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Abstract— In this paper, we develop a novel mechanism for
reducing volatility of residential demand for electricity. We
construct a reward-based (rebate) mechanism that provides
consumers with incentives to shift their demand to off-peak
time. In contrast to most other mechanisms proposed in the
literature, the key feature of our mechanism is its modest
requirements on user preferences, i.e., it does not require
information of user responsiveness about shifting their dmand
from the peak to off-peak time. Specifically, our mechanism
utilizes a probabilistic reward structure for users who shift
their demand to the off-peak time, and is robust to incomple¢
information about user demand and/or risk preferences. We
approach the problem from the public good perspective, and
demonstrate that the mechanism can be implemented via
lottery-like schemes. Our mechanism permits to reduce the
distribution losses, and thus improve efficiency of electdity
distribution. Finally, the mechanism can be readily incorporated
into the emerging demand response schemes (e.g., the timfe-o
day pricing, and critical peak pricing schemes), and has secity
and privacy-preserving properties.

[. INTRODUCTION
In recent yearsdemand response (DR) in smart gird

infrastructures has emerged as an important topic of relsear
These schemes aim to control/flatten the aggregate demarréﬁ

time pricing. Firstly, various studies on risk preferencés
users indicate that they prefer flat-rate prices, and ara eve
willing to pay a premium to avoid being charged a non-flat
price for their electricity consumption. Moreover, resitel
users show low responsiveness to price signals. Secondly,
the communication of disaggregated user demand data to a
distribution utility (distributor) may cause substaniaivacy
concerns. The bi-directional real-time communication be-
tween the distributor and the users also introduces nurserou
insecurities [1]. For e.g., the demand data from AMIs to
the distributor could be falsified, corrupted, or supprdsse
Even when the actual demand data reaches the distributor
uncorrupted, the pricing information could be maliciously
altered (e.qg., by fraudulent users). Systematic exploitadf
such insecurities could even induce network instabilitly [8

Yet, with increasing wholesale price(s), and predictiohs o
further price escalation, distributors are experimentiritp
tiered pricing schemes. Essentially, the distributorsisid-
erations about DR schemes in smart infrastructures include
the following trade-off: On one hand, in order to increase
the efficiency of electricity provision, user prices should
ect the scarcity of electricity. On the other hand, fegs,

curves by shifting the users’ consumption times to Improvﬁrivacy and security considerations limit the usabilitydan

efficiency. For e.g., time-of-day variations of residehtia
demand for electricity posit a considerable problem for

stability and efficiency of electric grid. Indeed, highetati-
ity of user demand results in higher average distributor

attractiveness of real-time pricing for retail electncit

In this paper, we develop a DR scheme of reducing
the volatility of residential energy demand by building on
ﬁ/lorgan’s paper [10] on economics of public goods. We view

expenses on network maintenance and electricity ProviSIqe \;ser actions that contribute to the reduction of demand

which creates upward pressure on retail prices. Altogeth

mechanisms for reducing demand volatility. The ongoin
deployments of Advanced metering infrastructures (AMI
and Smart Utility Networks (SUN) present new opportunitie
for the deployment of DR schemes.

: ) ) Qf,olatility as means of public good provision. Thus, while
these reasons have resulted in a considerable interest, in

employ Morgan’s technique [10], in our model, the users
Bontribute not the money, baegawatt§16], i.e., the amount

f demand they shift from peak to off-peak time. Our goal
Pere is to design a reward-based scheme that incentivizes
users to shift their demand to off-peak times. The key

Real-time pricing may sound as an attractive theorem%ature our scheme is its relative simplicity. Specificatiyr

choice for DR via AMI/SUN. However, nhumerous com-
plications arise in any practical implementation of real
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scheme does not require the knowledge of how responsive
the users are in shifting their demand. Essentially, we eynpl
a probabilistic reward structure for users who shift their
demand to the off-peak times. This feature makes our scheme
robust to incomplete information about user demand and risk
preferences, and introduces privacy-preserving features
addition, our scheme is advantageous from the perspective
of cyber-security. Lastly, our incentive scheme could be
used in conjunction with other existing demand response
mechanisms (e.g., the time-of-day pricing [5]).

