1l{
∑

n
j=1

xj 6=0}

[

h(Gn) +Rn

xi
∑n

j=1 xj

− d(xi)

]

whereGn denotes the aggregative term

Gn =





1

n

n
∑

j=1

xj



− rn,

and to simplify, below we will illustrate how our model
works with a linear the dis-utility of shiftingd(xi) = xi.
We use the indicator function in order to well-define the
payoff at0. If the denominator is zero the termxi∑

j
xj

= 0
0

but we will replace the payoff by−α ≤ 0. This makes a
discontinuity at0.

We introduced a strategic decision-making problem with
two-levels. At the first level, the utility proposes a probabilis-
tic rewardrn in order to incentivize the consumers to shift
their demand. Then, each consumer, knowingrn, choosesxi

that maximizes hisui.

IV. RESULTS

The standard method for solving bi-level games is
the backward induction. A equilibrium of our hierar-
chical game is a profile(r∗n, x

∗(r∗n)) such that r∗n ∈
argmaxrn πn(rn, x

∗(rn)) and∀i, x∗
i (rn) ∈ argmaxxi

[ui].
We analyze the equilibrium properties of the game in the

asymptotic regime:

u(x,m, r) = w(s)−p(q+q̂)+
[

h(m− r̃)− xi + r
xi

m

]

1l{m≥r̃−δ̄}

where r̃(r) is the inverse quantity required to compensate
the cost due to congestion with the rewardr. In order to
simplify the analysis, we choosẽr(r) = r.



A. Equilibrium analysis between consumers

For a fixedr which is an inferior limiting point ofrn, we
examine the game between consumers. The best response to
the meanm andr is given by

BR(s,m, r) =















0 if m > r

any feasible action ifm = r

max. action ifr > m ≥ r − δ̄ > 0
any feasible action m < r − δ̄

We define a mean field equilibrium between consumers
for a fixedr > 0 as follows.

Definition 1 (Pure mean field equilibrium):(x,m) is a
pure mean field equilibrium if∀ s, x(s) > 0 =⇒ x(s) ∈
argmaxx′ u(s, x′(s),m, r) and the mean of the actionsx(s)
with the respect to the state should generatem by consis-
tency.

From the definition, a pure mean field equilibrium satisfies
m ∈ argmaxx u(s, x(s),m, r). Supposer > δ̄. Then
x(s) = m∗(r) = r provides a pure mean field equilibrium
between consumers. The equilibrium payoff is greater than
the one without incentives wheneverh(0) ≥ 0. Note that the
equilibrium quantity increases with the reward.

B. Social welfare of consumers

Next, we examine the social welfare of consumers. The
arithmetic average payoff of all the consumers is given by

−p(q + q̂) +
1

n

n
∑

j=1

w(sj) +
1

n

n
∑

j=1

h(·) + rn −
1

n

∑

j

xj

which limiting behavior has the following form:

−p(q + q̂) + w̄ + h(m− r) + r −m

Optimizing the above function yields in optimizing the
function m 7−→ h(m − r) − m which has a maximizer
m∗,so = m∗so(r).

Suppose thath(·) is a concave diffeomorphism. Then, any
interior solution is given byh′(m− r) = 1 i.e.

m∗so = m∗so(r) = r + (h′−1(1))

and the optimum social welfare of consumers is−p(q+ q̂)+
w̄ + h(h′−1(1))− h′−1(1).

C. Operator’s anticipation

Now we focus on the operator anticipation problem. The
operator will anticipate the reaction of the consumers in his
payoff function and compute the profit as

(q + q̂)p− r − c0(q
max, [m∗(r) − m̄]2).

The profit optimization of the large scale system is equiv-
alent in minimizing the costr + c0(q

max, [r − m̄]2) in r.

Assume that the highest operator’s cost is greater thanm̄ :
c0(q

max, m̄2) > m̄. Then, the maximizer of the profit is
positive, i.e.,r∗ > 0 because of very high costc0(qmax, m̄2)
which increases with̄m2 > 0, and c0(q

max, m̄2) > m̄. To
compute the interior pointr∗, we use the first order condition
−1 = 2[r − m̄]∂σc0(q

max, [r − m̄]2). If there are multiple

maximizers, the operator will choose the minimum cost to
organize the lottery. The minimum among the maximizers of
r + c0(q

max, [r − m̄]2) will be chosen. Thus,

0 < r∗ < m̄.

In other words, the operator will finance because it reduces
its cost.

V. CONCLUDING REMARKS

Recent technological developments necessitate a recon-
sideration of how electricity distribution is done. Indeed,
wide deployment of advanced metering infrastructure (AMI)
gives utility operators and individual households ample new
possibilities to interact. A budding literature investigates new
mechanisms of demand management with both, technology-
based and market-based features. While the primary focus
of demand response mechanisms is to assure integrity and
availability of electric infrastructure, in this paper we are
also concerned by potential threats to privacy of individual
users, as well as by security of electric grid, which could
be compromised via real-time information flows that AMI
permits.

Our main contribution is a novel demand response scheme,
based on a probabilistic rebate mechanism. We adopted a
lottery-based scheme of public goods financing to reduce
the societal costs of variability of the residential electric
demand. We developed a probabilistic rebate scheme based
on a lottery mechanism, to incentivise household users to
shift their electric consumption to the off-peak times. In
this paper, we consider only the effect of our mechanism
on the utility costs of its distribution network maintenance.
Our setting is stylized and minimalist, to demonstrate the
essence of the probabilistic rebate mechanism. In our future
work, we will consider the following extensions.

First, we will address the effects of our scheme on the
utility’s costs of electricity acquisition. Our intuitionis
that with the inclusion of these costs in the model, cost
savings of the utility would be even higher than now, due
to its reduction of real-time (balancing) purchases at the
highest prices (locational marginal prices (LMPs)). Second,
the positive effects of flatter electric demand are not limited
by the reduced utility costs. Other parties, such as regional
transmission operators (RTOs) are also actively investingin
demand response programs due to their concern about the
overall robustness of the grid, and specifically transmission
system. An interesting extension of our work will be to
consider savings of transmission operators and, possibility
of using some part of these savings to finance user rebates.
Third, our paper lacks quantitative estimates. Thus, our next
step will be to include explicit functional forms of user
demand and for utility costs of network maintenance, and fit
the existing household demand data to construct predictions
about the magnitude of the effects of our mechanism. Lastly,
we are working on extending our setting to a dynamic game,
in which evolutionary learning technics are used by the utility
to learn user preferences for demand shifting.
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