We model the interactions of the distributor with customers
(here assumed to be residential or household users) as a
game. Practically, electricity consumption of each indial



user has negligible effect on the aggregate demand facecheme per time period. In [6] studied real-time demand
by the distributor. Still, the electricity price faced bycha response with uncertain renewable energy in smart gridy The
user depends on the aggregate demand. This featuredesigned and evaluated distributed algorithms for optimal
exactly what is considered in so-calleggregative games energy procurement and demand response in the presence
In aggregative games, the payoff function of each playesf uncertain renewable supply and time-correlated demand.
depends on his own action and an aggregative term reflectiighen random renewable energy is realized at delivery time,
the effect of other players’ actions; but not on the indiatu it actively manages user load through real-time demand
actions of others, as in the standard non-aggregative gamessponse and purchases balancing power on the spot market
A generic payoff function of playei in such a game with to meet the aggregate demand. A summary of recent progress

an additive aggregative term is given by on demand response can be found in [9].
The authors in [7] proposed a decentralized charging
w $i7zx,j control strategy for large populations of plug-in electric

- vehicles (PEVs). They have proposed aggregative and mean-
s field games in situation where PEV agents are rational and
Aggregative games in large-scale systems are often call@@akly coupled via their operation costs. Each of the PEV
mean-field game§l3], [14], [15]. To develop our reward- agents reacts optimally with respect to the average chargin
based DR scheme, we model the provision of megawatts sgategy of all the PEV agents.
an aggregative game, where the reward is chosen by the disdll. Lastly, in the third part, we discuss the papers which
tributor, based on his reduction of the network maintenancgpply lottery-like mechanisms to address public good provi
costs, which we assume as a decreasing and convex functgon.
of the maximum (peak) and variance of the demand. In our We are building on the insights of a famous paper about
setup, the users who shift their demand to the off-peak tim@e economics of public goods [10], i.e., by viewing user
obtain rewards via a lottery-like scheme. We characterizactions that are reducing demand volatility as a tool of
the equilibrium of the mean-field game and compare it witlpublic good provision. However, the specifics of demand
the social optima. We demonstrate that the users and theanagement for residential electricity usage requires sub
distributor are better off in the presence of our rewardelas stantial changes of Morgan’s approach in [10].
mechanism. Specifically, in equilibrium, individual usend The idea of lotteries have also been used in other contexts,
produce more negawatts, and therefore receive highetyutilie.g.,for the raffle scheduling technique applied in computer
relative to the case when such mechanism is not offered. operating systems. Recent interest in application of fiette
. to congestion management was facilitated by Mergu, Prab-
A. Outline hakar, and Rama who demonstrated with a field study that
The rest of the paper is organized as follows. In Sedottery-based mechanisms can be used to decongest trans-
tion Il we overview of lottery-based approach to publigortation systems.In contrast, our focus is similar to [52jd
good problem, and discuss technical problems that emergds predominantly methodological. These papers approach
in adopting lotteries to reduce variability of electric d@md. |otteries as a technical tool of congestion management, and
We introduce our model in Sectioli. In SectionlV, we also compare their setup(s) to Morgan's scheme of using
formulate the corresponding mean field game. We prove thetteries for funding public goods. We refer to [12] (and
existence and the uniqueness of the Nash equilibrium amge references therein) for an overview of the driving ferce

show that interior equilibrium (i.e., equilibrium in which pehind the lottery-based schemes usage to reduce congestio
random rebates are offered) exists, and is welfare suptriorin different domains (internet and traffic).

the no-rebate case. In Sectisghwe conclude with a short

discussion of our results and future extensions. B. Morgan’s model

Game-theoretic analysis in Morgan’s paper [10] shows that

Il. BACKGROUND lotteries are attractive tools for financing of public goode
A. Literature Review now present an overview of Morgan’s results; also see [18].
Below we briefly review three different threads of research®t V = {1, ..., n} denote the set of users. Each user N
relevant for our paper. has a wealthv;, and chooses an amount € [0, w;] as his
I. In the first part, we cover the literature about demangontribution to the level of public goo@*, which is defined
shaping, which naturally divides into two approaches, ~ as the sum of individual contributions, i.&° = 31", ;.

Il. The second part of our review covers mean field-liké/nder voluntary contributions (i.e., no incentive schetiey
game models in electricity market. The aggregate respong¥Pected utility ofi—th user is:
of several consumers (or producers) to a price signal may n
be modeled as a function of individual contribution and an Ui(wi,x—i) = wi + hi <Z xz> = Tiy
aggregative term [2], [3], [4]. i=1

In [5] Jiang and Low analyzed demand management iwherex_; denotes the vector of contributions of all users
smart grid. They considered the case user demand is rmit i, andh;(-) is a strictly increasing and strictly concave
time-correlated and provided an independent optimizaticiunction, and reflects the user’s valuation of public good.



The raffle-based schemim [10] gives a rewardR > 0 believe that others would not contribute enough, and there
to one or more users, and each user’'s expected rewardissno super-rich player who has sufficient funds to finance
proportional to his contribution to the public good. Thethe raffle. Lastly, since each electricity user has a ndgggi
scheme is financed by deducting the rew&rétom the total effect on the aggregate demand faced by the distributor, a
contributionsG® of all users. Then, the expected utility of mean-field game model is appropriate for our environment.
i—th user becomes

s I1l. M ODEL
Ui(.%'i,.%'_i) = w; + hZ(G) —z; + R-

1)

3
S Considern users and one distributor. We model the

where the level of public good is no@ = "', z; — R. An distributor's payoff as follows

underlying assumption in [10]) is that the lottery is contealc
by a charity. If the total contributions are insufficient to
cover the prize up to an arbitrarily small amouht> 0
(e, >0, 2; < R — ), the raffle is canceled and each
contributor gets his contribution back from the charitythé
denominator termd_" ; x; is zero, the payoff is the initial
wealth. This creates a discontinuity in the payoff function
The aggregate welfard’ is

7"'n(Fin) - %(Qn + Qn)p - %Rn - CO(%Qmax7 O'),

where wherg)™** is a peak demand; = > [Q — Q]?, and
co(2Qm*>, o) is the cost of network maintenance, which is
increasing and convex is in both arguments.
Each consumer has a certain peak demand that we de-

compose as shiftable demapdand non-shiftable demand
g;- The choice variable for a useéris an amount of energy

" consumptionz; € [0, ¢;] that he shifts from the peak time.
W= 2} Ui. @) The payoffu; of u[serz’ ]is equal to

Let social optimum be defined as an allocation with max- u; = w(s;) = [qi + Gilp + ua2i,
imal aggregate (total) user welfare. In the following, thel_
superscript®@ (resp.*) denotes the respective quantities
corresponding to Nash equilibrium (resp. social optimum). T
Theorem 1 (Main results of Morgan [10]): ugi = gson o201 |P(Gn) + Rnﬁ — d(z;)
(i) ForanyR > 0, there exists a unique Nash equilibrium, =t
whereas forR = 0, multiple equilibria can exist, all whereG,, denotes the aggregative term
with the same level of public good. .
(i) There exists a unique level of public gode*, which G, = 1 ij -
n =

he second term ; reflects the incentive scheme:

maximizes the aggregate welfare, and for ddy> 0,
we haveG©9(0) < GCI(R) < G*.

(iii) The equilibrium level of public good with the raffle- and to simplify, below we will illustrate how our model
schemeG©9(R) can be made arbitrarily close to theworks with a linear the dis-utility of shiftingl(z;) = =;.
socially optimal levelG* by choosing a sufficiently We use the indicator function in order to well-define the
large rewardR. payoff at0. If the denominator is zero the ter@% = %

(iv) ForanyR >0, G©¥(R) > 0 if and only if G* > 0. but we will replace the payoff by-a: < 0. This makes a

(v) Afixed-prize raffle with a prize? is outcome equivalent discontinuity at0.
to a game in which each individual receives a rebate we introduced a strategic decision-making problem with
share that is proportional to his or her contributiongwo-levels. At the first level, the utility proposes a proliab
to the public good relative to total contributions. Thetic rewardr,, in order to incentivize the consumers to shift

charity financing the public good stipulates a rebatgheir demand. Then, each consumer, knowipgchooses:;
amount 2 which will be set aside from total contri- that maximizes his;.

butions (provided that these exce&jl
From Theoreml, we know that a probabilistic reward IV. RESULTS

scheme could be implemented as a raffle (see (v)). However,the standard method for solving bi-level games is

to implement such a scheme with a goal of shaping electricitye packward induction. A equilibrium of our hierar-
demand, a number of issues must be addressed. First, W& game is a profile(r:,z*(r*)) such thatr® e

havg to decide Whp f_inances the rewdtdand how. I-_|ere argmax,, 7 (rn,2*(ry)) andvi, z*(r,) € argmaxg, [us].
we introduce the.d|str|butor as the pIay.er. who organizes the e analyze the equilibrium properties of the game in the
lottery. Second, in [10], the users participate in the Iytte ¢ ; -

, P X ymptotic regime:
via monetary contributions. However, in our model, the

ele_ctr|C|ty users contrlbut_e_to dema_nd shaping via negawaty,(z, m, r) = w(s)—p(qg+q)+ [h(m —F) — @ + T_l} Ui )
Third, we need to explicitly consider the case when the m

lottery might be canceled in equilibrium. In general, it iswhere#(r) is the inverse quantity required to compensate
hard to “return” the negawatts to the users. In [10], therthe cost due to congestion with the rewardIn order to

is a possibility of raffle cancelation in the case when usemplify the analysis, we chooségr) = r.



A. Equilibrium analysis between consumers maximizers, the operator will choose the minimum cost to
For a fixedr which is an inferior limiting point ofi,, we organize the lottery. The minimum among the maximizers of

. , AN
examine the game between consumers. The best respons& toco(¢"**; [r —m]*) will be chosen. Thus,

the meanm andr is given by 0 <1 < .

f le ; if fmn >r In other words, the operator will finance because it reduces
) any feasible action m=r its cost.
BR(s,m,r) = max. action ifr>m>r—-6>0
any feasible action m<r—3o V. CONCLUDING REMARKS
We define a mean field equilibrium between consumers Recent technological developments necessitate a recon-
for a fixeds > 0 as follows. sideration of how electricity distribution is done. Indeed

Definition 1 (Pure mean field equilibrium)z, m) is a wide deployment of advanced metering infrastructure (AMI)
pure mean field equilibrium i/ s, z(s) > 0 = x(s) € gives utility operators and individual households ample/ ne
arg max, u(s, z'(s),m,r) and the’mean of the actionsgs) possibilities to interact. A budding literature investiggnew
with the respect to the state should generatéoy consis- mechanisms of demand management with both, technology-
tency. based and market-based features. While the primary focus

From the definition, a pure mean field equilibrium satisfie@f démand response mechanisms is to assure integrity and
m € argmax,u(s,z(s),m,r). Supposer > 3. Then availability of electric infrastructure, in this paper weea
2(s) = m*(r) o [:;rovid7es7a pure mean field equilibrium &S0 concerned by potential threats to privacy of individua
between consumers. The equilibrium payoff is greater thafSers: as well as by security of electric grid, which could
the one without incentives whenevef0) > 0. Note that the be compromised via real-time information flows that AMI

equilibrium quantity increases with the reward. permits. o
Our main contribution is a novel demand response scheme,
B. Social welfare of consumers based on a probabilistic rebate mechanism. We adopted a

Next, we examine the social welfare of consumers. Thittery-based scheme of public goods financing to reduce

. N demand. We developed a probabilistic rebate scheme based

oo L _ 1 ) 1 _ on a lottery mechanism, to incentivise household users to
—plata)+ n Zw(s]> + n Z A) + n ZIJ shift their electric consumption to the off-peak times. In
! this paper, we consider only the effect of our mechanism
on the utility costs of its distribution network maintenanc

—p(@+ Q) +@+h(m—1)+r—m Our setting is stylized_ an_d minimalist, to (_jemonstrate the
essence of the probabilistic rebate mechanism. In ourdutur

Optimizing the above function yields in optimizing thework, we will consider the following extensions.
function m ~— h(m — r) — m which has a maximizer  First, we will address the effects of our scheme on the

j=1 j=1

which limiting behavior has the following form:

m* =m**°(r). utility's costs of electricity acquisition. Our intuitiors
~ Suppose thah(-) is a concave diffeomorphism. Then, anythat with the inclusion of these costs in the model, cost
interior solution is given by:'(m —r) =1 i.e. savings of the utility would be even higher than now, due

to its reduction of real-time (balancing) purchases at the
highest prices (locational marginal prices (LMPs)). Sekon
and the optimum social welfare of consumers-ig(¢+g)+  the positive effects of flatter electric demand are not kuahit
w4+ h(K1(1)) — K H(1). by the reduced utility costs. Other parties, such as regiona
transmission operators (RTOs) are also actively investing
demand response programs due to their concern about the
Now we focus on the operator anticipation problem. Theverall robustness of the grid, and specifically transmissi
operator will anticipate the reaction of the consumers & hisystem. An interesting extension of our work will be to
payoff function and compute the profit as consider savings of transmission operators and, posgibili
R . N _ of using some part of these savings to finance user rebates.
(a4 @)p =1 = co(q™™, [m*(r) —m]). Third, (?ur paperr) lacks quantitativegestimates. Thus, out ne
The profit optimization of the large scale system is equivstep will be to include explicit functional forms of user
alent in minimizing the cost + co(¢™®, [r — m]?) in . demand and for utility costs of network maintenance, and fit
Assume that the highest operator’s cost is greater than the existing household demand data to construct predition
co(¢™*,m?) > m. Then, the maximizer of the profit is about the magnitude of the effects of our mechanism. Lastly,
positive, i.e.;* > 0 because of very high cos(¢™**,m?) Wwe are working on extending our setting to a dynamic game,
which increases within?> > 0, and co(¢™**,m?) > m. To in which evolutionary learning technics are used by thetytil
compute the interior point*, we use the first order condition to learn user preferences for demand shifting.
—1 = 2[r — m]0sco (g™, [r — m]?). If there are multiple

m*se — m*so(,,,) —r4 (hlfl(l))

C. Operator’s anticipation
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